In 1883, Frederick Law Olmsted Sr., noted landscape architect and planner, established his home and office in Brookline, Massachusetts. Olmsted's improvements to the two-acre site transformed the farm into a picturesque suburban estate, which he called Fairsted. Olmsted employed elements from the picturesque and pastoral styles, including an abundance of climbing vegetation on stone walls, trees, and buildings.

To help unify the architecture and the landscape Olmsted planted two twining vines, Wisteria sinensis (Chinese Wisteria) and Actinidia arguta (Bower Actinidia), which would cover the house. The vines masked the angularities of the building, and thus accomplished Olmsted's intent of obscuring the distinction between the natural and the manmade. The vines climbed profusely on the south side of the house, twining around waterspouts, window boxes, and shutters. Olmsted installed strapping to provide vine support, that ran vertically and horizontally along the facade.

The vines that covered Fairsted are an important visual and historic feature, reflecting Olmsted's interpretation of the ideal garden suburb and his landscape design principles. Unfortunately, the vines eventually contributed to the deterioration of the clapboard house, necessitating that some alternative method be found to protect the building facade from future damage and while still supporting the historic plant material.

Problem

Vines can damage historic clapboard or masonry buildings in a number of ways. Roots growing near buildings retain moisture and can put pressure on foundations, displacing materials and providing entry points for water, insects, and rodents. The primary damage caused by all vines is due to moisture. The shade created by extensive vegetation cover prevents the sun from drying the covered wall, and also reduces the drying effect from air circulation. Moisture from condensation, rain water, and plant transpiration is thus slow to evaporate and creates an environment conducive to paint failure, wood rot, and deterioration of soft masonry. The continuous presence of moisture on masonry buildings can weaken mortar and cause structural deterioration. When water trapped in cracks and openings freezes, the ice expands— pressure that can further damage the masonry.

In addition, vines cause other forms of damage depending on their individual
Vine Types

Twining
Vines may climb by twining from left to right or by twining right to left.
- *Wisteria sinensis* (Chinese Wisteria)
- *Actinidia arguta* (Bower Actinidia)

Tendril
The tendrils wrap themselves around anything that they come in contact with.
- *Clematis virginiana* (Virgin’s Bower)
- *Clematis paniculata* (Sweet Autumn Clematis)

Aerial
Small roots firmly attach the vine to either wood or masonry.
- *Euonymus fortunei* (Winter creeper)
- *Hydrangea anomala* (Climbing Hydrangea)

Creepers
This vine clings by sending out small tendrils with adhesive discs that attach themselves to surfaces.
- *Parthenocissus quinquefolia* (Virginia Creeper)
- *Parthenocissus tricuspidata* (Boston Ivy)

Twining vines climb by sending out shoots that wrap around objects and grow in both length and width. As the vine grows thicker, it can constrict these objects, causing features such as louver shutters to snap under the increasing pressure. Furthermore, the spreading shoots penetrate openings and crevices. In time, the growing vine can loosen and separate building materials.

Like twining vines, tendril vines wrap around objects for support. Because they are actually extended leaves, tendrils do not grow in width, only in length. Both twining and tendril vines, however, can break weather seals on wooden facades, separating wood shingles and siding, as well as fascia and soffit boards on porches. Other vine types include Aerial vines which grow small roots along the length of the stem. These rootlets cling to the wall and can force their way into crevices. The fineness and density of the rootlets makes removal difficult. Creeping vines have tiny adhesive pads that cling to the building surface. Commonly found on masonry brick buildings, creeping vines do not generally cause extensive damage to structures while growing, although they may abrade softer mortar. However, they attach themselves so thoroughly to the building surface that paint, mortar, and brick are likely to be damaged when the vines are removed.

In 1980, The National Park Service began structural restoration of the house at Fairsted. To facilitate this work, the historic vines were removed from the facade and cut back to the ground. Since the vines were both historic plant material and an important feature of the property, complete removal was avoided. The vines were kept at ground level, but pruned frequently to prevent reattachment to the house. This situation resulted in weakened plant growth and an appearance quite different from...
Olmsted's intention (see figure 1). Furthermore, long-term frequent pruning risks a higher incidence of pest-related problems to the plants and restricted their natural climbing habit. It was therefore important to the public site that a new trellis system be devised that would protect both the historic vegetation and the historic structure, while re-establishing the appearance of a "vine clad mansion."

