Copies of this report are available from the editors.
Geologic Resources Division
12795 West Alameda Parkway
Acadamy Place, Room 480
Lakewood, CO 80227
Please refer to: National Park Service D-178 (May 1999)

Cover Illustration
Fossil carnivore tracks from the late Miocene Copper Canyon Formation overlay boundary map of Death Valley National Park.
THE DEATH VALLEY NATIONAL PARK PALEONTOLOGICAL SURVEY

Torrey G. Nyborg
and
Vincent L. Santucci

National Park Service
Geologic Resources Division
12795 West Alameda Parkway
Academy Place, Room 480
Lakewood, CO 80227

NPS/NRGRD/GRDTR-99/01
1999
This publication is dedicated to park ranger/geologist

H. Donald Curry
1908-1999
Table of Contents

Introduction
- Historical Background ... 1
- The Significance of Death Valley's Paleontological Resources 2
- Acknowledgements ... 4

Stratigraphy
- Geological History .. 5
- Facies Changes in Death Valley National Park 6
- Death Valley National Park Stratigraphic Column 7
- Rock Formations Exposed in Death Valley National Park 8

Paleontological Resources Inventory
- Paleobotany ... 18
- Fossil Invertebrates ... 18
- Fossil Vertebrates .. 23
- Trace Fossils ... 24
- Recommended Taxonomy Projects 24

Localities
- Grapevine Mountain Region 27
- Owlshead Mountain Region 27
- Tucki Mountain Region ... 27
- Wildrose Region .. 27
- Funeral Mountain Region ... 27
- Black Mountain Region .. 28
- Central Death Valley Region 28
- Cottonwood Mountain Region 28
- Panamint Springs Region .. 28
- Last Chance Range Region 29
- Regional Map ... 30
- Saline Valley Region ... 31
- Devils Hole Region ... 31
- Recommended Mapping Projects 31

Interpretation
- Current Interpretive Program 31
- Interpretive Theme .. 31
- Recommended Interpretive Actions 32

Paleontological Resource Management
- National Park Service Policy 32
- Baseline Paleontological Resource Data Inventories 33
- Recommended Paleontological Resource Management Actions 33

Paleontological Resource Protection
- Recommendations for Fossil Protection 35

Research
- Current Research .. 35
- Proposed Research .. 35
- Permit System ... 35
- Funding .. 36
- Publication Needs .. 36
- Literature Surveys .. 36

Collection and Curation
- Museum Collections .. 36
- Recommendations for Park's Fossil Collections 37
- Photographic Archives .. 37
- Recommendations for Photo Archives 37
- Fossil Collections in Outside Repositories 38
- Recommendations for Fossil Collections in outside repositories 38

Paleontological Resources Near Death Valley 38

References .. 41

Appendix A:
- Death Valley Paleo-Species List 48

Appendix B:
- Death Valley Vertebrate Fossil Type Specimens In Outside Repositories 56

Appendix C:
- Paleontological Localities Within Death Valley National Park 59

Appendix D:
- Death Valley RMP Paleontological Resource Project Statements 60
INTRODUCTION

Recognizing the contributions that a paleontological survey could provide to the management at Death Valley National Park, a strategy was developed to begin work in the largest National Park Service unit in the continental United States (Figure 1). Overcoming the high temperatures and limited available funding, a comprehensive inventory of all currently known sources of information regarding Death Valley’s geology and paleontology was initiated in 1998. The work was accomplished through the voluntary efforts of the principal investigator and the staff paleontologist for the National Park Service Geologic Resources Division.

By comparison to the other natural resources in Death Valley National Park, non-renewable fossil resources have received far less attention. Most of the credit for the initial understanding and recognition of the Death Valley geology and paleontology should rightfully go to Don Curry, the first ranger-naturalist at Death Valley. More recent work at the park includes research on Cambrian trilobites and Devonian fish. As this survey demonstrates, Death Valley contains very significant and diverse paleontological resources.

It has been our privilege to work in Death Valley National Park. We hope that this document helps to increase the awareness and status of Death Valley’s paleontological resources and provide a baseline from which future projects can be planned. We believe that the information contained in this report can enhance management decision making relative to paleontological resource issues and perhaps pave the way to future discoveries in Death Valley.

HISTORICAL BACKGROUND

The search for gold and other minerals in the region drew a few prospectors into the Death Valley area in the late 1840s. The wealth of gold, silver, copper, lead and borate mineral deposits led to the establishment of mines in and around the valley. The first U.S. boundary commission visited Death Valley in 1861. The commission characterized the valley as “a vast and deep pit, of many gloomy wonders.”

After the Civil War, the army’s role in conducting topographic surveys was taken over by civilian parties. Ferdinand Hayden, John Wesley Powell and Clarence King were funded by Congress to initiate topographic and scientific surveys in the western territories. In 1867, the first military expedition into the Death Valley area was conducted under the command of Lieutenant C.E. Bendire. In an effort to regain some of its pre-war responsibility, the army established the United States Geographical Surveys West of the One-Hundredth Meridian. First Lieutenant George M. Wheeler was assigned command of this survey (Bartlett, 1962).

Wheeler recognized that the other surveys placed great emphasis upon geology, and the topographic work was coordinated by the needs of the geologist. Wheeler believed that a topographic map was more essential to national
security than a geologic map. During 1871, the Wheeler Survey covered more than 72,000 square miles in the Great Basin of Nevada, eastern California, southwestern Utah, and portions of Arizona.

Wheeler’s trip across Death Valley is documented in the Wheeler Survey Geographical Reports (1887) and in the writings of Frederick Loring (1871). During the 1871 survey, Wheeler’s party produced the first detailed map of the Death Valley region. Fragmentary news items paint an unpleasant picture of the commander who walked the narrow edge of disaster many times, committed many errors in judgement, and in a few instances resorted to inexcusable cruelty to maintain order and achieve his objectives (Bartlett, 1962).

Death Valley’s geologic and scenic beauty was first brought to the attention of the National Park Service in the late 1920’s. With the support of Stephen T. Mather, Director of the National Park Service, President Hoover proclaimed Death Valley a national monument on February 11, 1933. In 1934, from the discovery of a titanohere skull and related bone material, Death Valley was again expanded to include the Nevada Triangle. With the passage of the Desert Protection Act of October 31, 1994, Death Valley increased its coverage by 1,200,000 acres and achieved the status of a national park. Death Valley National Park today preserves 3,336,000 acres that include world renowned and scientifically significant paleontological resources.

Geologist H. Donald Curry is credited as the first individual to recognize the significance of Death Valley’s paleontological resources. Nicknamed “The Kid”, Curry learned to map with the U.S. Geological Survey in 1930. In the fall of 1934, he was hired as a Park Naturalist at Death Valley National Monument. Curry’s assignment was interrupted by his participation in World War II, but he was listed in the records of Death Valley National Monument until 1942.

Early geologic investigations in Death Valley are best summed up in the following passage, “The region, due in large measure perhaps to its inaccessibility and desolation, has received in the main only reconnaissance study. However, the early investigations of the geology of the Grapevine and Funeral Mountains by Gilbert, Spurr, and by Ball elucidated much important information as part of the noteworthy contributions made by these surveys to an understanding of the stratigraphy and structure of southern Nevada and eastern California. Credit for the discovery of vertebrate fossils in the Tertiary series of the Grapevine and Funeral Mountains goes to H. Donald Curry” (Stock and Bode, 1935).

Until recently, there have been very few geologists working for the National Park Service. H. Donald Curry was one of the first professional geologists to wear the ranger uniform. He talked with the public during nightly programs and performed geologic work during the day. Curry made many paleontological resource discoveries at Death Valley including: Eocene titanothere remains from Titus Canyon, plant fossils in the Furnace Creek Formation, new species of Tertiary fossil fish, and three fossil vertebrate track localities, most notably the Copper Canyon Track Locality. During his short time at Death Valley, H. Donald Curry spent it wisely in the field (Figure 2). Therefore, we feel it is appropriate that we dedicate the Death Valley Paleontological Survey to H. Donald Curry, the man who first opened our eyes to the geologic significance and beauty of Death Valley.

Significance of Death Valley’s Paleontological Resources

Death Valley National Park preserves an extensive geologic record ranging from the Proterozoic through the Holocene. Over thirty fossiliferous stratigraphic units have been identified at Death Valley, containing fossil plants, invertebrates, vertebrates and trace fossils. The park museum collection provides a first glimpse into a record of life from the Death Valley area extending back over a billion years. Death Valley fossils occur in museums throughout the United States and include a number of fossil “type” specimens. A “type” specimen is a reference specimen used to define a particular genus or species.

The Proterozoic strata of Death Valley are richly fossiliferous, containing abundant algal fossils, stromatolites, microfossils, acritarchs, and a few trace fossils. Horodyski (1993) has reported on Ediacaran body and trace fossils outside of the park boundaries. Within the park’s boundary, only one occurrence of a metazoan Proterozoic fossil has been reported (Langille, 1974), consisting of a small shelly fossil “Cloudina.” Langille (1974) and Kaufman and Steidtmann (1981) have also reported on undescribed pseudofossils that may possibly be of metazoan origin, but their results are heavily contested. Within the deposits of Death Valley, a diverse shelly fauna precedes the first occurrences of trilobites (Signor et al., 1987). These pre-trilobite, shelly faunas are inferred to have a worldwide distribution. Studying these fossil should reveal new information regarding the pattern and processes of early invertebrate metazoan evolution and diversification (Signor et al., 1987).

In the 1880’s, Charles Walcott explored an area north of Waucoba Springs within the Saline Valley Region of this report. He designated a 2,100 meter thick section comprising strata of the White-Inyo facies as the Lower Cambrian Waucoban Series (Walcott, 1895, 1908). This series includes nine geologic formations and contains some of the oldest known fossils of complex multi-celled organisms, including the oldest occurrences of trilobites. Trilobites within this series and other Cambrian deposits in...
Death Valley National Park record scientifically important depositional settings.

Late Proterozoic and Proterozoic strata outcrop extensively throughout Death Valley National Park, including a nearly complete Paleozoic carbonate succession in the Panamint Range, and a complete Paleozoic succession from Pyramid Peak southeastward towards Death Valley Junction, at the southeastern end of the Funeral Mountains. These deposits preserve important Paleozoic faunal assemblages.

