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Rockfalls and rockslides are often dominant geomorphic processes in steep bedrock landscapes, but documenting 
their occurrence can be challenging, requiring frequent monitoring and well resolved spatial data. Repeat 
application of remote sensing methods such as Terrestrial Laser Scanning (TLS) and Structure-from-Motion 
(SfM) photogrammetry can detect even very small rockfalls, but typically these acquisitions span only years 
and may not record rockfall activity representative of longer-term rates of cliff erosion. Inventory databases 
can extend rockfall records, but are commonly incomplete and prone to observation bias. We employed TLS 
and SfM on two adjacent cliffs (El Capitan and Middle Brother) in Yosemite Valley, integrating semi-annual 
data collections from 2010 to 2017 with “historical” (archival) SfM models derived from oblique photographs 
taken in 1976. Comparing the 1976 SfM models against more recent data allows for more accurate and precise 
rockfall detection and volume measurement over a 40-year period. Change detection indicates that 235 rockfalls 
occurred from the two cliffs, more than twice as many events as are recorded in Yosemite's inventory database. 
Although individual rockfall volumes reported in the inventory database vary from those measured by SfM-TLS, 
reported cumulative volumes are similar to measured volumes, likely because the large-volume events that 
account for most of the cumulative volume tend to be widely observed and well-documented. Volume-
frequency relationships indicate that the cliffs erode predominantly by less frequent, larger-volume rockfalls, 
at rates of 0.9 to 1.7 mm/yr. Our study demonstrates how integrated SfM and TLS measurements, especially uti-
lizing SfM models derived from historical imagery, allow detection and quantification of rockfalls spanning sev-
eral decades, complementing and improving inventory databases, informing rockfall hazard assessment, and 
providing longer-term rates of cliff erosion. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Rockfalls from bedrock slopes are a primary means by which moun-
tainous landscapes evolve (e.g., Wieczorek and Jäger, 1996; Matsuoka 
and Sakai, 1999; Krautblatter and Dikau, 2007; Moore et al., 2009). Geo-
morphic studies addressing rates of mountain landscape evolution there-
fore require accurate accounting of rockfalls and their volumes over 
known time intervals. However, because rockfalls often occur in remote 
settings, even large-volume events may escape detection. Furthermore, 
rates of cliff erosion are rarely steady when assessed over short time-
scales, with many cliffs characterized by sporadic pulses of rockfall activ-
ity interspersed with long periods of inactivity (e.g., Stock et al., 2018). 
The ability to accurately measure cliff erosion rates in rockfall-prone 
settings therefore depends on accurate inventories of rockfall activity col-
lected over sufficiently long time intervals, which may vary by geologic 
setting (Williams et al., 2019). 

Remote sensing techniques such as Terrestrial Laser Scanning (TLS) 
and Structure-from-motion (SfM) photogrammetry have vastly im-
proved rockfall detection, enabling a more accurate inventory of rockfalls 
(e.g., Rosser et al., 2005; Abellán et al., 2010; Williams et al., 2018, 2019; 
Gilham et al., 2019) and precise measurement of rockfall volumes 
(Stock et al., 2011; Carrea et al., 2015; Guerin et al., 2017), as well as 
pre- and post-event structural measurements (Pedrazzini et al., 2010; 
Heckmann et al., 2012; Roberti et al., 2018) and assessment of rockfall 
susceptibility (Dunham et al., 2017; Matasci et al., 2018; Zhang et al., 
2019). The high fidelity of these methods usually allows for rockfall detec-
tion across a wide range of volumes, providing a near-complete inventory 
of rockfalls. However, because TLS and SfM methods have been applied to 
rockfall studies relatively recently, most applications span only relatively 
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short periods of time (on the order of years), and therefore may record 
sporadic periods of rockfall activity (or inactivity) that are not representa-
tive of longer-term rates. 

Longer-term records of rockfall activity are sometimes provided by 
historical inventories, either for a specific cliff or for a larger region 
(e.g., Gardner, 1970; Luckman, 1976; Hungr et al., 1999; Dussauge 
et al., 2003; Chau et al., 2003; Stock et al., 2013). In addition to recording 
information about rockfall occurrence, such inventories can also offer 
valuable data for understanding environmental triggers (e.g., Sass and 
Oberlechner, 2012; Delonca et al., 2014; Letortu et al., 2015; Pratt 
et al., 2018), volume-frequency relationships (e.g., Guzzetti et al., 
2003; Brunetti et al., 2009; Valagussa et al., 2014; De Biagi et al., 
2017), and resulting hazard and risk (e.g., Corominas and Moya, 2008; 
Budetta and Nappi, 2013; Lari et al., 2014; Pellicani et al., 2016). These 
inventories have been collected primarily by park rangers, forest guards, 
geologists, and highway and railway workers along transportation cor-
ridors (Wieczorek et al., 1992; Hantz et al., 2003; Copons and Vilaplana, 
2008; Lato et al., 2009; Kromer et al., 2015; van Veen et al., 2017; 
Voumard et al., 2018). As human observations are the primary source 
of documentation, rockfall inventory databases are subject to biases 
and inaccuracies that affect both the observation rate and the estimation 
of rockfall volumes (Luckman, 1976; Douglas, 1980; Dussauge-Peisser 
et al., 2002; Chau et al., 2003; Brunetti et al., 2009; Guzzetti et al., 
2009; Rossi et al., 2010). These studies highlight a non-uniform observa-
tion rate over time, an under-representation of small events, and only 
rough volume estimates that are commonly based on the amount of 
material deposited (usually on a road, railway, or trail) rather than on 
volume changes on the slope. Based on geomorphological evidence, 
Brunetti et al. (2009) and Guzzetti et al. (2009) argue that the uncer-
tainty associated with estimated rockfall volumes is usually within the 
same order of magnitude as the estimate itself. 

An emerging method with potential to extend rockfall detection 
backwards in time involves SfM methods applied to “historical” (some-
times referred to as “archival”) images (i.e., images taken prior to the 
advent of TLS or SfM methods). If the historical photographs have suffi-
cient overlap and proper lighting conditions, it is possible to generate 
high-resolution terrain models of landscapes as they appeared at the 
time the photographs were taken. By “winding back the clock” on ter-
rain model generation, historical SfM methods “provide unexpected op-
portunities for the four-dimensional research of geomorphological 
processes” (Eltner et al., 2016, p. 376, section 5.3). SfM utilizing archival 
orthophotos or oblique imagery has been used successfully to quantify 
surface elevation changes for volcanoes (Gomez, 2014; Derrien et al., 
2015; Ishiguro et al., 2016), glaciers (Tonkin et al., 2016; Mertes et al., 
2017; Midgley and Tonkin, 2017; Mölg and Bolch, 2017; Girod et al., 
2018), coastal cliffs (Warrick et al., 2016; Esposito et al., 2018), river-
floodplain systems (Gomez et al., 2015; Vautier et al., 2016; Bakker 
and Lane, 2017) and landforms subject to anthropogenic activities 
(Riquelme et al., 2019). A benefit of oblique photographs lies in the 
ability to generate SfM point clouds for very steep (vertical to over-
hanging) terrain not suitably imaged in plan-view orthophotos. 
Using images taken prior to any dedicated remote sensing data 
acquisition effort, SfM can be used to reconstruct steep rock slopes 
prior to failure (Guerin et al., 2017; Voumard et al., 2017); these re-
constructions then allow for more accurate calculation of past rock-
fall volumes by comparing against more recent SfM or TLS data. For 
instance, applying SfM methods to historical imagery refined the 
volume of a large rockfall that affected  the west face of the  Drus  
(Mont-Blanc massif, France) in June 2005 (Guerin et al., 2017); 
previously estimated from a single TLS point cloud acquired after 
the event (Ravanel and Deline, 2008),  the rockfall  volume increased  
from 265,000 ± 10,000 m3 to 292,680 ± 16,400 m3 using the new 
SfM dataset. Based on surface change measurements, the confidence 
level associated with both TLS and SfM-based volume measurements 
is much higher than those estimated in historical inventories, clearly 
illustrating the value of these methods. 
Here we demonstrate the potential to couple SfM techniques utiliz-
ing historical photographs with more recent TLS data to greatly improve 
rockfall detection and measurement of rockfall volumes. These im-
provements allow us to assess rockfall volume-frequency relationships, 
measure cliff retreat rates, and evaluate the accuracy and completeness 
of a rockfall inventory database. We report the results of 40 years of 
rockfall activity from two cliffs in Yosemite Valley, the southeast faces 
of El Capitan and Middle Brother. 