Historic Fairsted Trellises

Development of a new trellis system began with research into the materials, techniques and hardware used in New England between 1880 and 1930, as well as specific investigation into the various techniques used at Fairsted during those years. Historically, the east elevation of the house had two trellis structures supporting Wisteria sinensis (Chinese Wisteria). Photographs from as early as 1884 show a wooden trellis system at the entry porch and a spiraled steel strapping system along the house facade (see figure 2). Remnants of these systems, such as eyebolts and hooks, were found intact at several locations on the structure. The kitchen wall had an interesting trellis consisting of posts with protruding pegs located between windows. Holes in the post indicated that pegs could be added or removed depending on the growth of the plant.

Solution

After investigating the various types of historic trellis systems at Fairsted, four criteria for the new trellis systems were established to address particular preservation issues. An ideal system would:

1. provide an appropriate historic appearance;
2. suit the specific vine growth characteristics;
3. minimize the impact of the anchorage and support structure of the trellis to the historic building facade; and
4. provide direct access to the building for preservation and maintenance purposes.

In order to meet both the above criteria and also to test alternative solutions, four different trellis systems were designed and installed for use in a two-year test phase (see figure 3). The first system used spiraled steel strapping; the second, aircraft cable; and the third modular pipe. The fourth system combined strapping and piping.

Installation and Monitoring

The experimental trellis systems were constructed and installed on the south and west elevations (where the historic plant material is located) in 1989, and have been monitored for the past two years (see figure 6). Plant growth and development, ease of removal, appearance, and effect on the historic structure are being observed and documented regularly. Some recommendations for modification have already been made.

The steel strapping system (system 1), although painted, has shown a great amount of rust. The use of galvanized steel, painted with a zinc oxide primer and a finish coat would have discouraged the development of rust. The wood post and metal strapping combination is not historically accurate and the metal strapping system is also difficult to remove and replacement difficult for one person on a ladder. A temporary pulley system might be used to aid in hoisting the vines back into place.

System 1 — Spiraled Steel Strapping

Fabrication

Material: 1/4" spiraled steel strapping, hooks, snap hooks, eyebolts, and F & M rings. The steel strapping trellis is modeled after the historic design (c. 1885) developed by Olmsted. Spiraled metal strapping was attached to the house by a series of hooks and metal eyebolts. The eyebolts at the base of the system, as well as the attachment devices for the trellis systems, are held at least 6" away from the house to allow for air circulation between the plant material, trellis system and building facade. The strapping is fed through intermediate F & M rings located at regular intervals vertically and horizontally along the side of the house.

Maintenance

The ends of the spiraled strapping are fitted with snap hooks so that the trellis system can be removed for maintenance purposes, thereby creating a flexible trellis system.

Evaluation

The spiraled steel strapping is an appropriate support for the growth habit of climbing vines. The metal strapping is also flexible and also to test alternative solutions, more work is required to aid in hoisting the vines back into place. The weight of a mature vine growing on the cable will make the structure not visible. The weight of fully mature vines. The lifting frame may prove to be difficult to lift back into position. The twining vines do not provide enough coverage to conceal the structure completely.

System 2 — Aircraft Cable

Fabrication

Material: 1/4" aircraft cable, eyebolts, and hooks. A 1/4" aircraft cable was substituted for the spiraled strapping in the first system. A system of eyebolts and hooks was used to secure the aircraft cable to the house.

Maintenance

The cable system is similar to the spiraled strapping system in that it is flexible. The aircraft cable is attached to the eyebolts with snap hooks that allow the wires and vine to be removed from the building facade without damaging the trellis system, the building, or the historic vegetation.

Evaluation

The texture and twist of the cable support and guide to the twining vines. Like the spiraled strapping, the vines grow around the cable, so the structure is not visible. The weight of a mature vine growing on the cable will make removal and replacement difficult for one person on a ladder. A temporary pulley system might be used to aid in hoisting the vines back into place.

