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Genetic Studies Point to Beringia as a Biodiversity
Hotspot for High-latitude Fungi

By Jozsef Geml, Frank Kauff, Gary A. Laursen, and
D. Lee Taylor

Abstract

Despite the critical roles fungi play in the functioning of
ecosystems, especially as symbionts of plants and recyclers
of organic matter, their biodiversity is poorly known in
high-latitude regions. Among these, Beringia, including
Alaska and north-eastern Siberia, has long been a focal
point for biogeographical research in a wide range of
plant and animal taxa. However, the biodiversity and
biogeography of fungi in Beringia are virtually unknown.
We analyzed DNA sequence data from various boreal
and arctic macrofungi using phylogenetic and coalescent
methods to assess the genetic diversity at the species and
intraspecific levels. Our results suggest that Beringia, par-
ticularly Alaska, harbors very diverse fungal communities
and that most arctic and at least some boreal fungal taxa
survived the last glacial maximum in Beringia.

Introduction

Climatic changes in the Quaternary have dramatically
influenced the distribution of mycota, flora and fauna in
high-latitude ecosystems, and had major impacts on past
speciation events and present population structures. While
plants and animals have been extensively studied, very little
is known about the community and population structures
of fungi in arctic and boreal biomes. This is particularly un-
desirable, because fungi play key roles in the decomposi-
tion, mobilization, and the transfer of nutrients to plants in
these nutrient-poor ecosystems.

Beringia, including Alaska and north-eastern Si-
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beria, has long been a focal point for biogeographi-
cal research in a wide range of plant and animal taxa.
This high level of interest arises for two principal
reasons. First, due to its diverse landscape and cli-
mate and the fact that much of the region remained
ice-free during glacial maxima, Beringia served as
a refugium for arctic and subarctic flora and fauna
(Adams and Faure 1997, Brubaker et al. 2005, Edwards et al.
2000, Hultén 1968). Second, during much of the Tertiary
and Quaternary periods, Beringia was the major land con-
nection between Asia and North America and provided
migration routes to a wide variety of organisms (for exam-
ple, see Elias et al. 2000; Qian 1999, Swanson 2003).

As opposed to plants and animals, there has not
been a comprehensive cataloging of fungi in Alaska,
and the richness and biogeograhic origins of Berin-
gia’s mycota remain unknown. Therefore, one of our
primary goals was to initiate the first biodiversity as-
sessment of boreal and arctic fungi in Alaska, con-
ducting genetic analyses based on curated sporocarp
collections. Here, we present an example of a genus-wide
diversity assessment in the ectomycorrhizal Lactarius
Pers.

Beside exploring species-level diversity, we hypoth-
esized that, similar to patterns documented in various
plants and animals (e.g., see MacNeil and Strobeck 1987,
Sperling and Harrison 1994, Abbott and Comes 2003), high
intraspecific genetic diversity can be found in Beringian
fungi. To test it, we sampled populations of selected
boreal and arctic fungi from regions across the North-
ern Hemisphere and carried out phylogenetic and
coalescent analyses.

Methods

For the genus-wide diversity assessment of Lactarius,
383 specimens were collected and deposited in the
Mycological Herbarium (GAL) at the University of
Alaska Fairbanks (UAF). To reduce redundancy, 58 of
these, representing morphological groups and geographic
areas of origin among the collections, were selected
for molecular work. Nucleotide sequences of the de-
sired portions (ITS and LSU rDNA) of the DNA sam-
ples were obtained using standard molecular protocols
(DNA extraction, polymerase chain reaction, cycle se-
quencing etc.). Additional sequence data of all Lactarius
species available in GenBank was downloaded and in-
corporated into multiple sequence alignments and phy-
logenetic analyses for reference. Putative Alaskan spe-
cies groups were detected as phylogenetic groups of
sequences.

Four species (Amanita muscaria, Lichenomphalia
umbellifera, Flavocetraria cucullata, and Flavocetraria
nivalis) were chosen for intraspecific analyses, based on
their circumpolar distributions and the availability of
materials from the major northern geographic regions.
Molecular data was obtained as described above and was
subjected to phylogenetic and coalescent analyses to
study the population histories and characteristics.

Results

Phylogenetic analyses revealed 28 putative species
groups in the genus Lactarius in Alaska. These were
broadly distributed on the genus-wide tree and grouped
with several major infrageneric groups. It was often
possible to identify these groups to known species, al-
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Figure 1. One of the equally parsimonious, midpoint-rooted trees showing the phylogenetic spread of Alaskan Lactarius sequences (in bold) generated in this study among representatives of
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Lactarius taxa in GenBank. Sequences with ‘GAL and ‘ArcGAL numbers were derived from boreal and arctic herbar

indicated with grey boxes. GenBank sequences with no name attached are from unidentified environmental samples.
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Figure 2. The Amanita muscaria, the Fly Agaric, morphologi-
cal species includes at least three distinct, sympatric phylo-
genetic species in Alaska.

though in many cases Alaskan sequences formed unique,
unidentified clades that may represent newly discovered
entities (Figure 1).