2. Study site 

Yosemite Valley is a 1 km-deep, 14 km-long valley in the central Si-
erra Nevada mountain range of California (Fig. 1A). The bedrock is com-
posed of massive Cretaceous granitic rocks of the Sierra Nevada 
batholith (Calkins et al., 1985; Bateman, 1992). River incision initially 
generated much of the relief of Yosemite Valley, but Pleistocene glacial 
erosion is responsible for the valley's width and vertiginous wall 
(Matthes, 1930; Huber, 1987). The last glacial period, known locally as 
the Tioga Glaciation, reached its maximum extent in the Sierra Nevada 
between 28 and 17 ka (Rood et al., 2011; Wahrhaftig et al., 2019). De-
glaciation began about 19 ka, and Yosemite Valley is presumed to 
have been ice-free by about 15 ka (Stock and Uhrhammer, 2010). Fol-
lowing deglaciation, rockfalls from the glacially-steepened cliffs became 
the dominant erosional process, with large talus deposits accumulating 
beneath the cliffs (Wieczorek and Jäger, 1996). Although the broad to-
pography of Yosemite Valley has developed along a network of regional 
fractures (Matthes, 1930; Huber, 1987; Matasci et al., 2011), the most 
common cliff fractures are sheeting, or exfoliation, joints formed parallel 
or subparallel to the modern topography (Matthes, 1930; Huber, 1987; 
Bahat et al., 1999; Martel, 2006, 2011). Sheeting joints form the primary 
detachment surfaces for most rockfalls in Yosemite (Wieczorek and 
Snyder, 1999; Stock et al., 2011, 2012). 

Historical rockfalls in Yosemite National Park are documented in an 
inventory database that spans 160 years (1857–2018). Wieczorek et al. 
(1992) first compiled this information, with subsequent updates by 
Wieczorek and Snyder (2004) and Stock et al. (2013). By the end of 
2018 the inventory database contained 1330 events, with estimated 
volumes spanning six orders of magnitude (approximately 0.02 to 
200,000 m3). From the first version of the database, Wieczorek et al. 
(1992) recognized that the recording of smaller and less consequential 
rockfalls has not always been systematic, and that the inventory was in-
complete for volumes less than about 100 m3 (Wieczorek et al., 1995). 
The inventory has three types of categories (Stock et al., 2013) assigned 
to rockfall volumes: (1) the reported volume is well-constrained and 
precisely measured from Terrestrial Laser Scanning (TLS) and/or 
Structure-from-Motion (SfM) photogrammetry data (Stock et al., 2011, 
2012, 2018; Zimmer et al., 2012);  (2) the  volume  was not  precisely mea-
sured but can be constrained by a wide range of field observations (accu-
racy better than an order of magnitude) (e.g., Snyder, 1986, 1996; 
Wieczorek and Snyder, 1999; Wieczorek et al., 1995, 2000, 2008); 
(3) no or only vague indication of size is specified (this is the case for 
most events prior to 1980) and the reported volume is assigned an 
order-of-magnitude estimate with values equal to 20 m3, 200  m3, 
2000 m3, etc.  (e.g.,  Wieczorek et al., 1992; Wieczorek and Jäger, 1996; 
Wieczorek, 2002). Prior to the advent of TLS and SfM techniques, volumes 
of rockfalls from the steep, inaccessible cliffs of Yosemite Valley were pri-
marily obtained by estimating the length and width of the rockfall scar 
based on nearby features with approximately known sizes, such as trees 
or climbing pitches, and with little to no accounting for complex scar 
geometries. The thickness of the failed rock mass within the rockfall 
scar was usually estimated with few constraints. Thus, a number of factors 
contribute to volumetric errors in the database. 

This study investigates rockfalls from two adjacent cliffs on the north 
side of Yosemite Valley: the southeast face of Middle Brother and the 
southeast face of El Capitan (Fig. 1). Both cliffs are within the spatial 
limit of the Tioga Glaciation, but El Capitan experienced less glacial 
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Fig. 1. Locations of the two monitored cliffs in Yosemite Valley. (A) Aerial laser scanning DEM (1 m × 1 m cell size resolution) of Yosemite Valley. Key to abbreviations: EC = El Capitan; HD 
= Half Dome; MB = Middle Brother; YV = Yosemite Village. (B) Detail of El Capitan and Middle Brother areas framed in Panel A. Black dots indicate the locations of TLS acquisitions. (C) SE 
face of El Capitan in Oct. 2017 (a few days after the rockfall events on 27–28 Sep. 2017). (D) SE face of Middle Brother in Oct. 2016 taken from Sentinel Beach. 
erosion being closer to the glacier terminus and therefore having a 
smaller area of ice cover (Wahrhaftig et al., 2019). Both cliffs are com-
posed of granitic bedrock. The southeast face of El Capitan is composed 
predominantly of El Capitan Granite, with about 30% Taft Granite and 
20% intrusive quartz diorite (Calkins et al., 1985; Peck, 2002; Putnam 
et al., 2015). The southeast face of Middle Brother is composed predom-
inantly of Sentinel Granodiorite with approximately 30% Half Dome 
Granodiorite and 5% El Capitan Granite (Calkins et al., 1985; Peck, 2002). 

3. Materials and methods 

3.1. TLS specifications and baseline data collection 

We utilized multiple TLS and SfM data sources for our analyses, 
spanning 41 years (Fig. 2). TLS point clouds represent the baseline re-
mote sensing data in our monitoring. TLS data served as references for 
Fig. 2. Timeline of Structure-from-Motion photogrammetry (SfM) and terrestrial laser scanning
timescale is not linear, with monitoring intervals ranging from days to years. Colors correspon
all change detection analyses, and georeferenced TLS data also allowed 
us to rescale and align the SfM models. 

We collected five TLS point cloud datasets for both Middle Brother 
and El Capitan between 2010 and 2016. The first dataset was collected 
in October 2010 using an Optech ILRIS-3D-ER scanner, while the follow-
ing four datasets were collected in June 2012, October 2013, October 
2015, and October 2016 using an Optech ILRIS-LR scanner. These two 
scanners are characterized by a manufacturer-specified accuracy of 
7 mm at a range of 100 m and a maximum point-to-point density of 
2 cm at a range of 1000 m (Teledyne Optech, 2019). 

TLS data were acquired from El Capitan Meadow and Sentinel Beach 
(Fig. 1B), located approximately 1100 m and 950 m from El Capitan and 
Middle Brother respectively. For each of these cliffs, the resulting TLS 
models consist of 38.1 and 35.7 million points, with a mean point-to-
point spacing of 15 cm (i.e. ~40 pts./m2) (we refer to a mean spacing be-
cause the TLS-cliff distance increases between the bottom and the top of 
 (TLS) acquisitions for the southeast faces of El Capitan and Middle Brother. Note that the 
d to the colorbars of Figs. 6 and 8. 
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the cliffs). Because of increasing upward TLS scanner to cliff distance, a 
decreasing resolution gradient up the rock face limits the detection of 
smaller rockfalls in the upper part of both cliffs. We aligned and scaled 
the 2010 point clouds onto an existing 1 m aerial Digital ElevationF 
Model (DEM) of Yosemite Valley using Iterative Closest Point (ICP) algo-
rithms (Besl and McKay, 1992; Chen and Medioni, 1992) implemented 
in CloudCompare software (version 2.7.0; Girardeau-Montaut, 2015). 
The Root Mean Square Error (RMSE) values associated with the 
georeferencing process are 0.44 m and 0.31 m, for El Capitan and Middle 
Brother respectively. The 2010 point clouds were then converted to 
triangular reference meshes using Poisson surface reconstruction algo-
rithms (Kazhdan et al., 2006) implemented in 3DReshaper software 
(version 10.1.4; Hexagon-Technodigit, 2015). Cliff surface areas mea-
sured on the meshes are 537,820 m2 for the southeast face of El Capitan 
and 1,063,600 m2 for the southeast face of Middle Brother. All succes-
sive TLS point clouds were aligned to the 2010 meshes by applying 
point-to-surface ICP algorithms (Zhang, 1994). As recommended by 
many studies (e.g., Teza et al., 2007; Oppikofer et al., 2009; Royán 
et al., 2014; Kromer et al., 2015; Rowe et al., 2018), these algorithms 
Fig. 3. Black and white photographs and historical SfM models of El Capitan and Middle B
reconstruction of the SE faces of El Capitan and Middle Brother(upper panels) and oblique p
positions and orientations (rectangle symbols). Blue color indicates close-up shots; pink colo
DEM with the 2010 TLS reference mesh and the 1976 SfM point cloud after all registration and
reader is referred to the web version of this article.) 
were only applied to manually selected “stable areas” by way of 
photographic visual inspections (areas for which no change has 
been identified between two dates) to optimize the registration ac-
curacy. Thus, the areas having undergone significant changes be-
tween 2010 and 2016 were aligned according to the roto-
translation matrices obtained in stable areas. Before noise filtering 
(Section 3.4), an average point-to-surface standard deviation of ± 
3.6 cm (confidence interval given by 2σ) characterizes the alignment 
of TLS scans in stable areas. 