System 3 — Modular Pipe

Fabrication

Materials: galvanized metal pipe, fittings, eyebolts, and swivel sleeves. This modular pipe system is composed of galvanized metal pipe and a series of pipe fittings. This system was hinged at the house to allow the rigid trellis structure to be tilted away from the house. The support pipe was anchored in the ground by inserting them in galvanized metal sleeves that were placed 4' below the ground surface and 6' away from the house. The top portion of the trellis structure was secured to the house by a bolt and clamp combination.

Maintenance

More than one person is required to remove this system. The rigid system folds out away from the house on the twisted sleeves near the base of the house (see figure 4).

Evaluation

Although the rigid system allows the vegetation to remain stable, the pipe structure may also have problems with the weight of fully mature vines. The lifting frame may prove to be difficult to lift back into position. The twining vines do not provide enough coverage to conceal the structure completely.

System 4 — Combination

Fabrication

Material: spiraled steel strapping, galvanized metal pipe, fittings, eyebolts, and swivel sockets. This solution is a combination of spiraled strapping, galvanized metal pipe and fittings. Eyebolts will separate the strapping from the supporting pipe structure. Swivel sockets near the base of the pipe structure allow the structure to be tilted away from the house. This combination system provides a historic trellis appearance with the addition of rigid support. The vines are physically separated from the house, thus reducing potential damage to the facade.

Maintenance

The weight of a mature vine must also be considered in this solution. This pipe and strapping combination is not historically accurate in appearance. The twining vines cover the strapping, but the pipe structure behind is exposed.
Olmsted’s intention was to establish the appearance of a ‘vine clad mansion.’

Historic Fairsted Trellises

Development of a new trellis system began with research into the materials, techniques and hardware used in New England between 1880 and 1930, as well as specific investigation into the various techniques used at Fairsted during those years. Historically, the east elevation of the house had two trellis structures supporting Wisteria sinensis (Chinese Wisteria). Photographs from as early as 1884 show a wooden trellis system at the entry porch and a spiraled steel system along the house facade (see figure 2). Remnants of these trellis systems, such as eyebolts and hooks, were found intact at several locations on the structure. The kitchen wall had an interesting trellis consisting of posts with protruding pegs located between windows. Holes in the post indicated that pegs could be added or removed depending on the growth of the plant.

Solution

After investigating the various types of historic trellis systems at Fairsted, four criteria for the new trellis systems were established to address particular preservation issues. An ideal system would:

1. provide an appropriate historic appearance;
2. suit the specific vine growth characteristics;
3. minimize the impact of the anchorage and support structure of the trellis to the historic building facade; and,
4. provide direct access to the building for preservation and maintenance purposes.

In order to meet both the above criteria and also to test alternative solutions, four different trellis systems were designed and installed for use in a two-year test phase (see figure 3). The first system used spiraled steel strapping; the second, aircraft cable; and the third modular pipe. The fourth system combined strapping and piping.

Installation and Monitoring

The experimental trellis systems were constructed and installed on the south and west elevations (where the historic plant material is located) in 1989, and have been monitored for the past two years (see figure 6). Plant growth and development, ease of removal, appearance, and effect on the historic structure are being observed and documented regularly. Some recommendations for modification have already been made.

The metal strapping system (system 1), although painted, has shown a great amount of rust. The use of galvanized steel, painted with a zinc oxide primer and a finish coat would have discouraged entanglement of the vines and enhanced the historic appearance with the addition of rigid support. The vines are physically separated from the structure. The kitchen wall had an eyebolt system in that it is effective in appearance. The twining vines have problems with protruding pegs located between windows. Holes in the post indicated that pegs could be added or removed depending on the growth of the plant.

Figure 3. The four experimental systems developed at the Olmsted National Historic Site, and some advantages and drawbacks to each.

System 1—Spiraled Steel Strapping

Fabrication

Materials: 1/4" spiraled steel strapping, hooks, snap hooks, eyebolts, and F & M rings. The steel strapping trellis is modeled after the historic design (c. 1885) developed by Olmsted. Spiraled metal strapping was attached to the house by a series of hooks and metal eyebolts. The eyebolts or this system, as well as the attachment devices for the other trellis systems, are held at least 4' away from the house to allow for air circulation between the plant material, trellis system and building facade. The strapping is fed through intermediate F & M rings located at regular intervals vertically and horizontally along the side of the house.

