

Wawona and Yosemite Valley Water
Supplies

Purpose of Studies

Protect instream aquatic resources and wetlands from adverse effects of :

Surface water withdrawal for public water supply in Wawona

Groundwater withdrawal for public water supply in Yosemite Valley

Current Water Conservation Plan

River Flow (cfs)		Withdrawal Limit (cfs)		Withdrawal Limit (gallons per day)		
5		0.5		323158		
4		0.4		258526		
3		0.3		193895		
2		0.2		129263		
1		0.1		64632		
Wawona Average Monthly Use 2001-2006 (gallons/day)						
July	Αι	Jg	Sep		Oct	
134637	119993		95819		68293	

Wawona – Minimum instream flows assessment

Examine the effects of withdrawing water from South Fork Merced on aquatic organisms

STEP 1: Collect detailed topographic and substrate data

Step 2: Develop flow model

Based on surveyed topographic data and flow data

Model Flow Depth and Velocity

Step 3: Sample benthic macroinvertebrates

100 locations in the reach (including substrate size, and water depth and velocity)

Step 4: Develop habitat metrics

Step 5: Combine habitat metrics with flow model to assess changes in habitat at different flows

Step 6: Assess impacts due to water withdrawal for public water supply.

Results

 Loss of habitat below 3 cfs affects plecoptera numbers

Flows below 0.5 cfs cause step function losses of habitat

Baseline data for future evaluations

Yosemite Valley Water Supply

Objectives of Study:

- 1. Characterize hydrogeology of Yosemite Valley
- 2. Determine effects of pumping on the Merced River and adjacent wetlands

Water usage in Yosemite Valley

- Shifted from surface water supply to groundwater wells in 1983 – diversions of up to 5 cfs
- Current use approaches 1 million gallons / day in August

Yosemite Valley Water Use (2010)

Yosemite Valley Surface Topography

Yosemite Valley Bedrock Topography

Typical well stratigraphy and screen depth

Monitoring Strategy

Monitoring Strategy

Monitoring Strategy

Yosemite National Park U.S. Department of Interior

Monitoring Results

Monitoring Results

Conceptual Model

Conceptual Model

Conclusions

Groundwater pumping appears to minimally affect water levels in meadows and river flow

 Conceptual model shows pumping is likely substantial portion of groundwater budget

 Investigation provides baseline for future research and monitoring