3.2. Historical oblique photographs 

To reconstruct the former topography of the southeast faces of El 
Capitan and Middle Brother, we used 16 and 21 oblique photographs, 
respectively. A member of Yosemite's Search & Rescue team took 
these photographs from a helicopter in October 1976 for the purpose 
of planning and executing cliff rescues. The photographs were taken 
for visual reference only (i.e., not originally intended for photogram-
metry). The photographs were taken with a single lens reflex camera 
rother. (A) and (B) Examples of oblique helicopter photographs used for topographic 
resentation of the corresponding 1976 SfM models (lower panels) that include camera 
r indicates distant shots. (C) and (D) Superimposition of the 2010 aerial laser scanning 
 scaling processes. (For interpretation of the references to color  in  this  figure legend, the 
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on black-and-white film, and were acquired from different distances, 
such that the series includes close-up views and overviews of both 
cliffs (Fig. 3; Supplementary Figs. 1 and 2), with an overlap ranging 
from 20 to 70%. The photographs were taken at mid-day with low 
sun angles under a bright and slightly cloudy sky, minimizing 
shadows in overhanging sections of these southeast-facing cliffs 
(Fig. 3; Supplementary Figs. 1 and 2), although in the case of El 
Capitan, two overview photos acquired later in the afternoon show 
the southeast face half-shaded (Fig. 3; Supplementary Fig. 1). The 
37 photographs were digitized into JPEG-format at a resolution of 
300 dpi (2950 × 2400 pixels), with an average size of 650 KB, on a 
standard film scanner. 

We also collected additional SfM model data following a rockfall se-
quence that affected El Capitan between September and November 
2017; for this rockfall, four SfM models were created for the eastern-
most part of the southeast face (Stock et al., 2018). The first two photo-
graphic surveys (27 and 28 September 2017) consisted of 
approximately 200 photographs each, acquired from a helicopter 
with a Panasonic Lumix DMC-TS3 camera set to a wide-angle 
(5 mm focal length) to address the short distances to the cliff. The 
other two surveys were conducted from the ground on 6 November 
and 7 December 2017, with a Canon EOS 50D camera and a focal 
length fixed at 300 mm. Photos were geotagged to aid in initial reg-
istration. The average size of these recent photographs is 50 MB 
and the resolution of both cameras is 4000 × 3000 pixels and 4752 
× 3168 pixels respectively. The amount of overlap between photo-
graphs ranges between 60 and 80%. 

3.3. Georeferenced SfM model generation 

We constructed SfM point cloud models using the commercially 
available Agisoft PhotoScan Professional Edition software (version 
1.0.4; Agisoft, 2014). Image processing follows the SfM workflow and 
involves: (1) the application of a mask over unwanted parts of the 
photographs (e.g., white borders, numbering, helicopter blades), 
(2) an automatic image alignment that generates a sparse model with 
the extracted keypoints (b0.1 million points in our case), and (3) the 
building of a very dense point cloud (N5 million points in our case) 
after calculating depth maps for every picture (e.g., Smith et al., 2016). 
Unlike many studies (e.g., Westoby et al., 2012; Lucieer et al., 2014; 
Manousakis et al., 2016; Girod et al., 2018; Kumar et al., 2018; Török 
et al., 2018), no ground control points were used to set up the coordi-
nates system when generating SfM models. As we already had 
georeferenced TLS data, we scaled and georeferenced the SfM data 
using the method defined by Guerin et al. (2017). This method consists 
of four steps: (1) a rough scaling based on dimensions measured on the 
2010 TLS meshes, (2) a global point-to-surface ICP alignment, (3) a seg-
mentation of the meshes/point clouds into hundreds of cubes using the 
octree structure (e.g., Woo et al., 2002), and (4) independent scaling 
and alignment of each SfM subset to the corresponding TLS subset 
using point-to-surface ICP algorithms. It should be noted that step 4 
makes it possible to significantly reduce the “doming deformation” 
(Rosnell and Honkavaara, 2012; James and Robson, 2014; Javernick 
et al., 2014; Ruggles et al., 2016) specific to SfM models, by allowing 
subsets of the SfM model to transform independently of each other; it 
is this processing step that eliminates the need for ground control 
points. 

The resulting 1976 SfM models (Fig. 3C and D) consist respectively of 
5.3 and 5.9 million points, with a point-to-point spacing of 27 cm for El 
Capitan and 45 cm for Middle Brother (i.e. ~14 pts/m2 and ~5 pts/m2). 
Due to insufficient overlap of four photos, the top and westernmost por-
tions of Middle Brother could not be reconstructed (Fig. 3D). Given the 
smaller cliff area of interest, the larger number and higher resolution of 
photographs, and SfM-dedicated photo collection techniques, the 
resulting 2017 SfM models have a higher spatial resolution, with a 
point-to-point spacing of 9 cm and 5 cm in the area of interest, for 
helicopter- and ground-based surveys respectively. Before noise filter-
ing, the point-to-surface standard deviations (confidence interval 
given by ±2σ) of SfM point clouds in stable areas are distributed as fol-
lows: ±28 cm for the 1976 El Capitan model, ±42 cm for the 1976 Mid-
dle Brother model, ±8.1 cm for the September 2017 El Capitan models, 
and ± 4.7 cm for the November–December 2017 El Capitan models. 

3.4. Change detection and noise filtering 

Change detection between all 3-D models was carried out by 
performing point-to-mesh comparisons in chronological order. We cal-
culated distances between two successive acquisitions (e.g., 2012 and 
2013 TLS data sets) by choosing the oldest data as reference for the gen-
eration of the mesh, with the exception of the 1976 point clouds, where 
the reference data was set to 2010 (Figs. 4A and  7). At the end of the cal-
culation, a scalar value corresponding to the shortest orthogonal dis-
tance between a point and the nearest triangle of the mesh (Kiryati 
and Székely, 1993) is associated with each point. Positive and negative 
surface changes are respectively due to a gain (e.g., debris accumulation, 
vegetation changes) or a loss (e.g., rockfalls, impacts) of material. 

To reduce the influence of instrumental TLS noise, the residual dom-
ing deformation and local spikes in elevation (Guerin et al., 2017) of the  
SfM models, we applied a spatial noise filter to the raw point-to-mesh 
differences (Abellán et al., 2009). This filtering algorithm allows 
denoising the raw distances using nearest neighbor averaging; for this 
study, we used 50 neighbors for the averaging process. This value is rep-
resentative of a planar cliff surface of 4.5 m2 for El Capitan and 10 m2 for 
Middle Brother. Based on Gaussian statistics described by Lague et al. 
(2013), we selected the confidence intervals given by ±2σ to define 
the levels of detection at 95% (LoD95%) of each comparison. The 
point-to-surface standard deviations of the smoothed comparisons are 
distributed as follows: ±18 cm for the 1976 El Capitan model (SfM vs. 
TLS), ±34 cm for the 1976 Middle Brother model (SfM vs. TLS), ± 
2.2 cm for TLS data (TLS vs. TLS), ±6.9 cm for the September 2017 El 
Capitan models (SfM vs. TLS) and ±3.8 cm for the November–December 
2017 El Capitan models (SfM vs. SfM). 

3.5. Analysis of surface changes detected using historical SfM models 

3.5.1. Interpretation of positive deviations 
After a thorough visual inspection of photographs, all positive devi-

ations detected between the 1976 and 2010 (SfM vs. TLS) datasets 
could be assigned either to border effects (due to lens distortion) or veg-
etation changes (Figs. 4A and  7). As a result, we did not detect any major 
outward displacement greater than +2σ (+18 cm for El Capitan and 
+34 cm for Middle Brother) associated with rock deformation. The 
same observation is true for the 2016–2017 comparisons combining 
SfM and TLS data (Fig. 5A). However, an outward rotational movement 
up to 20 cm involving a rock sheet 23 m tall by 14 m wide was detected 
between 28 September and 6 November 2017 (Stock et al., 2018) and 
confirmed by field observation. This sheet of several tens of cm thick 
was likely displaced during or immediately after a rockfall on 22 Octo-
ber 2017, which originated from just below the displaced sheet (Stock 
et al., 2018). 