Maintenance

The ends of the spiraled strapping are fitted with snap hooks so that the trellis system can be removed for maintenance purposes, thus creating a flexible trellis system.

Evaluation

The spiraled steel strapping is an appropriate support for the growth habit of twining vines. The metal strapping is also recreating the historic appearance of the trellis, and is also the least visible of the systems. The steel, although treated with paint, has already shown a great amount of rust, so an alternative material should be considered.

System 2—Aircraft Cable

Fabrication

Materials: 1/4" aircraft cable, eyebolts, and hooks.

1/4" aircraft cable was substituted for the spiraled strapping in the first system. A system of eyebolts and hooks was used to secure the aircraft cable to the house.

Maintenance

The cable system is similar to the spiraled strapping system in that it is flexible. The aircraft cable is attached to the eyebolts with snap hooks that allow the wire and vine to be removed from the building facade without damaging the trellis system, the building, or the historic vegetation.

Evaluation

The texture and twist of the cable support and guide to the twining vines. Like the spiraled strapping, the vines grow around the cable, so the structure is not visible. The weight of a mature vine growing on the cable will make removal and replacement difficult for one person on a ladder. A temporary pulley system might be used to aid in hoisting the vines back into place.

System 3—Modular Pipe

Fabrication

Materials: galvanized metal pipe, fittings, eyebolts, and swivel sockets.

This modular pipe system is composed of galvanized metal pipe and a series of pipe fittings. This system was hinged at the house to allow the rigid trellis structure to be tilted away from the house. The support pipe is anchored in the ground by inserting them in galvanized metal sleeves that were placed 4’ below the ground surface and 6’ away from the house. The top portion of the trellis structure was secured to the house by a bolt and clamp combination.

Maintenance

More than one person is required to remove this system. The rigid system folds out away from the house on the twisted sockets near the base of the house (see figure 4).

Evaluation

Although the rigid system allows the vegetation to remain stable, the pipe structure may also have problems with the weight of fully mature vines. The lifting frame may prove to be difficult to lift back into position. The twining vines do not provide enough coverage to conceal the structure completely.

System 4—Combination

Fabrication

Materials: spiraled steel strapping, galvanized metal pipe, fittings, eyebolts, and swivel sockets.

This solution is a combination of spiraled strapping, galvanized metal pipe and fittings. Eyebolts will separate the strapping from the supporting pipe structure. Swivel sockets near the base of the pipe structure allow the vine to be tilted away from the house. This combination system provides a historic trellis appearance with the addition of rigid support. The vines are physically separated from the house, thus reducing potential damage to the facade.

Maintenance

The weight of a mature vine must also be considered in this solution. This pipe and strapping combination is not historically accurate in appearance. The twining vines cover the strapping, but the pipe structure behind is exposed.
Conclusion

The trellis system solution will restore a feature that contributes to the unique character and appearance of the historic suburban estate, and thus reinforces the interpretation of the Olmsted National Historic Site. The systems discussed here were developed individually to meet the unique requirements of the property. This trellis development process, which considered the building appearance and historic character of the site in addition to the growth habits of the plant, historical trellis materials, and maintenance needs, can be applied to other sites with different needs and considerations. However, climbing vegetation should not be added to historic buildings if it did not occur historically since careful management and maintenance is required. The vines that covered Fairsted were an integral part of the historic character of the site. When vegetation is essential to the integrity of a historic property, historically significant plant materials and other landscape features should be preserved and maintained while taking steps to protect and maintain historic buildings.

This PRESERVATION TECH NOTE was prepared by the National Park Service. Charles E. Fisher, Preservation Assistance Division, National Park Service, serves as Technical Editor of the series. Thanks go to Charles Pepper, Supervisory Horticulturist, Frederick Law Olmsted National Historic Site, for providing information on the project and reviewing the draft. Special thanks go to Lauren Meier, Ward Jandl, Michael Auer, and Tom Jester, of the Preservation Assistance Division, National Park Service, for their review and comments on the draft. Cover Photo: Historic view of south facade of "Fairsted". Courtesy of the Frederick Law Olmsted National Historic Site.