Two genera of rare Devonian fish were discovered in the Lippincott Member of the Lost Burro Formation (Elliott and Ilyes, 1996a, 1996b). The primitive pteraspid (agnostan) fish include the genus *Blieckaspis* and a newly described genus *Panamintaspis* from the Trail Canyon area of Death Valley National Park. These remains shed new light on the early evolution of fish in North America.

Late Eocene (Chadronian) assemblages of fossil mammals have been collected from the Titus Canyon Formation in Death Valley National Park. Fossilized remains of early rodents, carnivores, horses, rhinos, and artiodactyls have been discovered in a red calcareous mudstone unit (Stock and Bode, 1935). The locality is referred to as Titanotherium Canyon based upon the discovery of a new species of titanotherian referred to as *Protitanops curryi*. This specimen represents the first record of a titanotherian west of the Rockies. A cast of the *Protitanops* skull is on exhibit at the Furnace Creek Visitor Center (Figure 3).

Fossil vertebrate tracks from the Tertiary are relatively rare by comparison to Mesozoic vertebrate tracks. A number of Late Tertiary vertebrate track sites are documented in Death Valley National Park (Curry, 1941). The most abundant, diverse, and well-preserved fossil vertebrate tracks are located in Copper Canyon. Fossil footprints of birds, camels, horses, cats, proboscidians and other vertebrate ichnotaxa are preserved in late Miocene lake deposits. The site is so scientifically significant, if it was not protected as part of Death Valley National Park,
Copper Canyon would be worthy for consideration as an independent national monument.

ACKNOWLEDGEMENTS

We have come to realize that there is far more to Death Valley National Park than we first anticipated. In addition to the significant and diverse paleontological resources, the park has an exceptionally high quality staff. It was this combination of fossil and human resources that engaged us to prioritize the Death Valley Paleontological Survey as the second such survey in the National Park Service.

Our initial contacts at Death Valley were the Chief of Resource Management Linda Greene and the former park archeologist Caven Clark. Linda and Caven requested assistance with park paleontological resource issues from the National Park Service Geologic Resources Division (GRD). In April 1998, GRD Paleontologist Vince Santucci first visited Death Valley, met with park staff, and began an initial assessment of the paleontological resources. Through Linda Greene’s efforts, Torrey Nyborg was recruited as a paleontology intern through the National Park Service’s Geologist-In-the-Parks program during the summer of 1998.

Many thanks to Superintendent Dick Martin and his staff at Death Valley National Park for providing support and suggestions to this survey. Corky Hays, Terry Baldino, Scott McElveen, Dick Anderson, John Stark, and Marilyn Pitassi were park staff who were especially helpful. Special thanks to Mel Essington for helping us understand the park’s complex geology, and Charlie Callagan for orienting us on our initial visits to Copper Canyon and providing top-notch paleontological resource interpretation. Death Valley Curator, Blair Davenport, has been extremely helpful in tracking down and tying together the isolated building blocks of this survey. Blair provided reprints, photos, and many hours of her own time to support our frequent requests for assistance and information.

An area of particular interest at Death Valley is Copper Canyon. We characterize this exceptionally well preserved and rich fossil vertebrate track locality as one of the “paleontological gems” of the National Park Service. Park naturalist/geologist H. Donald Curry was the first to discover and document the Copper Canyon Track Locality and another notable site at Titanotheria Canyon. At ninety Don had many stories to share about Death Valley. It is to H. Donald Curry that this report is dedicated.

We recognize the important contribution park volunteer Reuben Scolnick has made to Death Valley through his long-term photodocumentation and mapping of the vertebrate track sites in Copper Canyon.

Bob Reynolds of the San Bernardino County Museum served as our mentor regarding paleontological resources in and around Death Valley National Park. Don Lofgren of the Raymond Alf Museum and Sam MacLeod of Los Angeles County Museum graciously provided information on specimens collected within Death Valley. Susan Sorrel
proudly showed the authors fossil tracks near the southern end of Death Valley.

We appreciate the research efforts and suggestions from recent park researchers Dave Elliott, Whitey Hagadorn, Richard Miller, Jeffrey Mount, Allison Palmer, Don Prothero, Benny Troxel, and Steve Walsh. Additional thanks to Arvid Aase, Shawn Duffy, David Hays, Clay Kyte, Kris Thompson, Mark Schroeder, Dru Martin, and Chris Mead who provided technical support in the assembly of this document. Moreover, we extend our appreciation to the staff of the National Park Service Geologic Resources Division including Dave Shaver and Bob Higgins. In particular, many thanks are extended to Tim Connors for assembling the complex stratigraphic data into a reader-friendly format.

Finally, the writers wish to give a special thanks to our families, Bianca, Luke and Jacob Santucci, and Brant and Vonda Nyborg who have endured our efforts across the country and into the field.

STRATIGRAPHY

GEological HISTORY

Geologically, Death Valley preserves the transition zone between the northern and southern parts of the Great Basin extensional province (Hamilton, 1969). The park is also situated within a right lateral, strike-slip fault system which is associated with the boundary between the North American Plate and the Pacific Plate (Sheehan, 1988).

The southern Great Basin contains a virtually vegetation-free expanse of well-exposed Proterozoic and Cambrian formations in the western American Cordillera. Within Death Valley National Park, in areas such as Emigrant Pass, Titanothere Canyon, Waucoba Springs, and a spectacular section on the west side of the Last Chance Range, these formations are exposed in a continuous series.

Proterozoic deposition is inferred to have occurred during an extensional phase in which basins and uplands were formed by block faulting. Emergent areas existed in the vicinity of the Resting Spring, Nopah, and Kingston Ranges and the Panamint, Funeral, and Black Mountains (Wright and Troxel, 1966). These highlands were bordered by alluvial fans and braided fluvial systems, carrying detritus into tidally influenced basins (Poole et al., 1992, p. 16).

Uniform and systematic facies changes and the development of mixed carbonate and siliciclastic units in the late Proterozoic, indicate lowering of the source area accompanied by an eustatic rise in sea level. These strata record deposition in nearshore marine intertidal, supratidal, and fluvial environments (Gustadt, 1968; Marian, 1979; Maud, 1979).

A regressive event, believed to represent an eustatic sea level fall during the Early Cambrian, marks the termination of the dominantly siliciclastic phase of early Paleozoic sedimentation (Palmer, 1981). Subsequent sea level rise was coupled with continued continental margin subsidence. The changes in sea level, related to lithospheric cooling (Bond and Komiz, 1984), brought Paleozoic marine sedimentation eastward onto the cratonic platform for the first time. Significant algal growth occurred along the margin of the carbonate shelf.

During regressions, widespread shaly or silty marker units punctuate the carbonate facies and gradually grade upward into an increasingly carbonate succession (Palmer and Halley, 1979). The largest of these siliciclastic-carbonate units are referred to as “Grand Cycles” (Atkam, 1966, 1978).

The passive-margin, shallow-marine sedimentation that was established by the Early Cambrian (Stewart, 1970) continued with one brief regressive event into the middle Ordovician. Middle Cambrian to early Ordovician sedimentary rocks record the development of a widespread and persistent carbonate platform (Poole et al., 1992, p. 20).

Throughout much of the Cambrian to Early Triassic, deposition in the form of carbonates continued on a fairly stable continental shelf, where large-scale coral-algal reefs developed (Hildreth, 1976). From the Middle Cambrian to the Permian, limestone deposits dominate, interrupted by sporadic silt deposition. The sea, which had covered much of Death Valley since the Precambrian time, withdrew from the southern Great Basin as the Sierra Nevada Mountains developed into a volcanic chain (Gordon, 1964).

Folds and thrust faults developed during the Middle Triassic to latest Jurassic. Additionally, late Jurassic to Early Cretaceous metamorphism affected wide regions in Death Valley (D.M. Miller et al., 1992, p. 225). In the Cretaceous, large scale eastward thrusting imbricated the Cambrian sequences along with large pieces of the younger Paleozoic carbonates (Taylor and Palmer, 1981). Evidence suggests that between the Late Cretaceous and the Eocene, uplift and subsequent large-scale erosion was widespread throughout the southeastern Great Basin Province (D. M. Miller et al., 1992, p. 225).

The Cenozoic sedimentary deposits of Death Valley consist of numerous sequences of alluvial fan deposits, lacustrine playa sediments, and volcanic flows (Hunt, 1975). During the Eocene, river and lake deposits accumulated in local basins. In the Miocene, ash flows and other tuffs derived largely from the area of the Nevada Test Site blanketed Death Valley. Tectonic activity during the Miocene impacted Paleozoic rocks from the Black Mountains, northern Funeral Mountains, and parts of the Panamint Range (Hildreth, 1976).

Hewett (1956) and Garfunkel (1974) originally believed the region of southeastern California was a persistently stable block during middle and late Tertiary time. Recent work however, has demonstrated that the Death Valley region has undergone Mesozoic contraction and Cenozoic extension (Chapin, 1971; D. M. Miller et al., 1992; Dokka, 1986; Glazner et al., 1988; Link et al., 1993, p. 529). Mapped and inferred right-lateral strike-slip fault zones, active during the Mesozoic and Cenozoic, have brought together upper Proterozoic to middle Paleozoic rocks with
a maximum right-lateral displacement for the Furnace Creek Fault at 100 km (Poole et al., 1992, p. 15)

During the Miocene, tensional fracturing of the imbricated crust in the Great Basin along with substantial subaerial volcanism, propagated large scale north-south oriented listric normal faults. Many of the older Proterozoic/Cambrian structural blocks were rotated into their present attitudes (Taylor and Palmer, 1981). Tertiary erosion of these fault blocks is characteristic of the pattern of basins and ranges seen today. Right lateral strike-slip faulting along general east-west strikes in the Late Tertiary, along with continued erosion of the Basin and Range Province, are the most recent earth-shaping forces.

In the Quaternary, deepening of Death Valley and Panamint Valley continued with active faulting and land-sliding on the range fronts. During the Pleistocene glaciation, the surface of Lake Manly stood 600 feet above the floor of Death Valley. The lake was approximately 100 miles long when “glaciers occupied mountains within an expanded Death Valley drainage system” (Sharp and Glazner, 1997). Ubehebe Crater eruptions, along with continued faulting and tilting of ranges, occurred during the Holocene (Hildreth, 1976).

Today Death Valley consists of a linear series of long, narrow, north-south trending, fault bounded troughs which are bordered on both sides by lofty mountains. Figure 4 is a composite stratigraphic column for Death Valley National Park.