3.5.2. Interpretation of negative deviations 
Visual inspections were also helpful in classifying the detected 

negative surface changes and isolating artifacts generated by an in-
accurate reconstruction of the topography in the 1976 SfM models. 
This analysis resulted in the identification of two types of artifacts, 
located in: (1) concave and overhanging areas that generate 
shadows at mid-day (Figs. 4A, 7 (horizontal ellipses), 10 and 11), 
and (2) areas where the overlap between two photographs was in-
sufficient (b20%). This second artifact was only observed twice in 
the lower part of Middle Brother (Fig. 7; vertical ellipses) and is character-
ized by a shift of about +3 m (the SfM points appear in front of the TLS 
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points) that extends vertically over several hundred meters. Except for 
the examples framed in Fig. 4A (true rockfalls), the anomalies generated 
by the first type of artifact are far more numerous and scattered across 
the cliff (Figs. 7, 10 and  11). Therefore, we performed a systematic photo-
graphic comparison between 1976 and 2010 (Figs. 10 and 11) to manu-
ally separate the true rockfalls from false records detected. Regarding 
Fig. 4. Results of the comparison between Oct. 1976 and Oct. 2010 data for the SE face of El Capit
TLS mesh. Positive deviations are associated with border effects and vegetation. Blue areas h
changes correspond either artifacts related to the presence of concave and overhanging area
Panel A. (C) and (D) Detail of the surface changes associated with 4 rockfalls detected bet
thicknesses; volumes are specified in Fig. 6 and Table 1. Background topographic surface: 201
in this figure legend, the reader is referred to the web version of this article.) 
the 2017 SfM models, only the first type of artifact remains in the form 
of sparse measurement noise with an average amplitude of –10 cm 
(Fig. 5A). This negative anomaly was removed automatically during the 
noise filtering process. 

Following the visual inspections, only four rockfalls (volumes be-
tween 93 m3 and 2019 m3) that occurred between October 1976 and 
an. (A) Filtered point-to-mesh differences between the 1976 SfM point cloud and the 2010 
ave differences less than the change detection uncertainty of ±0.18 m. Negative surface 
s (ellipses) or to rockfalls (squares). (B) Detail of the uppermost concave area circled in 
ween 1976 and 2010. Colors are the same as those of Panel A and represents rockfall 
0 TLS mesh textured with gigapixel images. (For interpretation of the references to color 
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Fig. 5. Results of the comparison between Oct. 2016 and Sep. 2017 data for the easternmost part of El Capitan. (A) Filtered point-to-mesh differences between the 2016 TLS mesh and the 
2017 SfM point cloud. Positive deviations are associated with border effects. Blue areas have differences less than the change detection uncertainty of ±0.069 m. Negative surface changes 
correspond to detachment areas, i.e. 46 rockfalls ranging from 0.04 m3 to 9811 m3; this number includes rock detached by impact from rockfalls above. Background topographic surface: 28 
Sep. 2017 SfM model. (B) Detail of the area framed in Panel A; each arrow indicates the location of a rockfall. (C) and (D) Before-after comparison of the area shown in Panel B, showing 
rockfall scars. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
October 2010 could be clearly identified from the southeast face of El 
Capitan (Figs. 4 and 6). Using the extensive information reported in 
the inventory database (Stock et al., 2013), these four rockfalls could 
be dated precisely since the year, month and sometimes day were re-
corded. In addition, valuable information gathered from witnesses of 
the 3 October 1976 rockfall (Dale Bard, pers. comm. and Chris 
Falkenstein, writ. comm.) made it possible to precisely delineate the 
maximum extent of this event (Fig. 4B), located at the base of the 
March 1993 rockfall event (Fig. 4B). The upper part of the volume de-
tected in this area could thus be associated with this more recent rock-
fall (Fig. 4B). Without the inventory database, only one rockfall (and 
only one volume) would have been identified in this area, thus 
distorting the rockfall detection between 1976 and 2010. Still, it is likely 
that these four rockfalls have collapsed into several compartments and 
that the number of falls associated with the 1976–2010 period is 
actually higher. This detection limit, due to the effects of superimposi-
tion (overlapping of sequential rockfall scars through time) and coales-
cence (amalgamation of adjacent rockfall scars) of rockfalls (van Veen 
et al., 2017; Williams et al., 2018, 2019), probably also applies to the 
results from TLS comparisons (monitoring interval of 1.5 year in aver-
age; Fig. 2). 

During the 2017 El Capitan rockfall sequence, change detection be-
tween four SfM models identified 58 rockfalls (volumes between 
0.04 m3 and 9811 m3) between 27 September and 30 November 2017 
(Stock et al., 2018). By way comparison, 53 rockfalls (volumes between 
0.02 m3 and 977 m3) were detected using TLS data between October 
2010 and September 2017. 

For Middle Brother, 10 rockfalls (volumes between 31 m3 and 
20,193 m3) were identified between October 1976 and October 2010 
(Figs. 7 and 8). During this time period, the four largest rockfalls 
(N4770 m3) occurred in winter (February and March) in the upper 
half of the southeast face (Fig. 7). Between October 2010 and October 
2016, TLS surveys have identified 110 rockfalls with volumes ranging 
from 0.02 m3 to 2844 m3 (Fig. 8; Supplementary Fig. 3). The increase 
in the number of rockfalls detected during this time period compared 
to 1976–2010, as well as the decrease in the minimum volume detected, 
results from the increased resolution of the TLS models and the more 
frequent monitoring. 
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Fig. 6. 41 years of rockfall activity highlighted for El Capitan by means of SfM-TLS monitoring. (A) 115 rockfalls ranging from 0.02 m3 to 9811 m3 were detected between Oct. 1976 and Nov. 
2017. Colors assigned to the different monitoring periods allow tracking the spatial and temporal progression of rockfalls. Background topographic surface: 2016 TLS mesh textured with a 
gigapixel panorama. (B) Detail of the 1976–1993 rockfall area framed in Panel A. Rockfalls from 1976 and 1993 (Fig. 4C) have been merged to give a volume of 3883 m3. 15 rockfalls were 
detected in this scar since Oct. 2010. (C) Detail of the 11 Oct. 2010 rockfall scar area framed in Panel A. 25 rockfalls were detected within this scar since Oct. 2010. 
3.6. Rockfall extraction and volume calculation 

The rockfall identification process used here is described in Guerin 
et al. (2017). It is based on the method developed by Tonini and 
Abellán (2014) and involves (1) definition of a LoD95% and assignment 
of three distinct colors to separate positive deviations, the deviations 
contained within the LoD95%, and negative deviations, (2) filtering of 
the three colors defined in the previous step, (3) filtering of residual 
noise using a distance criterion that is based on the spatial density of 
points in 3-D (nearest-neighbor clutter removal method of Byers and 
Raftery, 1998), and (4) extraction of individual rockfall areas using the 
DBSCAN algorithm (Ester et al., 1996). 

We calculated all rockfall volumes according to the method outlined 
by Guerin et al. (2017). Each volume is defined by the sum of the tetra-
hedron volumes contained inside a closed mesh generated from the 
reference mesh and the point cloud to which it is compared. However, 
it should be noted that the smoothing procedure was only applied to 
the 1976 SfM point clouds; it allows interpolation of new triangles to 
smooth the artifacts (spikes in elevation) present on the surface of rock-
falls (pre-event topography). The uncertainty in our volume calcula-
tions depends the chosen LoD95% (which includes the registration 
error and the residual noise) and the surface area of each rockfall. 
Given that the area is multiplied by the LoD95%, the  geometric features  
of rockfalls strongly influences the volume uncertainty. For our error 
calculations, four geometric shapes were used to represent the rockfalls: 
square, rectangular, triangular, and complex (association of at least two 
of the three geometries above mentioned). Although the volume uncer-
tainty depends on the resolution of the point clouds and decreases with 
larger volumes, it clearly appears (examples in Table 1) that the use of 
complex geometries (which are more faithful to the actual shape of 
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Fig. 7. Results of the comparison between Oct. 1976 and Oct. 2010 for the SE face of Middle Brother. (A) Filtered point-to-mesh differences between the 1976 SfM point cloud and the 2010 
TLS mesh. Positive deviations are associated with border effects and vegetation. Blue areas have differences less than the change detection uncertainty of ±0.34 m. Negative surface 
changes correspond either artifacts related to the presence of overhangs (horizontal ellipses) and insufficient overlap between photographs (vertical ellipses) or to rockfalls. 10 
rockfalls were detected during this period (the date of the largest ones is indicated); the volumes are specified in Fig. 8A. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
rockfalls) decreases the margin of error on the volume estimate. More 
specifically, our rockfall volume uncertainty varies between 13.0% and 
39.8% (average value: 20.7%) for archival SfM (Table 1), between 2.9% 
and 28.7% (average value: 13.9%) for TLS (Stock et al., 2018), and be-
tween 4.2% and 36.0% (average value: 15.3%) for recent SfM (Stock 
et al., 2018). 

