USGS Logo Geological Survey Bulletin 1021-1
Geology of Devils Tower National Monument, Wyoming

ABSTRACT

Devils Tower is a steep-sided mass of igneous rock that rises above the surrounding hills and the valley of the Belle Fourche River in Crook County, Wyo. It is composed of a crystalline rock, classified as phonolite porphyry, that when fresh is gray but which weathers to green or brown. Vertical joints divide the rock mass into polygonal columns that extend from just above the base to the top of the Tower.

The hills in the vicinity and at the base of the Tower are composed of red, yellow, green, or gray sedimentary rocks that consist of sandstone, shale, or gypsum. These rocks, in aggregate about 400 feet thick, include, from oldest to youngest, the upper part of the Spearfish formation, of Triassic age, the Gypsum Spring formation, of Middle Jurassic age, and the Sundance formation, of Late Jurassic age. The Sundance formation consists of the Stockade Beaver shale member, the Hulett sandstone member, the Lak member, and the Redwater shale member.

The formations have been only slightly deformed by faulting and folding. Within 2,000 to 3.000 feet of the Tower, the strata for the most part dip at 3°—5° towards the Tower. Beyond this distance, they dip at 2°—5° from the Tower.

The Tower is believed to have been formed by the intrusion of magma into the sedimentary rocks, and the shape of the igneous mass formed by the cooled magma is believed to have been essentially the same as the Tower today. Devils Tower owes its impressiveness to its resistance to erosion as compared with the surrounding sedimentary rocks, and to the contrast of the somber color of the igneous column to the brightly colored bands of sedimentary rocks.



<<< Previous <<< Contents >>> Next >>>


usgs/1021-1/abstract.htm
Last Updated: 01-Mar-2005