Facies Changes in Death Valley National Park

Late Proterozoic and Early Cambrian strata outcrop extensively throughout the southeastern Great Basin. These strata represent two distinct facies within Death Valley National Park, the White-Inyo facies, and the Death Valley facies (Nelson, 1978; Palmer and Nelson, 1981). The Death Valley facies, comprises nine formations that represent a mix of nearshore shallow marine and fluvial sediments. This facies is exposed throughout the southeastern parts of the park. The White-Inyo facies represents a more offshore environment and is exposed in the northwestern part of the park (Diehl, 1979; Mount, 1980). The facies change takes place across a zone of faulting within the Last Chance Range. The White-Inyo facies incorporates the exposures of the type section of the Lower Cambrian Wauconan Series and is comprised of nine formations. Outcrops are found at the northwest boundary of the park, and at the entrance to Cucamongo Canyon. Regional variations across the boundaries of these two facies will not be discussed in this report; for a complete coverage see Mount and Signor (1989a).

The late Lower Cambrian and Middle Cambrian White-Inyo facies and the Death Valley facies consist of alternating units of siliciclastic and carbonate strata. The facies record episodic shifts in shelf depositional conditions in response to Cambrian sea level fluctuations. These sea level changes are referred to as “Grand Cycles.” The cycles are regionally correlative and uniform depositional facies sequences that are typically comprised of one to two distinct and traceable trilobite zones (Aitken, 1966, 1978; Fritz, 1972; Palmer and Halley, 1979; Mount and Signor, 1992).

Within the later Middle Cambrian Bonanza King Formation, the region became part of a carbonate platform on a passive continental margin (Stewart, 1972). During that time, the area contained within Death Valley National Park was almost completely submerged, and deposition was uniform across the entire park (Poole et al., 1992, p. 20). In this report, this unit forms the base of the Composite Death Valley National Park facies (Figure 4).

Figure 4: Stratigraphic nomenclature of sedimentary units in Death Valley National Park (adapted from Hall, 1971; Nelson, 1978; Taylor and Palmer, 1981; Poole et al., 1992; Link et al., 1993; Hagadorn, personal communication, 1999).
<table>
<thead>
<tr>
<th>Era</th>
<th>Period</th>
<th>Epoch</th>
<th>Geologic Units in Composite Death Valley National Park facies</th>
<th>White-Inyo Facies</th>
<th>Death Valley Facies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cenozoic</td>
<td>Quaternary (1.8 to recent)</td>
<td>Holocene</td>
<td>Alluvial fan and lacustrine deposits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pleistocene</td>
<td>Funeral Fm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tertiary (65 to 1.8 mya)</td>
<td>Pliocene</td>
<td>Copper Canyon Fm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miocene</td>
<td>Furnace Creek Fm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eocene</td>
<td>Artist Drive Fm.</td>
<td></td>
<td>Titus Canyon Fm.</td>
</tr>
<tr>
<td>Paleozoic</td>
<td>Permian (286 to 245 mya)</td>
<td></td>
<td>Tihvipah Fm.</td>
<td>Keeler Canyon Fm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pennsylvanian (325 to 286 mya)</td>
<td></td>
<td>Rest Spring Shale</td>
<td>Lee Flat Limestone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mississippian (360 to 286 mya)</td>
<td></td>
<td>Perdido Fm.</td>
<td></td>
<td>Tin Mountain Limestone</td>
</tr>
<tr>
<td></td>
<td>Devonian (410 to 360 mya)</td>
<td>Upper</td>
<td>Lost Burro Fm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle</td>
<td>Hidden Valley Dolomite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silurian (440 to 410 mya)</td>
<td></td>
<td>Ely Springs Dolomite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ordovician (505 to 440 mya)</td>
<td></td>
<td>Eureka Quartzite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pogonip Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cambrian (544 to 505 mya)</td>
<td>Upper</td>
<td>Nopah Fm.</td>
<td>Bonanza King Fm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle</td>
<td>Monola Fm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mule Spring Limestone</td>
<td>Carrara Fm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower</td>
<td>Saline Valley Fm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Harkless Fm.</td>
<td>Zabriskie Quartzite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poleta Fm.</td>
<td>Upper Wood Canyon Fm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neoproterozoic (900 to 544 mya)</td>
<td></td>
<td>Campito Fm.</td>
<td>Middle Wood Canyon Fm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deep Spring Fm.</td>
<td>Lower Wood Canyon Fm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mesoproterozoic (1600 to 900 mya)</td>
<td></td>
<td>Reed Dolomite</td>
<td>Stirling Quartzite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wyman Fm.</td>
<td>Johnnie Fm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ibex Fm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Noonday Dolomite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pahrump Group</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kingston Peak Fm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beck Spring Dolomite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crystal Spring Fm.</td>
<td></td>
</tr>
</tbody>
</table>
ROCK FORMATIONS EXPOSED IN DEATH VALLEY NATIONAL PARK
Unit/Geologic Age, Lithology, and Representative Fossils
Geologic Units in the White-Inyo Facies
Exposures in northwest section of Death Valley

Wyman Formation (Precambrian)
Lithology: This formation consists of dark-gray phyllite and interbedded limestone/marble layers.
Fossils: Algae, trace fossils, including the trace fossil Planolites (Nelson, 1976), have been reported from the upper section of this formation (Alpert, 1976; Langille, 1974; Wiggett, 1975; Mount and Signor, 1985).

Reed Dolomite Formation (Precambrian)
Lithology: This formation consists of white to yellowish gray dolomite (Stewart, 1970), divided into lower, middle, and upper members (Nelson, 1962).
Fossils: Algae (Noble, 1934), the trace fossil Planolites (?), and tubular fossils have been reported from within this formation (Nelson, 1976). The problematic fossil Wyattia occurs in dolomites of the upper member (Taylor, 1966). Signor and Mount (1989) have reported laterally linked stromatolites from the lower member.

Deep Spring Formation (Precambrian/Early Cambrian)
Lithology: The formation represents a mixed carbonate-siliciclastic depositional system (Parsons, 1996). This formation is divided into lower, middle, and upper members (Nelson, 1962). The Precambrian-Cambrian boundary has been established within the middle member of the Deep Spring Formation (Corsetti and Kaufmann, 1994; Runnegar et al., 1998; Parsons, 1996). This boundary has been determined by the presence of Neoproterozoic small shelly fossils, trace fossils, and carbon isotope stratigraphy.
Fossils: Stromatolites, the problematic fossil Wyattia (Cloud and Nelson, 1966; Nelson, 1976), a hyolith (Signor et al., 1989), and annelids (Signor and Mount, 1986) have been reported from the lowermost limestone member. A diverse pre-trilobite shelly assemblage (Signor and Mount; 1987; Signor et al., 1989) and trace fossils (Alpert 1975, 1976) including the first arthropod trace fossils Rusophycus and Diplechinides have been reported from this formation.

Campito Formation (Early Cambrian)
Lithology: This formation reflects a terrigenous clastic deposition (Mount, 1982), divided into two members, the Andrews Mountain Member and Montenegro Member (Nelson, 1962).
Andrews Mountain Member
Fossils: Olenellid trilobites (Fallotaspis) first appear within the middle of the member (Nelson, 1962). A number of ichnotaxa dominated by fodinichnid traces occur throughout the member (Alpert, 1975, 1976; Mount, 1982; Mount and Signor, 1992). Several body fossils have been reported by Signor and Mount (1989) from below the earliest trilobite occurrence. These early fossils include: the agglutinated fossil Volborthella (“Campitius”) and the tubes Platysolenites and Onuphionella.
Montenegro Member
Fossils: The Montenegro member shows a steady increase and diversity in body fossils (Mount, 1982). Archaeocyathids (McKee and Gangloff, 1969), puzaitubulids, Hyolithellis, Chancelloria, Microdictyon (Onken and Signor, 1988), bocelliid brachiopods (Mount, 1982), helicoplacoid echinoderms (Durham, 1993), hyolithids, trilobites, and trace fossils, (Nelson, 1976) are the most representative fossils within this member.
Poleta Formation (Early Cambrian)
Lithology: This formation is divided into three members and their lithologies are provided below (Nelson, 1976; Moore, 1976).
Fossils: McKee and Gangloff (1969) and Gangloff (1975) have reported large colonial-type archaeocyathids in carbonate beds throughout the formation.

Lower Member
Fossils: This member consists mainly of archaeocyathid-bearing bioclastic and biohermal limestone (Mount, 1982). Rowland (1978, 1979) divided the lower member into two general facies complexes: an oolitic shoal complex and a reef-lagoon complex. Archaeocyathids (McKee and Gangloff, 1969), hyolithid beds, eocrinoids (Firby and Durham, 1974), articulate brachiopods, and a small shelly fauna have been reported from this member (Onken and Signor, 1988; Signor and Mount, 1989).

Middle Member
Fossils: This member is a siliciclastic dominated unit, with a trilobite bearing gray-green shale (Nelson, 1962). Within this member, archaeocyathids (McKee and Gangloff, 1969), hyoliths, brachiopods (Firby and Durham, 1974), edrioasteroids, eocrinoid plates, helicoplacoids (Nelson and Durham, 1966), and a diverse trilobite assemblage (Nelson, 1962; Seiple, 1984), have been reported.

Upper Member
Fossils: The upper member is a mottled blue-gray limestone (Nelson, 1962; Seiple, 1984). Archaeocyathids, trace fossils, and trilobites, are reported by McKee and Gangloff (1969) and Nelson (1976) from thin limestone beds within this member.

Harkless Formation (Early Cambrian)
Lithology: Within the Waucoba Springs section, the stratigraphic sequence consists of a dark gray to black siltstone, a massive brown vitreous quartzite, and a gray to gray-green siltstone shale (Nelson, 1962; Seiple, 1984). The formation is dominantly siliciclastic with a lower carbonate unit.
Fossils: The carbonates at the base of the formation yield large archaeocyathids (McKee and Gangloff, 1969; Seiple, 1984). Skolithos are reported from the upper siltstone and quartzite layer (Signor and Mount, 1989). Brachiopods and the agglutinated fossil, Salterella, occur in a few of the siltstone layers (Signor and Mount, 1989). The trilobite Paedeumias occurs in the upper part of the formation (Nelson, 1976) and other fragmentary trilobites occur throughout the formation (Signor and Mount, 1989).