3.7. Rockfall volume-frequency relationships 

Landslides size distributions (related to surfaces or volumes) are 
generally known to follow negative power-laws (Stark and Hovius, 
2001; Guzzetti et al., 2002; Malamud et al., 2004; Brunetti et al., 
2009). The negative relationship implies that the frequency decreases 
as the volume increases. Fitting cumulative rockfall volume-frequency 
relationships to a power-law has been performed in many studies 
(e.g., Hungr et al., 1999; Picarelli et al., 2005; Barlow et al., 2012; 
Williams et al., 2018) with volume distributions of the form: 

N vð NVÞ ¼ aV−b ð1Þ 

where N(v N V) is the number of rockfalls larger than the rockfall volume 
V, a is the intercept, and b is the exponent (Brunetti et al., 2009). The a 
parameter is directly linked to rockfall activity, as it represents the fre-
quency of rockfalls, and the b exponent gives the slope of the power-
law. More specifically, the b value reflects the spreading of the volume 
distribution; when the b value approaches 1, “the volume of material 
contributed by larger events approaches unity with that contributed by 
smaller events” (Barlow et al., 2012, p. 419, section 3.3). Thus, a b value 
b1 indicates that the volume distribution is skewed toward larger-
volume events, whereas a b value N1 indicates that the volume distribu-
tion is skewed toward smaller-volume events. The power-laws derived 
from historical rockfall inventories tend to show that b appears to be 
mainly influenced by the rock type and the structure of the rock mass 
(Gardner, 1970, 1983; Wieczorek et al., 1995; Hungr et al., 1999; 
Dussauge et al., 2003; Guzzetti et al., 2003; Hantz et al., 2003; Brunetti 
et al., 2009). 

To determine the best fit and the best validity domain of the power 
laws adjusted to our data (Table 2), we used the maximum likelihood 
method (Pickering et al., 1995; Dussauge et al., 2003; Clauset et al., 
2009; Williams et al., 2019). Assuming a pure power law distribution 
(Aki, 1965), the maximum likelihood estimate for b is: 

b ¼ 
1 

ln 10ð Þ b log V½� ð ÞN− log V0ð Þ  
ð2Þ 

with a standard deviation defined by: 

b 
σ ¼ ffiffiffiffiffip ffi 

N0 
ð3Þ 

where V0 is the minimum volume used in the power law fit, blog(V)N is 
the average of log(V) for events larger than V0, and N0 is the number of 
events with volumes larger than V0. In addition to the correlation coef-
ficient R2, we estimated two goodness-of-fit indicators (Table 2) to test  
whether the fitting of a power law distribution is plausible based on the 
values determined for b and V0. These are the so-called Sum of Squared 
estimate of Errors (SSE) and Root Mean Squared Error (RMSE), which 
respectively measure the total deviation between the observed data 
values and the values predicted by the modeled distribution and the av-
erage deviation between the observed data and the modeled data. A 
value of R2 close to 1 and values of SSE and RMSE close to zero reflect 
a good ability of the model to accurately predict the data. 

In order to compare rockfall activities (given by the a-value) from 
cliffs of different sizes and surface areas (e.g., the southeast faces of El 
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Fig. 8. 40 years of rockfall activity highlighted for Middle Brother by means of SfM-TLS monitoring. (A) 120 rockfalls ranging from 0.02 m3 to 20,193 m3 were detected between Oct. 1976 
and Oct. 2016. Colors assigned to the different monitoring period allow tracking the spatial and temporal progression of rockfalls. Background topographic surface: 2016 TLS mesh textured 
with a gigapixel panorama. (B) Detail of the 22 Feb. 2000 rockfall scar areas framed in Panel A. 18 rockfalls were identified in the western (left) scar since Oct. 2010, whereas none were 
detected in the eastern scar over the same period. (C) Detail of the progressive 2015–2016 rockfall scar area framed in Panel A. Volume and timing of the numbered rockfalls: 1 = 2844 m3 

(from 28 Oct. 2015 to 9 Mar. 2016); 2 = 991 m3 (31 Mar. 2016); 3 = 316 m3 (5 Aug. 2016, 08:11 PST); 4 = 248 m3 (5 Aug. 2016, 08:32 PST); 5 = 329 m3 (5 Aug. 2016, 12:30 PST). 

Table 1 
Quantitative volumetric comparison of the largest rockfalls that occurred in the SE faces of El Capitan (EC) and Middle Brother (MB) between 1976 and 2010. Geometric shape used to 
represent the rockfalls (volume uncertainty calculations): C = complex; S = square; R = rectangle; T = triangle. Except for the 10 Mar. 1987 volume noted in italics, the volumes from 
the Yosemite rockfall inventory database that do not explicitly include a margin of error (±) are considered as well-constrained and reasonably accurate (Stock et al., 2013). 

Rockfall date Measured volume (m3) from SfM-TLS Reported volume (m3) from the inventory database Volume difference 
(m3) (%) 

3 Oct. 1976 (EC) 1864 ± 481 (S) 510 − 1354 − 73 

10 Mar. 1987 (MB) 
Feb. 1992 (EC) 
Mar. 1993 (EC) 
22 Feb. 2000 (MB) 
(2 events) 
1 Mar. 2000 (MB) 
11 Oct. 2010 (EC) 

20,193 ± 2957 (R) 
93 ± 37 (T) 
2019 ± 342 (C) 
9534 ± 1236 (T) 4774 ± 715 (T) 

17,304 ± 2391 (C) 
653 ± 173 (C) 

600,000 
150 ± 50 
900 ± 300 
17,477 

21,747 
990 

+ 579,807 
+ 57 
− 1119 
+ 3169 

+ 4443 
+ 337 

+ 97 
+ 38 
− 55 
+ 18 

+ 20 
+ 34 
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Table 2 
Characteristics of rockfall volume-frequency distributions for the two study sites. Key to abbreviations: EC = El Capitan; MB = Middle Brother; SSE = Sum of Squared estimate of Errors; 
RMSE = Root Mean Square Error. Vobs is the range of observed volumes; V0, the value of minimum volume used for power law fit; Nfit, the number of events used for power law fit; b, the 
maximum likelihood estimate of b value. The right-hand columns (R², SSE and RMSE) give the values obtained when the power laws are extrapolated up to the maximum listed volumes. 

Site Period Data set Nevents Vobs (m3) V0 (m3) Nfit b R2 SSE RMSE 

EC 
1976 
2017 

database 
SfM-TLS 

38 
115 

10−1–104 

10–2–104 
27 
0.24 

15 
70 

0.41 ± 0.11 
0.39 ± 0.05 

0.98 
0.99 

0.96 
0.98 

0.17 
0.13 

0.61 
1.01 

0.10 
0.04 

0.17 
0.11 

MB 
1976 
2016 

database 
SfM-TLS 

54 
120 

1–6.105 

10−2–2.104 
0.06 
4 

39 
81 

0.36 ± 0.06 
0.32 ± 0.04 

0.96 
0.99 

0.96 
0.98 

0.24 
0.09 

1.29 
1.59 

0.08 
0.03 

0.16 
0.13 
Capitan and Middle Brother, as well as other locations), it is necessary to 
use spatio-temporal rockfall frequencies (Hantz, 2011; Barlow et al., 
2012), which represent the number of rockfalls per unit time and per 
unit area. It should be noted that only the a-value changes during the 
conversion to the spatio-temporal domain; the b-value remains un-
changed. We divided the number of rockfalls from each inventory by 
the number of years of monitoring and by the cliff surface areas 
expressed in km2. Thus, the values of a reported in Section 4.4 and Fig. 
9 correspond to numbers of rockfalls (larger than 1 m3) per year and 
per km2. 

4. Results and discussion 

4.1. Measured versus reported number of rockfalls 

Our SfM-TLS analyses detected 235 rockfall from the southeast faces 
of El Capitan and Middle Brother. For El Capitan, we detected 115 rock-
falls between 1976 and 2017 (Fig. 6A). The majority of these rockfalls 
are concentrated in two areas: a 1976–1993 (Fig. 6B) scar area and a 
2010–2017 scar area (Fig. 6C). The 2010–2017 scar area has been the 
more active of the two, with two-thirds of all rockfalls (70 in total) lo-
cated in this area (Fig. 6C). The spatial and temporal progression of 
the 2010–2017 rockfall sequence shows that rockfalls generally propa-
gated upward and outward from the location of the first event (Stock 
et al., 2018). A similar rockfall progression was documented at the 
Rhombus Wall (Stock et al., 2012), located 5 km east of El Capitan, 
linking the progression to rockfall-induced redistribution of stresses 
on the cliff, which can incite propagation of microfractures (Petley 
et al., 2005) and/or failure of rock bridges (Kemeny, 2005). The 1976– 
1993 scar area has apparently been less active, although we note that 
Fig. 9. Rockfall volume-frequency relationships for the SE faces of El Capitan and Middle Brother
inventory database (Stock et al., 2013) and subsequent observations; blue data points are from
power laws using the maximum likelihood method (Aki, 1965; Dussauge et al., 2003; Clause
specified in Table 2. (For interpretation of the references to color in this figure legend, the read
both the inventory database and the SfM-TLS analyses here are subject 
to bias; both are subject to underreporting of small rockfalls, as well as 
the effects of superimposition and/or coalescence. 