The intraspecific analyses showed very high genetic di-
versity in Alaska, particularly in the boreal ectomycorrhizal
mushroom Amanita muscaria. In this morphological spe-
cies, we discovered three non-interbreeding phylogenetic
species that occur in sympatry in Alaska (Figures 2-3). Two
of these are ‘Eurasian’ clades (Clades II-III), while one is
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‘North American’ (Clade I), based on their geographic
distribution. To our knowledge, the ‘Eurasian’ clades do
not occur in North America outside Alaska. Furthermore,
coalescent analyses revealed the genetic isolation of
the endemic Alaskan sequence types from the rest
of their ancestral population, suggesting local sur-
vival for an extended period, including at least one
glacial maximum.

All three arctic fungi sampled in our study also
showed high intraspecific diversity, but they lacked
significant phylogeographic structure, likely as a result
of frequent, long-distance dispersals across the Arctic.
Despite the effective strategies for rapid postglacial
colonization, there were slight differences among differ-
ent arctic regions, Alaska hosting reliably the most diverse
populations.

Discussion and conclusions

Biodiversity: Arctic and boreal plant communities are
frequently described as relatively species poor and having
simpler patterns than those in more southern biomes (e.g.,
Whittaker 1975, Scott 1995, Walker 1995). Our genus-wide
diversity assessment suggests that at least one group of
ectom corrhizal fungi, the genus Lactarius, likely is diverse
in Alaska, particularly when comparing our data to the
other estimates of basidiomycete diversity (O’Brien et al
2005, Allison et al 2007). Based on the phylogenetic breadth
of our sequences, most, if not all, known major phyloge-
netic groups of Lactarius are represented in Alaska. This is
in sharp contrast to the trend seen in the non-mycorrhizal
saprotrophic Agaricus L.:Fr.,where only three section-level
phylogenetic clades (half of the six known globally) are rep-
resented in Alaska (Gemil et al. 2008). Our future plan is to
assess the diversity of other important Alaskan genera:
Russula, Cortinarius, Hebeloma, Inocybe, Galerina etc.

Putative forest refugia during the Last Glacial Maximum
in Alaska: Whether fragments of boreal forest existed in
Beringia during the Last Glacial Maximum (LGM) is a
major, but, as yet, unanswered question in quaternary
science. Because most of the discussion has been centered

on palynological data, using molecular phylogeography of
ectomycorrhizal fungi, as presented here, may help us better
understand past vegetation patterns in Beringia. The like-
ly importance of host trees in the distribution of ectomy
corrhizal fungi has been repeatedly noted, given the obli-
gate nature of the symbiosis, particularly from the fungal
perspective.

Our data show support for at least two endemic region-
al populations of A. muscaria in different parts of Alaska,
both of which exhibit genetic isolation and differentiation
from other populations. Because non-Alaskan popula-
tions most likely survived the LGM in refugia south of
the major ice shields, the lack of migration between these
and the Alaskan ones suggests local survival of the latter,
implying forest refugia in Alaska. Our findings support
the existence of at least two independent such glacial
forest refugia: 1) boreal forest in Interior Alaska; and 2)
maritime rainforest in Southeast Alaska and the Pacific
Northwest. The possible existence of isolated forest refugia
in Interior and Southeast Alaska is also supported by sever-
al other independent lines of evidence (e.g., see Flemming
and Cook 2002, Carrara et al 2003, Brubaker et al 2005,
Weckworth et al 2005, Anderson et al 2006).

High intraspecific diversity and long-range dispersal in
arctic fungi: Despite the high genetic diversity observed, we
found no phylogeographic structure in the three arctic spe-
cies examined (L. umbellifera, F. cucullata, and F. nivalis),

high gene
the Arctic. Several sequence types, particularly the an-

indicating levels of flow  across
cestral ones, were distributed over multiple continents,
suggesting effective dispersal. As opposed to morpho-
logical species from boreal and temperate regions that
often comprise multiple evolutionary lineages, mor-
phological species and phylogenetic species seem to
correspond well in the arctic fungi we analyzed. In
other words, there appear to be no genetic isolation
among populations inhabiting different geographic
areas. Onthe other hand, slight differences stillremainin the
overallgeneticdiversityamongdifferentregions,andthehigh

diversity values observed in Alaska, for example, could be
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explained by the glacial history and/or the climatic and
landscape variability. %2
Management implications

We are providing pioneer data on the diversity of
Alaskan fungi, including the discovery of several putative-
ly novel species. Such baseline information is crucial for
preserving biodiversity and ecosystem function in Alaska
national parks. Also, the resulting ‘DNA barcode’ database
is useful for current and future ecological and biodiversity
studies. Finally, insights into fungal migration histories and e12
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observed common patterns contribute to improved infer-
ences concerning glacial refugia and to the understanding Clade ll
of the present geographical structure of genetic diversity

in arctic organisms. Knowledge of both past migration his- 35
tory, a key to prediction, and present day genetic diversity 9
are essential to respond intelligently to global change.
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