Saline Valley Formation (Early Cambrian)
Lithology: Massive buff to red-brown quartzite with minor beds of siltstone and sandy limestone are typical of the lower member. The upper member is a blend of brownish quartzite, gray silty shale, and sandy limestone (Nelson, 1962; Seiple, 1984).
Fossils: Trilobites occur in a olive green shale in the uppermost member of this unit (Firby and Durham, 1974; Seiple, 1984).

Mule Spring Limestone Formation (Early Cambrian)
Lithology: This is a dark blue to gray oncolitic limestone (Nelson, 1962; Seiple, 1984).
Fossils: Palmer and Nelson (1981) have identified the trilobites Bristolia and Peachella from the Mule Spring Limestone at Cucomungo Canyon. The alga Girvanella has been reported by Seiple (1984) from exposures at Waucoba Springs.

Monola Formation (Middle Cambrian)
Fossils: A diverse assemblage of trilobites have been reported from this formation (Nelson, 1976).
ROCK FORMATIONS EXPOSED IN DEATH VALLEY NATIONAL PARK
Unit/Geologic Age, Lithology, and Representative Fossils
Geologic Units in the Death Valley Facies
Exposures in south-east section of Death Valley

Pahrump Group (Precambrian)
Lithology: The Pahrump Group consists of a 3-4 km thick west to northwest trending sequence of carbonate and siliciclastic strata (Hewitt, 1940; Wright and Troxel, 1966; Wright et al., 1974; Horodyski, 1993). This group consists of three formations: the Crystal Spring, Beck Spring, and Kingston Peak (Hewett, 1940).
Fossils: Cherts contain a diverse and well preserved assemblage of microfossils (Cloud et al., 1969; Licari, 1978).

Crystal Spring Formation (Precambrian)
Lithology: This formation consists of fan-delta and adjacent shallow marine deposits, which Roberts (1976) has divided into seven members.
Fossils: Stromatolites and poorly preserved filamentous microfossils have been reported from this formation (Howell, 1971; Roberts, 1976; Awramik et al., 1994). The middle member has been described by Roberts (1976) as "persistently stromatolite-bearing in a northern facies that occupies a belt from the Panamint Range to the Kingston Range."

Beck Spring Dolomite Formation (Precambrian)
Lithology: This formation is divided into three informal members: a lower laminated member; a middle oolitic member; and an upper cherty stromatolitic member (Gustadt, 1968). Gustadt (1968) has interpreted this formation as a shallow marine environment.
Fossils: Stratiform stromatolites have been estimated to make up nearly 70% of this formation (Tucker, 1983). Abundant filamentous and spherical algal nannofossils (stromatolites) of at least 5 genera have been reported from upper member (Licari 1978).

Kingston Peak Formation (Precambrian)
Lithology: This formation dominantly siliciclastic with several diamicite, and rare carbonate beds (Awramik et al., 1994). Awramik and others (1994) have interpreted this formation to be glacial in origin. Trough cross-bedded pebbly sandstones record braided fluvial and alluvial-fan deposition (Poole et al., 1992), which developed during extensional tectonics (R. H. Miller, 1985) under glacial conditions (R. H. Miller, 1982, 1985). R. H. Miller (1982) has divided the Kingston Peak Formation into four members.
Fossils: Eukaryotic taxa of algal affinity, along with "curious carbonate crusts" have been reported from the lower Kingston Peak chert (Pierce et al, 1994). Pierce and others (1994) believe that lower chert may contain at least 17 taxa of microfossils. Thin carbonate beds within the diamicite contain small columnar stromatolites, oncolites, and a silicified microbiota (Awramik et al., 1994).
Noonday Dolomite Formation (Precambrian)
Lithology: The Noonday Dolomite consists of algal, cryptalgal, and clastic dolostone that record deposition on a shallow-marine carbonate platform (Wright et al., 1978). This unit consists of a lower member of very finely crystalline, laminated, and relatively pure dolomite, and an upper member of silty dolomite, siltstone, and stromatolitic dolomite (Williams et al., 1976; Wright et al., 1978). The Noonday Dolomite it has been divided into three members (Cloud et al., 1974).
Fossils: Large domal stromatolites occur throughout this carbonate unit. Very large vertical tubes and concentrically banded algal mounds have been reported from the lower dolomite member (Wright et al., 1978).

Ibex Formation (Precambrian)
Lithology: This formation consists of thinly bedded siltstones and limestones, divided into four informal members (Wright et al., 1981). The Ibex Formation consists of a basal conglomerate derived from the Noonday Dolomite (Wright and Troxel, 1984). No fossils have been reported from this formation.

Johnnie Formation (Precambrian)
Lithology: This formation is a mixed carbonate and siliclastic sequence, believed to have been deposited in a shallow near-shore setting (Summa et al., 1991, 1993). Moore (1974) has separated this formation into a southern and northern facies.
Fossils: Three groups of stromatolites have been reported by Cloud and others (1969), within dolostones in the uppermost section of the formation (Summa et al., 1991). The lower carbonate member consists of domical and branching forms of stromatolites (Awramik et al., 1994).

Stirling Quartzite Formation (Precambrian)
Lithology: This unit represents interbedded fluvial and marine sequences (Hagadom, personal communication, 1999). The formation consists of fine-grained, cross-stratified, locally conglomeratic sandstone, containing a medial interval of siltstone and carbonate rocks (Wertz, 1977, 1982). Stewart (1970) divided this formation into five informal members - A through E, from exposures throughout the Panamint Range, Funeral Mountains, and Starvation/Johnson Canyons.
Fossils: In the Funeral Mountains, the dolomite D member contains 1 conical calcareous fossils, including the metazoan small shelly fossil Cloudina (Langille, 1974). Rare occurrences of the trace fossil Planolites have been reported from the E member (Wertz, 1982, 1983).
Wood Canyon Formation (Precambrian/Early Cambrian)

Lithology: The Precambrian-Cambrian boundary has been placed within the lowest section of the lower member of the Wood Canyon Formation (Horodyski, 1991; Corsetti, 1993; Horodyski et al., 1994; Runnegar et al., 1995, Runnegar, 1998). Exposures have been reported from the Panamint and Funeral Mountains, and along Blackwater and Echo Canyons (Hunt, 1975). The formation is divided into three informal members: a lower and upper brownish-weathering dolomite/limestone and a quartzite middle member (Stewart, 1966; Diehl, 1976). The lower member represents high water stand deposition with carbonate intervals (Prave et al., 1991; Horodyski et al., 1994; Runnegar et al., 1995). The uppermost carbonate bed of the lower member is overlain by the fluvially-dominated terrestrial braidplain and braid-delta facies of the middle member (Diehl, 1979; Fedo and Prave, 1991). The upper member represents dominantly marine deposition (Fedo and Cooper, 1990), with abundant body and trace fossils typical of the Early Cambrian (Hunt, 1990; Fedo and Prave, 1991; Mount et al., 1991).

Fossils: Ediacaran fossils occur in the lowermost Wood Canyon Formation (Horodyski, 1993; refer to Paleontological Resources Near Death Valley of this report). Trace fossils are common throughout the siltstone beds, with Early Cambrian olenellid trilobites and Skolithos tubes in abundance in the upper member (Stewart, 1970). Signor and Savarese (1988) have reported trilobites, echinoderms, and hyoliths occurring in green siltstones that crop out above the archaeocyathan and olenellid-bearing limestones. Helicoplacoid echinoderms (Durham, 1993), and brachiopod molds and casts have also been reported from the upper member (Mount, 1982).

Zabriskie Quartzite Formation (Early Cambrian)

Lithology: This formation consists of a light-colored, cliff forming quartzite, divided into two members: the upper Emigrant Pass Member, and the lower, informal, Resting Spring Member (Prave, 1988; Palmer and Halley, 1979). This formation outcrops extensively in the Panamint/Funeral Mountains, and along the Resting Spring Range.

Fossils: This formation consists of nearshore and foreshore deposits where ichnofossils including Skolithos tubes and some interbedded bioturbated siltstone have been collected (Prave and Wright, 1986; Prave, 1988).

Carrara Formation (Early Cambrian)

Lithology: The Carrara Formation is divided into nine members based on alternating siliclastic and carbonate facies (Palmer and Halley, 1979). The lower four members, and lower part of the fifth member, contain Early Cambrian olenellid trilobites. The remaining members contain a variety of Middle Cambrian trilobites. This formation contains one of the best stratigraphically documented trilobite faunas in North America. Four trilobite zones have been identified which span the Lower to Middle Cambrian boundary (Palmer and Halley, 1979).

Fossils: Concentrically structured algal ooids (McAllister, 1970), columnar and branching stromatolites (Awramik et al, 1994), Girvanella, trilobites (Palmer and Halley, 1979), and the trace fossils: Planolites, Cruziana, Rusophycus (Bates, 1965), have been reported from this formation.

Eagle Mountain Member

Lithology: This member consists of a slope-forming green to gray-brown silty shale.

Fossils: This member is poorly fossiliferous, with only two species of Olenellus reported from the basal few meters at Titanotheroe and Echo Canyon (Palmer and Halley, 1979).
Wood Canyon Formation (Precambrian/Early Cambrian)

Lithology: The Precambrian-Cambrian boundary has been placed within the lowest section of the lower member of the Wood Canyon Formation (Horodyski, 1991; Corsetti, 1993; Horodyski et al., 1994; Runnegar et al., 1995, Runnegar, 1998). Exposures have been reported from the Panamint and Funeral Mountains, and along Blackwater and Echo Canyons (Hunt, 1975). The formation is divided into three informal members: a lower and upper brownish-weathering dolomite/limestone and a quartzite middle member (Stewart, 1966; Diehl, 1976). The lower member represents high water stand deposition with carbonate intervals (Prave et al., 1991; Horodyski et al., 1994; Runnegar et al., 1995). The uppermost carbonate bed of the lower member is overlain by the fluvially-dominated terrestrial braidplain and braid-delta facies of the middle member (Diehl, 1979; Fedo and Prave, 1991). The upper member represents dominantly marine deposition (Fedo and Cooper, 1990), with abundant body and trace fossils typical of the Early Cambrian (Hunt, 1990; Fedo and Prave, 1991; Mount et al., 1991).