SfM-TLS analyses detected 120 rockfalls from the southeast face of 
Middle Brother between 1976 and 2016 (Fig. 8A). Unlike El Capitan, 
there is no preferential location for rockfalls on Middle Brother, al-
though three consecutive large rockfalls in February and March 2000 
are located close to each other (Figs. 7 and 8A). Similar to the 2010– 
2017 rockfalls from El Capitan, a lateral progression of five adjacent 
rockfalls was observed from the southeast face of Middle Brother be-
tween October 2015 and August 2016 (Fig. 8C). In addition, it is interest-
ing to note that the first and largest event of this sequence (2844 m3) 
was preceded by a series of small rockfalls (7 events of 4 m3 on average) 
in 2013–2015, located immediately adjacent to the future scar (Fig. 8C). 
Anecdotally, small rockfalls also preceded the 10 March 1987 Middle 
Brother rockfall (Stock et al., 2013), but with only two datasets (1976 
SfM and 2010 TLS) bracketing the event we are not able to quantify 
those events in space or time. The ongoing rockfall activity at specific lo-
cations is consistent with the broader observation, well-documented in 
the inventory database, that rockfall scars in Yosemite are commonly 
active over years to decades. This is indicative of the sporadic nature 
of rockfalls in both space and time, and highlights the effects of superim-
position and coalescence. However, there are significant exceptions; for 
example, two adjacent rockfall scars from March 2000 display markedly 
different activity after the scar-forming event, with 18 rockfalls (mini-
mum value due to the biases mentioned above) detected within the 
western scar between 2010 and 2016, but no rockfalls (minimum 
value) detected within the eastern scar over the same period (Fig. 8B). 

The more thorough accounting of rockfalls provided by the SfM-TLS 
measurements allows us to assess the observation bias that affects the 
 between 1976 and 2016–2017. (A) and (B) Red data points are from the Yosemite rockfall 
 SfM-TLS monitoring. The four cumulative spatio-temporal distributions were fitted with 
t et al., 2009); the domains of validity and goodness-of-fit parameters of each curve are 
er is referred to the web version of this article.) 
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Fig. 10. Artifacts (false rockfalls) induced by the presence of shadows in the 1976 photographs. (A) Filtered point-to-mesh differences between the 1976 SfM point cloud and the 2010 TLS 
mesh (upper panel; Middle Brother; extract from Fig. 7) and front view of the corresponding area in 1976 (lower panel). The extract corresponds to the cliff section located above the 
rockfall scars of Feb.-Mar. 2000 (Fig. 7). (B) Profile view of cross-section P annotated in Panel A. The negative deviations observed within the overhang are due to poor reconstruction 
of the SfM points in the shadowed area. (C) and (D) Before-after comparison of the area framed in Panel C; cross-section P is located in the middle of the overhang. Visual inspection 
confirms the “false rockfall” artifact. 
inventory database. Still, due to the infrequent monitoring interval of 
TLS data (1.5 year in average), it should be specified that the number 
of rockfalls detected and their individual volumes are both potentially 
subject to the effects of superimposition and coalescence. When moni-
toring intervals exceed rockfall return periods, superimposed or amal-
gamated rockfalls are recorded as single detachments, with the result 
that multiple smaller rockfalls may be recorded as a single larger rock-
fall (Williams et al., 2019). In addition, the average resolution of TLS 
data (b250 pts/m2), as well as the resolution decrease with distance 
from the TLS scanner to the cliff, limits the detection of events below 
0.02 m3, especially in the upper part of the cliffs. Thus, it is likely that 
the number of small rockfalls involved in the 2010–2016 period is 
strongly underestimated. Here, recording of rockfalls in the inventory 
database can help to evaluate whether superimposition and/or coales-
cence are substantially affecting the number and volumes of rockfalls 
detected by the SfM-TLS analyses. In terms of number of events, the ob-
server bias is substantial. For El Capitan, the inventory database docu-
ments 38 rockfalls between 1976 and 2017, compared to 115 rockfalls 
detected by SfM-TLS (Fig. 6). For Middle Brother, the inventory database 
records 54 rockfalls between 1976 and 2016, compared to 120 rockfalls 
detected by SfM-TLS (Fig. 8). Both cases suggest that the inventory da-
tabase documents less than half of the rockfalls detected by SfM-TLS. 
For both cliffs, the majority of rockfalls not reported in the inventory da-
tabase are small in volume (b1 m3), which likely explains the under-
reporting, as such small rockfalls often are not observed and therefore 
not recorded. 

4.2. Measured versus reported rockfall volumes 

The SfM-TLS measurements also allow us to assess how accurately 
the inventory database records both individual and cumulative rockfall 
volumes. The representative sample of the eight rockfalls (four for El 
Capitan and four for Middle Brother) highlighted in Figs. 4 and 7 pro-
vides a sufficiently wide range of volumes and time periods to assess 
the accuracy and precision of the volume estimates reported in the in-
ventory database. Chronologically, the comparison of reported and 
measured volumes shows that three-quarters of the volumes for these 
eight events were originally overestimated (Table 1). On average, vol-
umes were overestimated by a factor of 1.4 but in one case (the 10 
March 1987 Middle Brother rockfall event, discussed in more detail 
below), the overestimation was by a factor of nearly 30. Overall, re-
ported rockfall volumes become increasingly accurate over time, with 
an error range less than a factor of 1.5 since the late 1990s (Table 1). 
This is due to a more concerted effort to accurately estimate volumes, 
as well as the increasing availability of aerial and terrestrial lidar data, 
which allow more accurate measurements of rockfall scar dimensions. 
Over the time period 2010–2017, this trend is broadly confirmed; for 
example, the 11 June 2014 El Capitan rockfall (977 m3; Fig. 6A) was 
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Fig. 11. Detailed analysis of the surface changes detected within the 10 Mar. 1987 rockfall scar on Middle Brother. (A) Pre-event topographic surface (red triangular mesh) and lateral 
boundaries (yellow polyline) of the rockfall. Background image: photograph shown in Panel C. (B) Filtered point-to-mesh differences between the 1976 SfM point cloud and the 2010 
TLS mesh (extract from Fig. 7). Rectangles indicate the location of 4 rockfalls that were not detected by SfM-TLS analyses. This finding highlights the limitations of the historical SfM to 
detect small rockfalls, as the left-most rectangle has been associated with the artifact highlighted in Fig. 10 and the other three rectangles contained too few, if any, negative deviations 
situated outside the change detection uncertainty to be considered as true rockfalls. (C) and (D) Before-after comparison of the area shown in Panel B; visual inspection confirms the 
occurrence of small rockfalls in these locations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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estimated at 450 m3, and the 1 October 2015 Middle Brother rockfall 
(46 m3; Fig. 8A) was estimated at 75 m3. 

4.2.1. Volume of the 10 March 1987 rockfall 
The largest volume discrepancy identified between the inventory 

database and the SfM-TLS analyses involves the 10 March 1987 Middle 
Brother rockfall. According to the inventory database, this was the larg-
est historical rockfall in Yosemite Valley (since 1857), at 600,000 m3. 
Based on the combined SfM-TLS analyses, we measured a volume for 
this rockfall of 20,193 m3, which contrasts strongly with the previously 
reported estimate. The 10 March 1987 rockfall was carefully observed 
by park rangers, primarily because it was preceded by many small rock-
falls that led to closure of a major road corridor prior to the largest rock-
fall occurring (Stock et al., 2013). Immediately after the largest rockfall, 
a rapid assessment of the rockfall source area approximately outlined 
the extent and offered rough dimensions of width, height, and thickness 
of the failed rock mass (James Snyder, pers. comm., 2019). These dimen-
sions were the basis for the 600,000 m3 volume estimate, which was 
then cited in subsequent publications (Wieczorek, 2002; Wieczorek 
and Snyder, 2004; Wieczorek et al., 1992, 1995; Stock et al., 2013)with-
out a detailed analysis. Although the estimated extent of the rockfall 
scar as shown in Wieczorek (2002) closely matches our measured ex-
tent (Fig. 11), the point cloud data show that the each of the dimensions 
were overestimated, leading to a substantial cumulative overestimation 
of the volume. 