Preservation TECH NOTES are designed to provide practical information on innovative techniques and practices for successfully maintaining and preserving cultural resources. All techniques and practices described herein conform to established National Park Service policies, procedures and standards. This Tech Note was prepared pursuant to the National Preservation Act Amendment of 1980, which direct the Secretary of the Interior to develop and make available to government agencies and individuals information concerning professional methods and techniques for the preservation of historic properties.

Comments on the usefulness of this information are welcomed and should be addressed to Tech Notes, Preservation Assistance Division, National Park Service, P.O. Box 37127, Washington, D.C. 20013-7127. This publication is not copyrighted and can be reproduced without penalty. Normal procedures for credit to the author and the National Park Service are appreciated.

ISSN: 0741-9023
PTN-35
October 1991
aged rapid rusting. The flexible aircraft cable (system 2), with the added weight of a mature vine will make removal and replacement difficult for one person. A temporary pulley system is recommended to aid in hoisting the vines back into place. The third design is a rigid modular pipe system (system 3). Although the rigidity of the system is advantageous to the stability of the vegetation, the weight of the vines may also be prohibitive for easy removal and replacement. The combination strapping and pipe system (system 4) does not create a historically accurate appearance. The system was designed in order to remove the vines on the strapping without removing the pipe supporting system. The vines growing on the strapping do not provide sufficient coverage to hide the pipe system behind. Furthermore, additional maintenance is required to keep the vines from growing on the pipe. After the multi-year test period is complete, one of the four systems will be selected, modified as needed, and installed to the east, south and west facades of the house (see figure 7).

Conclusion
The trellis system solution will restore a feature that contributes to the unique character and appearance of the historic suburban estate, and thus reinforces the interpretation of the Olmsted National Historic Site. The systems discussed here were developed individually to meet the unique requirements of the property. The trellis development process, which considered the building appearance and historic character of the site in addition to the growth habits of the plant, historical trellis materials, and maintenance needs, can be applied to other sites with different needs and considerations. However, climbing vegetation should not be added to historic buildings if it did not occur historically since careful management and maintenance is required. The vines that covered Fairview were an integral part of the historic character of the site. When vegetation is essential to the integrity of a historic property, historically significant plant materials and other landscape features should be preserved and maintained while taking steps to protect and maintain historic buildings.

This PRESERVATION TECH NOTE was prepared by the National Park Service. Charles E. Fisher, Preservation Assistance Division, National Park Service, serves as Technical Editor of the series. Thanks go to Charles Pepper, Supervisory Horticulturist, Frederick Law Olmsted National Historic Site, for providing information on the project and reviewing the draft. Special thanks go to Lauren Meter, Ward Janidi, Michael Auer, and Tom Jaster, of the Preservation Assistance Division, National Park Service, for their review and comments on the draft. Cover Photo: Historic view of south facade of “Fairview”. Courtesy of the Frederick Law Olmsted National Historic Site.

Preservation TECH NOTES are designed to provide practical information on innovative techniques and practices for successfully maintaining and preserving cultural resources. All techniques and practices described herein conform to established National Park Service policies, procedures and standards. This Tech Note was prepared pursuant to the National Preservation Act Amendment of 1980, which direct the Secretary of the Interior to develop and make available to government agencies and individuals information concerning professional methods and techniques for the preservation of historic properties.

Comments on the usefulness of this information are welcomed and should be addressed to Tech Notes, Preservation Assistance Division, National Park Service, P.O. Box 37127, Washington, D.C. 20013-7127. This publication is not copyrighted and can be reproduced without penalty. Normal procedures for credit to the author and the National Park Service are appreciated.

PROJECT DATA
Site:
Frederick Law Olmsted National Historic Site
90 Warren Street
Brookline, MA

Owner:
National Park Service
U.S. Department of the Interior

Project Dates:
Spring 1989-Fall 1991

Project Supervisor:
Charles Pepper
Supervisory Horticulturist

System #2
air craft cable 5/8”
eyebolts

System #3
galvanized metal pipe
pipe fittings
galvanized metal sleeves
bolt and clamp combo

System #4:
spiraled steel strapping
galvanized metal pipe
fittingseyebolts
swivel sockets

System costs:
Materials: $5,000

Materials:
spiraled steel strapping
hooks
eyebolts
F & M rings

This publication is not copyrighted and can be reproduced without penalty. Normal procedures for credit to the author and the National Park Service are appreciated.