Fossils: Ediacaran fossils occur in the lowermost Wood Canyon Formation (Horodyski, 1993; refer to Paleontological Resources Near Death Valley of this report). Trace fossils are common throughout the siltstone beds, with Early Cambrian olenellid trilobites and Skolithos tubes in abundance in the upper member (Stewart, 1970). Signor and Savarese (1988) have reported trilobites, echinoderms, and hyolithic occurring in green siltstones that crop out above the archaeocyathan and olenellid-bearing limestones. Helicoplacoid echinoderms (Durham, 1993), and brachiopod molds and casts have also been reported from the upper member (Mount, 1982).

Zabriskie Quartzite Formation (Early Cambrian)

Lithology: This formation consists of a light-colored, cliff forming quartzite, divided into two members: the upper Emigrant Pass Member, and the lower, informal, Resting Spring Member (Prave, 1988; Palmer and Halley, 1979). This formation outcrops extensively in the Panamint/Funeral Mountains, and along the Resting Spring Range.

Fossils: This formation consists of nearshore and foreshore deposits where ichnofossils including Skolithos tubes and some interbedded bioturbated siltstone have been collected (Prave and Wright, 1986; Prave, 1988).

Carrara Formation (Early Cambrian)

Lithology: The Carrara Formation is divided into nine members based on alternating siliciclastic and carbonate facies (Palmer and Halley, 1979). The lower four members, and lower part of the fifth member, contain Early Cambrian olenellid trilobites. The remaining members contain a variety of Middle Cambrian trilobites. This formation contains one of the best stratigraphically documented trilobite faunas in North America. Four trilobite zones have been identified which span the Lower to Middle Cambrian boundary (Palmer and Halley, 1979).

Fossils: Concentrically structured algal ovoids (McAllister, 1970), columnar and branching stromatolites (Awramik et al, 1994), Girvanella, trilobites (Palmer and Halley, 1979), and the trace fossils: Planolites, Cruziana, Rusophycus (Bates, 1965), have been reported from this formation.

Eagle Mountain Member

Lithology: This member consists of a slope-forming green to gray-brown silty shale.

Fossils: This member is poorly fossiliferous, with only two species of Olenellus reported from the basal few meters at Titanotherae and Echo Canyon (Palmer and Halley, 1979).
ROCK FORMATIONS EXPOSED IN DEATH VALLEY NATIONAL PARK
Unit/Geologic Age, Lithology and Representative Fossils
Geologic Units in the Composite Death Valley National Park Facies
Exposed throughout Death Valley National Park

Bonanza King Formation (Middle Cambrian)
Lithology: This formation is exposed throughout Death Valley National Park (McAllister, 1952; Sears, 1955; Hall, 1971). Hardy (1988) has divided the formation into three members.
Papoose Lake Member Fossils: The contact between the Nopah and Bonanza King Formation is well marked within the Death Valley area by a fossiliferous shale (Hardy, 1988), which contains the trilobite Glossopleura (Hall, 1971).
Informal Middle Member Fossils: Trilobite “hash beds”, with numerous fragments of Ehmaniella, and linguloid brachiopod beds occur within a shale layer (Hunt, 1975).
Banded Mountain Member: No fossils reported.

Nopah Formation (Upper Cambrian)
Lithology: The Nopah Formation is a large, cliff-forming carbonate unit which outcrops extensively throughout Death Valley National Park (Hall, 1971). Within the Death Valley area, the formation is divided into three members: the Dunderberg, Halfpint, and Smokey members (Cooper et al., 1982; Barnes and Christiansen, 1967).
Fossils: Basal shale and silty limestone beds of this formation, are persistently fossiliferous, characterized by trilobites, conodonts, and the brachiopod Linnarssonella (Hunt and Mabey, 1966; Hall, 1971). Trilobites have also been reported within the Ash Meadows area (Denny and Drewes, 1965).
Dunderberg/Halfpint Members
Lithology: Cooper and others (1982) divided these two members into seven distinct lithofacies from a study area in southeastern California and Nevada.
Fossils: The sponge Hintzespongia (?), spicule-like elements of Chancelloria, eocrinoid fragments, lingulid and acrotretid brachiopods, trilobites, and single-element species of paraconodonts and protoconodont have been reported from these members (Hazzard, 1937; Cooper et al., 1982).
Smokey Member
Lithology: This member is characterized by the black and buff colored banded dolomite (Barnes and Christiansen, 1967).
Fossils: Stromatolites and thrombolites are found within pelletal packstones and grainstones (Griffin, 1987). A dark dolomite above the middle of the Nopah Formation contains small-silicified Trempleauan gastropods, a singular problematic mollusk, Matthevia (Yochelson and Taylor, 1974; Stinchbomb and Darrough, 1995), and trilobites (Barnes and Christiansen, 1967; Hunt, 1975).
Pogonip Group (Ordovician)
Lithology: Nolan, Merriam and Williams (1956) divided the Pogonip Group into three members: the Goodwin, Ninemile, and Antelope Valley Limestone. These members represent a series of Ordovician carbonates, with a prominent and fossiliferous upper, cliff-forming limestone/dolomite member (Antelope Valley Limestone).
Fossils: Two primary fossil assemblages occur within the Grapevine Mountain region. The stratigraphically lower assemblage is dominated by trilobites and brachiopods. The stratigraphically higher assemblage is dominated by receptaculitids, the large gastropods Palliseria robusta, Macrulites, orthoconic and coiled nautiloids, and a species of graptolite (Foster, 1961). Receptaculites, echinoderm plates and oncolitic algae (?) occur in this formation at Dolomite Canyon (Hall, 1971). Trilobites, orthid brachiopods (Hunt, 1975), the mollusk Ctenodonta, and conodonts (R. H. Miller, 1982) have also been reported from this unit.

Eureka Quartzite Formation (Ordovician)
No fossils reported.

Ely Springs Dolomite Formation (Ordovician/Silurian)
Lithology: Exposures in Death Valley consist of a lower dark gray cherty dolomite and an upper light gray dolomite (Hall, 1971).
Fossils: The base of the lower unit is fossiliferous, consisting of silicified rhychnonellid brachiopods, conodonts, streptelasmid corals, and Halysites (Hall, 1971; R. H. Miller, 1982). At Lake Hill, the lower unit contains the cephalopod Armenoceras and several species of the brachiopod Lepidocyclus (Hall, 1971).

Hidden Valley Dolomite Formation (Silurian/Devonian)
Lithology: McAllister (1952) has divided this formation into three informal units.
Fossils: Halysites, Favosites, Syringopora, rugose corals, articulate brachiopods, conodonts, and crinoid debris have been reported from the lower cherty unit (Hazzard, 1937, 1954; Hunt, 1975; Haug, 1981; R. H. Miller and Hanna, 1972). Pananmintsap and Bliwickapsis, along with other pteraspids, have been reported from the Lippincott Member, from exposures in the Trail Canyon area (Elliot and Ilyes, 1993, 1996a, 1996b).

Lost Burro Formation (Middle/Upper Devonian)
Lithology: McAllister (1952) identified five units within this formation.
Fossils: The middle member is characterized by the brachiopods Cyrtospirifer, and Stringocephaulus, the stromatoporoids Amphipora and Stromatopora, and cladochocal poritids (Hall, 1971; McAllister, 1974). Youngquist and Heinrich (1966) reported conodonts, microgastropod steinkerns, sponge spicules, and fish remains from the uppermost unit. Denny and Drewes (1965) have reported crinoidal columns from the Ash Meadow area. Hunt (1975) has reported the occurrence of Syringopora from within this formation. The placoderm Dunkleosteus, a small cladodont, and cochliodont tooth have been reported from within this formation (Dunkle and Lane, 1971).
Lippincott Member
Lithology: This member is identified as a cherty argillaceous unit (Johnson et al., 1988).
Fossils: Elliott and Ilyes (1993, 1996a, 1996b) have reported Lower Devonian fish, the pteraspids Blieckaspis and Panamintaspis from the Trail Canyon area. Denny and Drewes (1965) report crinoidal columnals, fragments of cephalopods, and gastropods from the Ash Meadow area.

Tin Mountain Limestone Formation (Mississippian)
Lithology: This formation consists of a lower lagoonal or mudflat limestone. Above this unit is an upper crinoidal limestone, which was deposited on an offshore bar or bank (Langenheim and Tischler, 1959).
Fossils: The upper part of this limestone is highly fossiliferous and characterized by the corals Syringopora and Zaphrentites (Hall, 1971). Other paleontological resources in this formation include: foraminifera, coelenterates, solitary/colonial corals, bryozoan, goniatite and orthoceroid cephalopods, gastropods, pelecypods, crinoid stems, brachiopods, phillipsid trilobites, an annelid worm, and petrified wood (Peck, 1950; Denny and Drewes, 1965; Langenheim and Tischler, 1959; Hall, 1971; Hunt, 1975).

Perdido Formation (Mississippian)
Lithology: This formation consists of lower limestone and an upper siltstone members (Hall, 1971).
Fossils: The lower section of this formation contains Early Mississippian coral and the cephalopod Cravenoceras (Gordon, 1964). A haplophyllid tetracoral, Triplophyllites was collected immediately south of Rest Spring (Tischler 1956). Foraminifera (McAllister, 1970) and crinoid columns (Hall, 1971) have also been reported from this formation. Several thin limestone layers near the top of the formation at Quartz Spring are fossiliferous. Goniatite coquina beds, formed chiefly of the cephalopod Cravenoceras hesperiam, occur within this formation (Tischler, 1955; Gordon, 1964).

Lee Flat Limestone Formation (Mississippian/Pennsylvanian)
Lithology: This formation consists of white to light gray marble, which forms the prominent white bands north of Dolomite Canyon on the west face of the Panamint Range (Hall, 1971).
Fossils: Crinoid columnals are abundant within this limestone unit (Hall, 1971).

Rest Spring Shale Formation (Mississippian/Pennsylvanian)
Lithology: This formation consists of siltstone/shale exposures in northern part of Panamint Range in the Tucki Mountain Region.
Fossils: A poorly preserved brachiopod assemblage has been reported from exposures within this formation (Hunt and Mabey, 1966).

Keeler Canyon Formation (Pennsylvanian/Permian)
Lithology: This formation consists of alternating bluish-gray limestone and thin light-gray bands of marble (Hall, 1971).
Fossils: Fusulinids and crinoid columnals are found within the uppermost section of this formation. The middle section contains bryozoans and some brachiopods, while the lower section has no fossils reported (Hall, 1971).