Several lines of field evidence further support the smaller volume for 
the 10 March 1987 rockfall measured by SfM-TLS. First, debris from this 
rockfall traveled only slightly beyond the base of the talus slope beneath 
Middle Brother, whereas elsewhere in Yosemite Valley prehistoric rock-
falls with volumes exceeding 500,000 m3 extended hundreds of meters 
beyond the base of talus slopes, spreading out over the valley floor 
(Wieczorek et al., 1999; Stock and Uhrhammer, 2010). Second, photo-
graphs of the talus slope beneath Middle Brother taken before and 
after the rockfall do not show the magnitude of change that would be 
expected from a rockfall exceeding 500,000 m3. We conclude that the 
smaller volume of approximately 20,200 m3 for the 10 March 1987 Mid-
dle Brother rockfall is accurate, and use this opportunity to correct the 
record. 

4.2.2. Cumulative rockfall volumes 
The cumulative rockfall volume measured by SfM-TLS from El Capitan 

between 1976 and 2017 is 16,653 m3 (Fig. 9A). Over the same time pe-
riod, the inventory database reports a cumulative volume of 16,211 m3 

(Fig. 9A), in close agreement with the volume measured by SfM-TLS. In 
contrast, the measured cumulative volume for rockfalls from Middle 
Brother between 1976 and 2016 is 60,133 m3 (Fig. 9B), whereas over 
the same time period the inventory database records a cumulative vol-
ume of 649,183 m3, more than an order-of-magnitude larger than the 
measured volume. This discrepancy is almost entirely due to the overes-
timation of the 10 March 1987 rockfall volume described above. When 
the incorrect estimated volume for this event (600,000 m3) is corrected 
to the measured volume (20,193 m3), the cumulative volume from the in-
ventory database is 69,376 m3 (Fig. 9B), bringing the measured and esti-
mated volumes into much closer alignment. Thus, although the inventory 
database suffers from an underreporting of rockfalls (it records substan-
tially fewer rockfalls than detected by SfM-TLS), its accuracy improves 
in recording cumulative rockfall volumes. This is likely because the 
large-volume rockfalls that contribute most to the cumulative volume 
tend not to escape observation, as they are loud, often produce highly-
visible dust clouds, and are more likely to block roads or trails or other-
wise disrupt park operations. As such, these events typically receive 
more study and their volumes are more carefully estimated (with the no-
table exception of the 10 March 1987 Middle Brother rockfall). In addi-
tion, unlike the number of detected rockfalls, the cumulative eroded 
volume detected with TLS or SfM is not affected by superimposition or co-
alescence. Thus, as is the case with landslides (e.g., Malamud et al., 2004; 
Galli et al., 2008; Brunetti et al., 2009; Tanyaş et al., 2017), it is often more 
representative to use the cumulative eroded surfaces/volumes rather 
than the number of events to compare inventories. 

With greater confidence in the measured volumes, we can quantify 
differences in cumulative volume between the two cliffs. Over a 41-
year-period, El Capitan lost 16,653 m3 of rock, whereas over a 40-year 
period, Middle Brother lost 60,133 m3 of rock, nearly four times more 
than El Capitan. As the number of rockfalls from both cliffs is similar 
(115 for El Capitan and 120 for Middle Brother), the discrepancy is 
due to the larger volumes of many of the rockfalls from Middle Brother. 
All other factors (e.g., rock mass properties) being equal, cumulative 
rockfall volume should scale with cliff area (i.e., a larger cliff area has 
greater potential for a rockfall of a given volume), so a meaningful vol-
umetric comparison requires accounting for cliff area, resulting in a 
measure of cliff retreat over time (Moore et al., 2009). The cliff surface 
area of the southeast face of El Capitan is roughly half that of the south-
east face of Middle Brother (537,820 m2 and 1,063,600 m2, respec-
tively). However, the morphology of these two cliffs is very different, 
with a slightly overhanging circular arc for the southeast face of El 
Capitan versus a step-path geometry for the southeast face of Middle 
Brother (Fig. 1). Thus, to limit the consideration of very low dip areas 
(b20°) that are not likely to produce rockfalls, we projected the TLS 
meshes orthogonally onto the average plane of each cliff, resulting in 
projected cliff surface areas of 471,100 m2 and 901,610 m2, respectively.  
Even after accounting for cliff surface area, the larger volume loss from 
Middle Brother (now per km2) persists, indicating greater rockfall activ-
ity and volume loss from that cliff compared to El Capitan. 

4.3. Spatio-temporal rockfall frequencies 

Volume-frequency relationships for Yosemite rockfalls were previ-
ously evaluated over the period 1900–1992 using a catalogue of 214 
events (Wieczorek et al., 1995), then subsequently over the period 
1915–1992 using only the volume estimates constrained field observa-
tions (catalogue of 101 events, Dussauge-Peisser et al., 2002) and  finally 
over the period 1857–2002 using a catalogue of 392 events (Guzzetti 
et al., 2003). These three cumulative distributions are quite well described 
by power-law relationships (R2 N 0.97) with b exponents (Eq. (1)) equal  
to 0.57, 0.46 and 0.40, respectively. However, it should be noted that the 
power-law modeled by Guzzetti et al. (2003) only concerns the period 
1980–2002, considered as reasonably complete in terms of inventory. 
These three distributions are also characterized by a rollover (flattening 
of the curve) of volume-frequency for rockfall volumes b300 m3 

(Wieczorek et al., 1995) and 50 m3 (Dussauge-Peisser et al., 2002; 
Guzzetti et al., 2003), respectively. In most historical inventories, the roll-
over of the small volumes is attributable to observation bias 
(undersampling) (Hungr et al., 1999; Stark and Hovius, 2001; Malamud 
et al., 2004; Brunetti et al., 2009). 

The SfM-TLS dervied spatio-temporal rockfall frequencies obtained for 
El Capitan and Middle Brother (Fig. 9) over the period 1976–2017 are 
very well fitted (Table 2) (R2 N 0.99; SSE b 0.15; RMSEb0.05) by power-
law relationships between 0.2 m3 and 25 m3 (70 events) and between 
0.05 m3 and 20 m3 (81 events), respectively. Beyond 20 m3, the  correla-
tion coefficient remains high (R2 N 0.98) but the other goodness-of-fit in-
dicators become significantly higher, with SSE values N1 and RMSE values 
N0.1 (Table 2). As in many studies (e.g., Hungr et al., 2008; Dewez et al., 
2013; Strunden et al., 2015), this difference is due to the small number 
of large volume events that occurred during our observation period 
(Fig. 9); this is the censoring effect described by Stark and Hovius 
(2001). Regarding the spatio-temporal rockfall frequencies associated 
with the inventory database, the goodness-of-fit indicators are satisfac-
tory (Table 2) (R2  N 0.96; SSE b 0.25; RMSE b 0.10) between 25 m3 and 
1000 m3 (15 events) for El Capitan and between 2 m3 and 300 m3 (39 
events) for Middle Brother. These lower values are attributable to the 
method, mentioned in the introduction, of assigning estimated volumes 
to the inventory database, which generates an uneven distribution 

http:RMSEb0.05
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characterized by frequency jumps at volumes of 20 m3, 200  m3, 2000 m3 

and 20,000 m3 (Fig. 9). These jumps were already visible in the previous 
studies of the Yosemite rockfall inventory database (Dussauge-Peisser 
et al., 2002; Guzzetti et al., 2003). The under-sampling effect also affects 
the distribution of small rockfall volumes, with a rollover visible on the 
four volume-frequency relationships. The rollover position is between 
2 m3 and 25 m3 for the rockfall database (Fig. 9) and between 0.05 m3 

and 0.2 m3 for the SfM-TLS monitoring (Fig. 9). This shift arose because 
the 2010–2017 monitoring allowed the detection of many rockfalls 
smaller than 10 m3 (about 80% of the total number of rockfalls in both 
SfM-TLS inventories). 

The slope (given by the b-value) of the spatio-temporal rockfall fre-
quencies varies between 0.39 (SfM-TLS) and 0.41 (inventory database) 
for El Capitan and between 0.32 (SfM-TLS) and 0.36 (inventory data-
base) for Middle Brother (Fig. 9). These values are slightly lower than 
both exponents highlighted by Dussauge-Peisser et al. (2002) and 
Guzzetti et al. (2003). The small discrepancy with the previous studies 
can be explained first by the fact that the time periods evaluated by 
the various studies are not the same (more recent time periods have a 
more thorough accounting of rockfalls), and, second, because both 
above-mentioned studies use data from all of Yosemite Valley and not 
just that from El Capitan and Middle Brother as we do here. Additionally, 
the number of small rockfalls remains under-represented in the SfM-
TLS analyses, as shown by the lack of detected rockfalls smaller than 
1 m3 between 1976 and 2010. This under-representation of small vol-
umes affects the b-value associated with the SfM-TLS analyses, which 
would probably have been slightly higher with a larger number of 
small rockfalls (Williams et al., 2019). Despite these uncertainties, all 
the b-values are well below 1, indicating that the contribution of large 
volumes is significantly higher than that of small volumes for the ero-
sion of granitic cliffs in Yosemite Valley. Fig. 9 also shows that the 
slope of the spatio-temporal rockfall frequencies is higher for the inven-
tory database. This difference highlights the importance of having the 
most accurate volume estimates possible (e.g., the overestimation of 
the 10 March 1987 rockfall volume) and for monitoring with a high 
spatio-temporal resolution in order to derive more reliable volume-
frequency relationships. 

