• Spires of Cedar Mesa sandstone in Chesler Park (Needles District)

    Canyonlands

    National Park Utah

There are park alerts in effect.
show Alerts »
  • Some unpaved roads are closed

    Recent rains have caused extensive damage to some roads in the Needles District and some of the roads into the Maze District. More »

  • Safety in Bear Country

    Black bears have been seen in the Needles, Maze, and along the Colorado River. Be alert and store food and garbage properly: in hard-sided, latched containers (or your vehicle) when not being prepared or consumed. More »

  • New backcountry requirements in effect

    Hard-sided bear containers are required for backpackers in parts of the Needles District. More »

Ephemeral Pools (Potholes)

photo: Tadpole shrimp
Tadpole shrimp, actual size up to 1.5 inches (3.8cm)
NPS Photo by Thea Nordling
 

Throughout Canyonlands, naturally occurring sandstone basins called emphemeral pools or “potholes” collect rain water and wind-blown sediment, forming tiny ecosystems where a fascinating collection of plants and animals have adapted to life in the desert. Potholes range from a few millimeters to a few meters in depth, and even the smallest potholes may harbor microscopic invertebrates.

To survive in a pothole, organisms must endure extreme fluctuations in several environmental factors. Surface temperatures vary from 140 degrees Fahrenheit in summer to below freezing in winter. As water evaporates, organisms must disperse to larger pools or tolerate dehydration and the drastic physical and chemical changes that accompany it.

The most extreme conditions exist when a pothole is dry. In addition to the wide temperature fluctuations, ultraviolet light from the sun can damage bodily tissues. Many aquatic organisms are adapted to acquiring oxygen through water and suffer when exposed to air. Pothole organisms have three main ways of dealing with drought.

“Drought escapers” are winged insects, amphibians and invertebrates that breed in potholes but cannot tolerate dehydration (e.g. mosquitoes, adult tadpole and fairy shrimp, spadefoot toads). In some cases, adults live in permanent water sources or on land and travel to temporary pools to mate and lay eggs. If the pool dries out before the young mature, they die. In the case of tadpole, fairy and clam shrimp, adults must lay their drought-tolerant eggs before the pool dries up.

“Drought resistors” (e.g. snails, mites) have a dormant stage resistant to drying out. These animals have a waterproof layer like a shell or exoskeleton that prevents bodily tissues from losing too much water while a pool is dry. By burrowing, these animals are able to seal themselves in the layers of fine mud that often coat the bottom of potholes and form an impermeable crust.

“Drought tolerators” (e.g. rotifers, tadpole and fairy shrimp eggs) are able to tolerate a loss of up to 92 percent of their total body water. This remarkable process, known as "cryptobiosis," is made more unique by the fact that many cryptobiotic species can be rehydrated and become fully functional in as little as half an hour. Cryptobiosis is accomplished by a "command center" that remains hydrated while substituting sugar molecules for water throughout the rest of the body. This transfer maintains the structure and elasticity of an organism's cells during long periods of drought, and enables the organism to withstand the climatic extremes of the desert. In fact, brine shrimp have been hatched from cryptobiotic cysts that endured a flight on the outside of a spacecraft. Many tolerators have only one stage in their life cycle (e.g. egg, larva) that can survive desiccation, and will die if a pool dries up during another phase.

Pothole organisms not only have to endure dry spells, but also must evaluate conditions and decide when to break dormancy. Desert precipitation falls at irregular intervals, and once water enters a pothole there is no guarantee that there is enough for an organism to complete its life cycle. Most organisms living in potholes have very short life cycles, as brief as ten days, reducing the time water is required and allowing them to live in the shallow pools. Even vertebrates such as toads, which are found in other environments, display shorter development times when found in potholes.

A pothole is a unique habitat that is very easily disturbed. Pothole organisms are sensitive to sudden water chemistry changes, temperature changes, sediment input, being stepped on, and being splashed out onto dry land. Human use of pothole water by swimming, bathing or drinking may change the salinity or pH of a pool drastically. More importantly, this change occurs suddenly, unlike the slow, natural changes to which organisms can adapt. Hikers should therefore avoid using water in potholes as well as walking through dry ones.

While these tiny ecosystems may seem unimportant, they can act as an indicator for the health of the larger ecosystems in which they occur. These pools do not have the ability to counteract acids, so the acid rain caused by industrial pollution may be lethal. Pothole health is monitored in Canyonlands in order to track significant changes in our environment.

Did You Know?

Juniper Berries

The Utah juniper, one of the most common trees in the southwest, has the ability to self-prune. During droughts, these trees will cut off fluids from one or more branches so that the rest of the tree can survive. More...