Tihvipah Formation (Pennsylvanian/Permian)
Lithology: This formation consists of light gray limestone with spherical concretionary chert nodules (McAllister, 1952).
Fossils: The cephalopods: Bisacoceras and Stenoponerites, and scattered lenses of fusulinids have been reported by Gordon (1964) from exposures within this formation.
Owens Valley Formation (Permian)
Lithology: This formation consists of limestone, siltstone, and shale units (Hall, 1971).
Fossils: The fusulinids Schwagerina and Pseudoschwagerina, solitary corals, bryozoans, and gastropods have been reported from this formation (Hall, 1971).

Titus Canyon Formation (Eocene)
Lithology: This formation consists of conglomerates, sandstones, calcareous mudstones, algal limestones, and tuffaceous sandstones.
Fossils: Fossil mammals including: Protitanops, Mesohippus, Colodon, Teletaceras, Protoreodon, Pambromylius, and Leptomeryx have been recovered from a red calcareous mudstone in the lower section of this formation (Stock and Bode, 1935). Fundulus and Cyprinodon osteichthyes fish were collected by H. Donald Curry and reported by R. R. Miller (1945) from this formation. A number of turtle scutes, and rodent teeth and skull have also been reported by Stock (1949) from exposures within this formation.

Artist Drive Formation (Miocene)
Lithology: This formation has been divided into five informal divisions within the Furnace Creek area (McAllister, 1970).
Fossils: Diatoms occur within this formation (Cemen et al., 1985; Hardy, 1988).

Furnace Creek Formation (Miocene)
Lithology: This formation is divided into four members (Hardy, 1988).
Fossils: Diatoms and plants indicate a Miocene age for the Furnace Creek Formation (Hardy, 1988). The remains of a lateral leaf lobe Lyonothamnus mohavensis has been reported from the upper section of this formation (Axelrod, 1940). Stromatolites occur at several localities within the limestone deposits of the formation (Noble, 1934; Pitts, 1983; Awramik et al., 1994).

Copper Canyon Formation (late Miocene)
Lithology: This formation consists of basalt, alluvial and lacustrine deposits (Scrivner, 1984).
Fossils: Curry (1939, 1941), Scrivner (1984), Scrivner and Bottjer (1986), Santucci (1998), and Nyborg (1998) report on the abundant fossil vertebrate tracks preserved in the lacustrine strata within Copper Canyon.

Funeral Formation (Pliocene/Pleistocene)
Lithology: This formation consists predominately of cemented fan gravel, exposed in the Furnace Creek, Artist Drive, Mormon Point, and Emigrant Wash areas (Hardy, 1988). McAllister (1970) has divided this formation into two members. No fossils have been reported from this formation.

Pleistocene & Holocene Deposits
Lithology: Pleistocene and Holocene lacustrine and alluvial fan deposits occur throughout Death Valley.
Fossils: Clements (1973) has reported a partial mastodon tusk from within sedimentary deposits of Lake Rogers deposits.
PALEONTOLOGICAL RESOURCES INVENTORY

This section provides a taxonomic inventory of paleontological resources from localities within Death Valley National Park. A more comprehensive list of fossil taxa are provided in appendix A of this report.

PALEOBOTANY
Wyman Formation/Reed Dolomite (Precambrian). —Algae have been reported from these formations by Firby and Durham (1974).

Reed Dolomite (Precambrian). —Algae (Noble, 1934) and laterally linked stromatolites occur within the lower member of this formation (Signor and Mount, 1989).

Deep Spring Formation (Precambrian). —Algae (Firby and Durham, 1974), the trace fossil Plagiogmus(?), and stromatolites (Nelson, 1976) are reported from this unit.

Crystal Spring Formation (Precambrian). —The stromatolites: Baicalia, Jacutphyton, and Combathyton, along with poorly preserved filamentous microfossils have been reported from this formation (Howell, 1971; Roberts, 1976; Awramik et al., 1994).

Beck Spring Dolomite (Precambrian). —Abundant filamentous and spheroidal algal nanofossils, cyst-like bodies of uncertain biogenicity, and partially silicified stromatolites have been reported from exposures in the Panamint Range (Licari, 1978). Baicalia, Comathyton, domical forms, and a variety of wavy-laminted to stratiform stromatolites have also been reported (Marian, 1979; Marian and Osborne, 1992).

Noonday Dolomite (Precambrian). —Large domal stromatolites and very large vertical tubes are reported from the upper, middle and lower members (Cloud et al., 1974). Wright and others (1976) found that the lower dolomite member has concentrically banded algal mounds up to two hundred meters high and six hundred meters long.

Johnnie Formation (Precambrian). —Stromatolites of the genera Boxonia, Linella, and Paniscollenia were identified by Cloud and others (1969) from exposures within this formation.

Kingston Peak Formation (Precambrian). —Eukaryotic algae Palaeosiphonella, Melanocrystillium, and a carbonate crust Temnochtera were reported from the lower chert of this formation (Pierce et al., 1994). Thin carbonate beds within a diamictite layer contain small columnar stromatolites, oncolites, and a silicified microbiota (Awramik et al., 1994).

Carrara Formation (Cambrian). —Oncolites generally formed by algae have been reported (McAllister, 1970). Stromatolites have also been reported from the Thimble Member of this formation (Palmer and Halley, 1979).

Mule Spring Limestone (Cambrian). —Abundant fossil algae of the group Girvanella(?), occur within this formation (Seiple, 1984).

Pogonip Group (Ordovician). —Oncolites were reported by Hall (1971) from the Pogonip Group in the vicinity of Dolomite Canyon and Lake Hill. Receptaculitids have been reported from exposures within the Grapevine Mountain region at several localities (Foster, 1961) and within the vicinity of Dolomite Canyon and south of Lake Hill (Hall, 1971).

Tin Mountain Limestone (Mississippian). —Fossilized wood has been reported by Peck (1950) from exposures within this formation.

Titus Canyon Formation (Eocene). —A distinct horizon of yellow and blue-gray algal limestones occurs in the middle section of this formation. This section has been referred to as the Algal Limestone Zone (Stock and Bode, 1935).

Furnace Creek Formation (Miocene). —H. Donald Curry collected a lateral leaf lobe of a plant (Rosacea) identified as Lyonothamnus mohavensis in the upper portion of this formation. This species had a wide distribution throughout the western United States during the middle and late Tertiary. The genus is extant today on the Channel Islands off the California coast. The fossil specimen was found in association with some indeterminate grass-like or reed-like plants (Axelrod, 1940). These plants were first reported on by Spurr (1903). Stromatolites have also been reported within the limestone beds of this formation (Noble, 1934; Awramik et al., 1994).

Ash Meadow area. —An unnamed limestone and shale bed within the Tertiary formations of the Ash Meadow area contain algal markings and silicified plant stems within a cliff forming limestone unit (Denny and Drewes, 1965).

Greenwater townsite. —Fossil packrat midden collections near the Greenwater townsite have yielded many Holocene plant microfossils (Woodcook, 1986).

FOSSIL INVERTEBRATES

Kingdom Protista

Pahrump Group (Precambrian). —Microfossils have been reported from exposures within this unit (Cloud et. al, 1969; Licari, 1978).

Tin Mountain Limestone (Mississippian). —Eight species of foraminifera have been reported by McAllister (1974) from exposures within this formation.
Perdido Formation (Mississippian). —Nine species of foraminifera have been reported by McAllister (1974) from exposures within this formation.

Keeler Canyon Formation (Pennsylvanian/Permian). —Fusulinids have been reported from the uppermost section of this formation (Hall, 1971).

Thiipah Limestone (Pennsylvanian/Permian). —Scattered lenses of fusulinids occur within this formation (Foster, 1961).

Owens Valley Formation (Permian). —The fusulinids Schwagerina and Pseudoschwagerina have been reported (Hall, 1971) within the Panamint Range, exposed three miles north-northwest of Towne Pass under the Lemoigne thrust.

Artist Drive/Furnace Creek Formation (Miocene). —Diatoms have been reported by Hardy (1988) from exposures within these formations.

Kingdom Animalia
Phylum Porifera

Nopah Formation (Cambrian). —Spicule-like elements of Chancelloria and spicules from the sponge Hintzespongia (?) have been reported by Cooper and others (1982) from the Dunderberg Shale and Halfpint members of this formation.

Lost Burro Formation (Devonian). —Sponge spicules occur within a conodont bed in the uppermost unit of this formation (Youngquist and Heinrich, 1966).

Archeocyatha

Campito Formation (Cambrian). —Within the Waucoma Springs area, seventeen species of fifteen genera of archeocyathids, have been identified by McKee and Gangloff (1969).

Poleta Formation (Cambrian). —The most extensive archeocyathid-bearing carbonate units have been reported from exposures within this formation (Gangloff, 1975).

Harkless Formation (Cambrian). —Four genera of large, solitary archeocyathids have been reported from exposures within this formation (McKee and Gangloff, 1969), including a large archeocyathid genus Cascinocyathus (Seiple, 1984).

Wood Canyon Formation (Cambrian). —Poorly preserved archeocyathid specimens have been reported from exposures within the Grapevine Mountains (McAllister, 1970).

Phylum Cnidaria

Ely Springs Dolomite (Ordovician). —Streptelasmid corals and Halyxites have been reported from exposures within this formation (R. H. Miller, 1982).

Echo Canyon. —A middle Silurian assemblage of rugose and tabulate corals from an unnamed tributary northeast of Echo Canyon have been reported by Easton (1955).

Lost Burro Formation (Devonian). —Cladopoid corals from the middle section have been reported by Hall (1971). Hunt (1975) has also reported the occurrence of Syringopora from exposures within this formation. At Lost Burro Gap, within the Quartz Spring area, the middle section of the formation contains abundant stromatoporoids of the genus Amphipora and Stromatopora (Hall, 1971).

Tin Mountain Limestone (Mississippian). —The upper section is highly fossiliferous, and is characterized by the corals Syringopora and Zaphrentites (Hall, 1971). At Town Pass and Lake Hill fourteen species of corals have been described by Hall (1971). Within the Rest Spring area, Peck (1950) has reported solitary and colonial forms of corals, and Langenheim and Tischler (1959) have reported several new species of coelenterates from within the Quartz Spring area. Corals are also common at the southernmost spur of the Funeral Mountains, in the Ash Meadow area (Denny and Drewes, 1965).