The spatio-temporal rockfall activity, given by the a-value, appears 
twice as high for El Capitan than for Middle Brother; on average, 2.3 
rockfalls from El Capitan (compared to 1.1 from Middle Brother) larger 
than 1 m3 (when considering V = 1 m3 in Eq. (1)) have occurred per 
year and per km2 of cliff between 1976 and 2017 (Fig. 9). This difference 
in behavior can be explained by the fact that there were as many de-
tected rockfalls over virtually the same time period from a cliff with 
half of the surface area. Still, the 2017 El Capitan rockfall sequence 
strongly influenced the a-value, as almost half of the inventory (51 out 
of 115 events) was recorded in the short time period between Septem-
ber and November 2017. This result indicates that the rockfall frequen-
cies of El Capitan and Middle Brother were actually similar until the end 
of 2016, even though larger volumes had affected the southeast face of 
Middle Brother since 1987. 

Although our 40-year monitoring period is longer than that most 
other similar studies, it is still too short to accurately estimate the return 
periods associated with the largest-volume rockfalls. In addition, due to 
biases and uncertainties discussed earlier, return periods should be con-
sidered approximate. Nevertheless, it is interesting to note that for the 
specific cliffs of El Capitan and Middle Brother, the SfM-TLS spatio-
temporal rockfall frequencies provide a return period between 50 and 
100 years for an event similar in volume to the 28 September 2017 El 
Capitan rockfall (9811 m3) (Fig. 9A). By way of comparison, the return 
period of this same event drops to around six years when considering 
all cliffs in Yosemite Valley (Stock et al., 2018). For events similar to 
the 1 March 2000 (17,304 m3) and 10 March 1987 (20,193 m3) Middle  
Brother rockfalls, the return period is between 65 and 100 years 
(Fig. 9B). For the entire Yosemite Valley, this return period (for the larg-
est volume) is approximately 16 years. Defining rockfall frequency is 
essential for characterizing rockfall hazard, and determining even ap-
proximate return periods can help park managers in Yosemite place 
large rockfalls into context. 

4.4. Cliff retreat rates 

The cumulative volumes and projected cliff surface areas obtained 
from the SfM-TLS data allow us to calculate spatially and temporally aver-
aged cliff retreat rates. The cliff retreat rate of El Capitan (1976–2017) is 
0.86 mm/yr. The cliff retreat rate for Middle Brother (1976–2016) is 
1.67 mm/yr. Thus, even when the larger cliff area of Middle Brother is 
accounted for, its retreat rate is nearly twice as fast as that for El Capitan, 
indicating a substantial difference in rockfall activity between the two 
cliffs over that 40-year period. The cliff retreat rates we measure for El 
Capitan and Middle Brother are faster than cliff retreat rates measured 
in alpine areas of the Sierra Nevada (average of 0.3 mm/yr; Moore et al., 
2009), and much faster than other surface process rates measured in 
the range (e.g., river incision rates of 0.02–0.3 mm/yr and bare bedrock 
erosion rates of 0.01 mm/yr; Stock et al., 2005, and references therein). 
This confirms that rockfalls are the dominant geomorphic process pres-
ently acting in Yosemite Valley. Cliff retreat rates for El Capitan and Mid-
dle Brother are also generally faster than cliff retreat rates measured in 
other mountainous settings, which typically vary from 0.1 to 1.0 mm/yr 
(e.g., Moore et al., 2009; Strunden et al., 2015, and references therein). 
The faster cliff retreat rates in Yosemite Valley likely result from unique 
geological and climatological factors, in particular the continuously exfo-
liating nature of the exceptionally steep granitic cliffs, as well as the mul-
titude of potential triggering mechanisms (Stock et al., 2013). However, 
caution should be exercised when comparing retreat rates derived from 
different time scales of observation. Although the cliff retreat rates we re-
port here are derived from four decades of observation (a length of time 
much greater than most studies), this is potentially still a short period of 
observation relative to the frequency of larger-volume rockfalls. 

The sensitivity of the time scale of observation is illustrated by compar-
ing cumulative volumes from El Capitan over a 40-year-period (1976 to 
2016, the same time interval over which we evaluate Middle Brother) ver-
sus a 41-year period (1976 to 2017, enabled by additional SfM acquisitions 
for El Capitan in 2017; Stock et al., 2018). If the analysis of El Capitan were 
limited to 1976–2016, the cumulative volume would be 5723 m3, yielding 
a cliff retreat rate of 0.58 mm/yr. However, if the analysis is expanded by 
just one year to 1976–2017, the cumulative volume is 10,921 m3, yielding 
the cliff retreat rate of 0.86 mm/yr reported above. This highlights the sen-
sitivity of the time scale of observation, especially when cumulative vol-
umes are substantially affected by individual large-volume rockfalls. 

To evaluate whether the cliff retreat rates we measure over four de-
cades are indicative of longer term rates, we followed the method de-
scribed by Barlow et al. (2012) for calculating the long-term averaged 
total eroded volumes from modeled volume-frequency power laws. 
This method consists of multiplying the frequency density of rockfall vol-
umes by the volume V, then integrating it between a minimum and max-
imum volume. Considering a minimum volume of 10−3 m3 and a 
maximum volume of 105 m3, we determine a total eroded volume of 
89,400 m3 for El Capitan and 133,300 m3 for Middle Brother, correspond-
ing to long-term cliff retreat rates of 1.66 mm/yr and 1.25 mm/yr, respec-
tively. Although these results are sensitive to the choice of the maximum 
volume (e.g., changing the maximum volume to 106 m3 increases those 
rates to 6.70 mm/yr and 6.02 mm/yr, respectively), within a realistic 
range of rockfall volumes it appears that the cliff retreat rates we derive 
from TLS-SfM are indicative of longer-term rates. 

5. Conclusions 

Integrating terrain models derived from TLS and modern SfM with 
models derived from SfM of “historical” (archival) imagery can substan-
tially extend detections of landscape change back in time. Historical 
oblique photographs taken of the southeast faces of El Capitan and 
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Middle Brother in Yosemite Valley yielded high-resolution terrain 
models of those cliffs as they appeared in 1976. By differencing those 
earlier terrain models against more recent models derived from TLS 
and SfM, we detected 235 rockfalls from the two cliffs over a 40-year pe-
riod. We find that although the number of rockfalls detected from the 
two cliffs is similar, Middle Brother has lost a substantially larger vol-
ume of rock, with a correspondingly higher cliff retreat rate. A rockfall 
inventory database for Yosemite records roughly half the number of 
rockfalls detected by TLS-SfM, although most of the unrecorded rock-
falls are b1 m3 in volume, suggesting that they were too small to be no-
ticed and therefore not reported. Individual rockfall volumes reported in 
the inventory database vary from those measured by TLS-SfM, with re-
ported volumes most often overestimated. However, cumulative vol-
umes over the 40-year period are similar between the inventory 
database and the TLS-SfM analyses, likely because large volume rock-
falls tend not to escape notice. Improved volume-frequency relation-
ships confirm that infrequent large volume rockfalls contribute more 
to cliff erosion in Yosemite Valley than more frequent small volume 
rockfalls. Rates of cliff retreat for El Capitan and Middle Brother are 
much faster than other surface process rates in the Sierra Nevada, and 
are generally faster than cliff retreat rates measured in other mountain-
ous settings. The high fidelity of TLS and SfM techniques, combined with 
the ability to generate SfM-based terrain models of cliffs as they ap-
peared decades ago, allows unprecedented opportunities to detect rock-
fall activity, measure rockfall volumes, assess rockfall hazard, and 
quantify rates of cliff retreat in mountainous landscapes. 

Despite the small number of photographs (b25), originally unin-
tended for SfM photogrammetry, a non-constant overlapping (ranging 
between 20 and 70%), and variable lighting conditions, our method 
turns out to be sufficiently accurate and consistent with the inventory 
database to reassess volumes ranging from a few tens to several tens 
of thousands of cubic meters. In the context of improving our under-
standing of landscape evolution, this finding opens up new perspectives 
for using historical (archival) photographs by obtaining new volume es-
timates of historical events (rockfalls, rockslides, debris flows, etc.) and 
more precisely quantifying other types of surface processes. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.geomorph.2020.107069. 
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