Perdido Formation (Mississippian). —Outcrops in the vicinity of Panamint Canyon and Dolomite Canyon preserve a few poorly preserved solitary corals (Hall, 1971). A hapsiphyllid tetracoral, Triplophyllites was reported immediately south of Rest Spring (Tischler 1956).

Owens Valley Formation (Permian). —Solitary corals have been reported within the Panamint Range, exposed three miles north-northwest of Towne Pass under the Lemoigne thrust (Hall, 1971).

Phylum Annelida

Tin Mountain Limestone (Mississippian). —A species of the worm-like Spirobis has been reported at Town Pass and at Lake Hill (Hall, 1971).

Phylum Arthropoda

Wood Canyon Formation (Cambrian). —Within exposures at Titanothere Canyon and the Daylight Pass area, olenellids (Figure 5) are common in the upper member (McAllister, 1970).

Carrara Formation (Cambrian). —Contains the most complete representation of stratigraphically documented late Lower Cambrian and early Middle Cambrian trilobite faunal assemblages in North America. All nine members of the Carrara Formation preserve trilobites, making it one
of the most paleontological rich Cambrian formations in Death Valley (Palmer and Halley, 1979).

Monola Formation (Cambrian). —A diverse trilobite assemblage from exposures within this formation has been reported by Nelson.

Campito Formation (Cambrian). —The olenellid trilobite (*Fallotaspis*) first appears within the Andrews Mountain Member (Seiple, 1984). The Montenegro Member preserves a number of trilobites identified by McKee and Gangloff (1969) and Nelson (1976), including *Daguinaspis, Fallotaspis, Holmia, Holmiella, “Judomia”, Laudonia, and Nevada*, from collections made from within the Waucoba Springs area.

Poleta Formation (Cambrian). —Trilobites from the middle member include *Nevadella, Holmia, Fremonzia, Laudonia*, and *“Judomia”* (McKee and Gangloff, 1969; Firby and Durham, 1974).

Harkless Formation (Cambrian). —*Paedumias* and *Bonnia* have been reported from within this formation (Firby and Durham, 1974; Seiple, 1984).

Saline Valley Formation (Cambrian). —An abundant trilobite assemblage including the genera: *Paedumias, Bonnia, Bristolia, Fremonzia, Ogygopsis, Olenellus, Olenoides*, and *Zacanthopsis* have been reported from the uppermost three meters of this formation (Firby and Durham, 1974; Seiple, 1984).

Mule Spring Limestone (Cambrian). —Palmer and Nelson (1981) have identified the trilobites *Bristolia* and *Peachella* from exposures within this formation.

Bonanza King Formation (Cambrian). —The trilobite *Glossopleura* occurs in the Papoose Lake Member (Hall, 1971), and Hunt (1975) has reported a trilobite assemblage within the middle shale layer. The trilobites *Alokitosocar* and *Ehmania* occur within fossiliferous limestone beds at Ash Meadow (Denny and Drewes, 1965).

Nopah Formation (Cambrian). —Cooper and others (1982) identified seventeen genera from thirty-six species of trilobites from the Dunderberg Shale and Halfpint members. This formation is dominated by two agnostid families, Agnostidae and Pseudagnostidae and by three nonagnostid subfamilies, Elviniidae, Aphelaspidae and Pterocephaliidae. In the Ash Meadows area, several highly fossiliferous units, containing numerous trilobites, have been reported by Denny and Drewes (1965).

Pogonip Group (Ordovician). —The trilobites *Protopligerops* and *Kirkella* occur within the lower section (Hunt, 1975). Phillipsid trilobites at Towne Pass and at Lake Hill have been reported by Hall (1971), and several species of trilobites are reported by Foster (1961) from outcrops within the Grapevine Mountains.

Phylum Mollusca

Gastropods

Nopah Formation (Cambrian). —The earliest gastropods include small silicified specimens preserved within this formation (Hardy, 1988).

Pogonip Group (Ordovician). —The abundant and large gastropod *Palliseria robusta* and *Maclurites* occur within the Antelope Valley Limestone Member (Foster, 1961; Hunt, 1975; Hall, 1971). The mollusk *Ctenodonta* has been reported by R. H. Miller (1982) from this group.

Lost Burro Formation (Devonian). —Microgastropod steinkerns are associated with a conodont-rich bed in the uppermost unit (Youngquist and Heinrich, 1966). Denny and Drewes (1965) have also reported gastropods from the uppermost unit in the Ash Meadow area.

Tin Mountain Limestone (Mississippian). —At Town Pass and at Lake Hill fifteen species of gastropods have been reported by Hall (1971). Peck (1950) has also reported gastropods from exposures in the Rest Spring area.

Owens Valley Formation (Permian). —Gastropods have been reported (Hall, 1971) within the Panamint Range, exposed three miles north-northwest of Towne Pass under the Lemoigne thrust.
Cephalopods

Harkless Formation (Cambrian). —The slender cephalopod (?) *Salterella* has been reported within the Waucoba Springs area (Seiple, 1984).

Pogonip Group (Ordovician). —Orthoconic and coiled nautiloids from exposures within the Grapevine Mountains have been reported by Foster (1961).

Ely Spring Dolomite (Ordovician). —At the base of the lower unit the cephalopod *Armenoceras* has been reported in the vicinity of Lake Hill (Hall, 1971).

Lost Burro Formation (Devonian). —The uppermost section of the Lippincott Member contains fragments of cephalopods from collections made in the Ash Meadow area (Denny and Drewes, 1965).

Perdido Formation (Mississippian). —Cephalopod-bearing beds are exposed in the Quartz Spring area. In the basal section of the Perdido Formation, concretions often contain the cephalopod *Cravenoceras merriami* (Gordon, 1964). Several thin limestone layers near the top of the formation are abundantly fossiliferous, with goniatite coquina beds formed chiefly of the cephalopod *Cravenoceras hesperian* (Langenheim and Tischler, 1959).

Tin Mountain Limestone (Devonian). —Goniatite and orthoceroid cephalods have been reported from exposures at Towne Pass and at Lake Hill (Hall, 1971).

Tihvipah Limestone (Pennsylvanian/Permian). —The cephalopods: *Bisatoceras* and the partial specimen of *Stenopronorites* have been reported by Gordon (1964) from exposures within this formation.

Pelecypods

Pogonip Group (Ordovician). —The mollusk *Ctenodonta* has been reported from exposures within this formation (R. H. Miller, 1982).

Tin Mountain Limestone (Mississippian). —Two species of pelecypods reported by Hall (1971) occur at Towne Pass and at Lake Hill. Pelecypods have also been reported from exposures in the Rest Spring/Quartz Spring area (McAllister, 1952).

Phylum Brachiopoda

Campito Formation (Cambrian). —Rowell (1977) has reported oboellid brachiopods in the upper part of the Montenegro Member. Brachiopods have also been reported from the Montenegro Member and Andrews Mountain Member (Firby and Durham, 1974; Mount, 1982).

Wood Canyon Formation (Cambrian). —Brachiopod casts and molds have been reported by Mount (1982) from within the upper member.

Poleta Formation (Cambrian). —McKee and Gangloff (1969) have reported brachiopods from the middle member. *Obolella* are abundant in the lower part of this formation (Rowell, 1977).

Harkless Formation (Cambrian). —Brachiopods in a gray to gray-green siltstone and shale have been identified from exposures within the Waucoba Spring area (Seiple, 1984). *Obolella* is abundant in the lower section of this Formation (Rowell, 1977).

Bonanza King Formation (Cambrian). —Linguloid brachiopods have been reported (Hunt, 1975) from within the middle part of this formation.

Nopah Formation (Cambrian). —Acrotretid brachiopods of the genus *Limarssonella* were reported by Hall (1971) from the north side of Dolomite Canyon. Cooper and others (1982) identified four species of lingulid and seven species of acrotretid brachiopods from the Dunderberg Shale and Halfpint Members of this formation.

Pogonip Group (Ordovician). —The brachiopod *Anomalolithos* was reported by Hall (1971). Foster (1961) has reported on several species of brachiopods from exposures within the Grapevine Mountains.

Ely Spring Dolomite (Ordovician). —At the base of the lower unit, silicified rhyonconellid brachiopods including *Zygospira, Paucicrura*, and *Plaesiomys*, have been identified. Several species of the brachiopod *Lepidocyclus* have been reported from exposures in the vicinity of Dolomite Canyon and the lower unit at Lake Hill (Hall, 1971).

Hidden Valley Dolomite (Silurian/Devonian). —Brachiopods have been reported by Haug (1981) from exposures within this formation.

Lost Burro Formation (Devonian). —The brachiopods *Cystospirifer, Stringeocyclus*, and *Tentcospirifer* have been reported from exposures within this formation (Hall, 1971; McAllister, 1974).

Lost Burro Formation (Devonian). —The brachiopods *Cystospirifer, Stringeocyclus*, and *Tentcospirifer* have been reported from exposures within this formation (Hall, 1971; McAllister, 1974).

Tin Mountain Limestone (Mississippian). —Sixteen species of brachiopods at Towne Pass and at Lake Hill have been reported by Hall (1971). Brachiopods were collected from exposures in the Rest Spring area by Peck (1950), and at the southernmost spur of the Funeral Mountains (Denny and Drewes, 1965).

Perdido Formation (Mississippian). —Brachiopods have been reported from exposures within the Quartz Spring area (Tischler, 1955; Gordon, 1964).

Keeler Canyon Formation (Pennsylvanian/Permian). —Brachiopods have been reported from the middle section of this formation (Hall, 1971).
Rest Spring Shale (Mississippian/Pennsylvanian). — A poorly preserved assemblage of brachiopods have been reported from exposures within this formation (Hunt and Mabey, 1966).

Echo Canyon. — Easton (1955) reported a middle Silurian assemblage of spiriferid, pentameroid, and rhyonconelid brachiopods from an unnamed tributary northeast of Echo Canyon.

Phylum Bryozoa

Tin Mountain Limestone (Mississippian). — Fenestellids and Cystodictya have been reported from exposures within the Tin Mountain Limestone (Peck, 1950; Langenheim, 1954; Hall, 1971).

Keeler Canyon Formation (Pennsylvanian/Permian). — Rhomboroporella has been reported from exposures within the middle section of the Keeler Canyon Formation (Hall, 1971).

Phylum Echinodermata

Wood Canyon Formation (Cambrian). — Helicoplacoid echinoderms (Durham, 1993) and other echinoderms (Signor et al., 1988) have been reported from exposures within this formation.

Campito Formation (Cambrian). — Helicoplacoid echinoderms have been reported from the Montenegro Member of this formation (Taylor and Palmer, 1981; Onken and Signor, 1988; Durham, 1993).

Carrara Formation (Cambrian). — Echinoderm fragments have been reported from the Pyramid Shale and Jangle Limestone members of this formation (Palmer and Halley, 1979).

Poleta Formation (Cambrian). — Early Cambrian helicoplacoid echinoderms are most commonly found in the lower part of the middle member (Nelson, 1962). The lower member contains an edrioasteroid, and abundant disassociated plates of an eocrinoid (Eocystites?) (Nelson and Durham, 1966; Firby and Durham, 1974; Seiple, 1984).

Nopah Formation (Cambrian). — Cooper and others (1982) have identified eocrinoid fragments from the Dunderberg Shale and Halfpint members of this formation.

Pogonip Group (Ordovician). — Within the vicinity of Dolomite Canyon, unidentified echinoderm plates have been reported by Hall (1971). Foster (1961) has reported pelmatozoan columnals and cystoid plates from exposures at Grapevine Mountains.

Hidden Valley Dolomite (Silurian/Devonian). — Abundant crinoid fragments have been reported by Hunt (1975) from exposures within this formation.

Lost Burro Formation (Devonian). — Crinoid columnals have been reported from the uppermost section of the Lippincott Member in the vicinity of the Ash Meadow area (Denny and Drewes, 1965).

Tin Mountain Limestone (Mississippian). — Crinoid stems have been reported by Hunt (1975) from exposures within this formation.

Perdido Formation (Mississippian). — Exposures in Panamint Canyon and Dolomite Canyon contain crinoid columnals (Hall, 1971).

Lee Flat Limestone (Mississippian/Pennsylvanian). — North of Dolomite Canyon, abundant crinoid columnals have been reported from this formation (Hall, 1971).

Keeler Canyon Formation (Pennsylvanian/Permian). — Crinoid columnals are found within the uppermost section of this formation (Hall, 1971).

Phylum Hemichordata

Pogonip Group (Ordovician). — A species of graptolite was reported from exposures in the Grapevine Mountains (Foster, 1961).

Incertae Sedis

Deep Spring Formation (Precambrian). — Hyolithids have been reported from exposures within this formation (Signor and Saverese, 1988).

Campito Formation (Precambrian). — Agglutinated tubes of Playasolenites and Onuphionella, and the Volborthella? (“Campitius”) has been reported from exposures within this formation (Signor and Mount, 1989).

Poleta Formation (Cambrian). — Hyolithid beds have been reported from the lower member of this formation (Onken and Signor, 1988).

Wood Canyon Formation (Cambrian). — Hyolithids have been reported from exposures within this formation (Signor and Saverese, 1988).

Nopah Formation (Cambrian). — Mattheivia has been reported by Hardy (1988) from exposures within this formation. Historically this fossil has been assigned to different taxonomic placements as gastropods (Walcott, 1885) and chitons (Runneger et al., 1979). Most recently, Stinchcomb and Darrough (1995) have classified it as a problematic mollusk.
Pre-trilobite shelly fauna
Deep Spring Formation (Precambrian).—A small shelly fauna has been reported from exposure within this formation (Onken and Signor, 1988), including the small shelly fossil Cloudina and associated shelly fossils Nevadatubulus and Sinotubulites (Parsons, 1996).

Poleta Formation (Precambrian).—A small shelly fauna has been reported from exposures within this formation (Onken and Signor, 1988).

Stirling Quartzite (Precambrian).—The Ediacaran Metazoan fossil Cloudina has been reported from exposures within this formation (Langille 1974).

Fossil Vertebrae
Phylum Chordata

Nopah Formation (Cambrian).—Sixteen single-element species of paraconodonts with one species of protoconodont, comprising about seventy percent of the species of conodonts sampled from the Dunderberg Shale and Halfpint members have been identified by Cooper and others (1982). Conodonts have also been reported by Hall (1971) on the north side of Dolomite Canyon.

Pogonip Group (Ordovician).—Conodonts occur in the three members of this unit (R.H. Miller, 1982).

Ely Spring Dolomite (Ordovician).—At the base of the lower unit the conodonts Belodus, Paltodus, Plectodina, were reported in the vicinity of Dolomite Canyon (Hall, 1971).

Hidden Valley Dolomite (Silurian/Devonian).—R.H. Miller and Hanna (1972) have reported at least twenty-three species and fifteen genera of conodonts from collections made at Lost Burro Gap.

Lost Burro Formation (Devonian).—Youngquist and Heinrich (1966) report conodonts from the uppermost sections of this formation.

Class Pteraspidomorphi
Lost Burro Formation (Devonian).—The remains of two genera and species of Devonian pteraspidids (agnathan fish) Panamintaspis snowi and Blieckaspis priscillae have been described from the Lippincott Member of this unit (Elliott and Ilyes, 1993, 1996a, 1996b). These vertebrates occur in a large channel cut into the Hidden Valley Dolomite. The specimens were collected from the Panamint Range in the Trail Canyon area. Additional indeterminate pteraspidid specimens were also collected in these Devonian sediments (Elliott and Ilyes, 1996a, 1996b).

Class Placodermi
Lost Burro Formation (Devonian).—Weathered disassociated remains of a Devonian arthodire, cf. Dunkleosteus terrelli, have been reported from this unit within Cottonwood Mountain Region (Dunkle and Lane, 1971).

Class Chondrichthyes
Lost Burro Formation (Devonian).—A small cladodont shark tooth and cochlidodont crushing tooth has been reported from this formation (Dunkle and Lane, 1971).

Class Osteichthyes
Titus Canyon Formation (Eocene).—Three type specimens, Fundulus curryi, Fundulus eulepis, and Cyprinodon breviarius were collected by Donald Curry within this formation in Titus Canyon (R. R. Miller, 1945).

Class Reptilia
Titus Canyon Formation (Eocene).—A number of turtle scutes were collected from this formation in Titus Canyon.

Class Mammalia
Order Rodentia
Titus Canyon Formation (Eocene).—A fragmentary left ramus representing a large species of paramyine rodent, a canid left ramus and fragmentary crown, and a nearly complete edentulous rodent skull was collected from deposits within this formation in Titus Canyon (Stock, 1949).

Order Perissodactyla
Titus Canyon Formation (Eocene).—A few rare specimens of horse material, Mesohippus, were collected from the same horizon as the Protitansops specimen in Titus Canyon. A portion of the right mandible with molar teeth and right ramus of a Colodon was collected in the west fork of Titus Canyon (Stock, 1949). The holotype, Teletaceras mortivallis was collected from this unit in Titus Canyon. It is represented by a fragment of left ramus, teeth, and metapodial elements (Stock, 1949; Hanson 1989). Two titanotheres have been collected from deposits of this formation: the type specimen Protitansops curryi, and a poorly preserved portion of a possible menodontine titanother skull (Stock, 1936).

“During the fall of 1934, Mr. Curry, while traveling over the little-used road between Rhyolite, Nevada, and the now deserted mining camp of Leadfield in Titus Canyon, Grapevine Mountains, saw and collected, in an outcrop of maroon or chocolate-colored, calcareous mudstones exposed in the face of a road-cut, a portion of a titanotherium jaw with teeth. Later excavations (Figures 6) at this locality revealed additional lower jaw material as well as a splendidly preserved skull of a titanotherium.” (Stock and Bode, 1935).
Order Artiodactyla

Titus Canyon Formation (Eocene). — Several camel and camel-like specimens have been collected within this unit at Titus Canyon. These specimens include several individuals of agriochoerids, Protoreodon transmontanus, the type specimen Poabromylus robustus and two species of Leptomeryx (Stock, 1949; Mason, 1988).

Other Vertebrate Material

The faunal assemblage from Titus Canyon provides the first good record of Chadronian terrestrial mammals from the Great Basin Province. Material collected during the mid-1930s was not studied until after World War II. A small collection of vertebrates was obtained from Titus Canyon in 1987 by Thomas Kelly. Kelly’s collection included a partial left rhinocerotid ramus with molars. Another undescribed rhinocerotid specimen, collected by the University of California Berkeley field crew, 1987, may represent a new species (Mason, 1988).

Fossilized camel bones were uncovered during the construction of the Furnace Creek Visitor Center. A partial tusk from a mastodon has been reported by Clements (1973) from Pleistocene lacustrine deposits associated with Lake Rogers.

Trace Fossils

Trace fossils (ichnites) are sedimentary structures resulting from biological activity, including: burrows, tracks, trails, footprints, resting marks, evidence of feeding activity, or fecal pellets. These are usually preserved in the form of a cast or mold and are rarely found with the actual organism responsible for making the particular trace.

Wyman Formation (Precambrian). — Trace fossils of possible metazoan origin (Mount and Signor, 1985) and the trace fossil Planolites (Nelson, 1976) have been reported from exposures within the Waucoba Series.

Reed Dolomite (Precambrian). — Planolites and unknown tubular fossils have been reported from exposures within the Waucoba Series (Alpert, 1975, 1976; Firby and Durham, 1974).

Stirling Quartzite (Precambrian). — Conical calcareous fossils from exposures in the Funeral Mountains have been reported by Langille (1974) in the dolomite portions of the D member.

Deep Spring Formation (Precambrian/Early Cambrian). — Trace fossils (Alpert, 1975, 1976; Firby and Durham, 1974), and Rusophycus and Diplichnites (Signor and Mount, 1989) have been reported from exposure within the Waucoba Series.

Noonday Dolomite (Precambrian). — Very large tubes of possible Skolithos affinity have been reported from exposures within this formation (Wright et al., 1978).

Campito Formation (Cambrian). — Possible metazoan trace fossils (Wigget, 1977) and a number of fodontichnid traces have been reported from exposures within the Waucoba Series (Alpert, 1975, 1976; Mount, 1982; Mount and Signor, 1992).

Polenta Formation (Cambrian). — Trace fossils have been reported from the upper member of this formation (Nelson, 1976).

Wood Canyon Formation (Cambrian). — Abundant Skolithos trace fossils have been reported from exposures within this formation (Stewart, 1970).

Zabriskie Quartzite (Cambrian). — The trace fossil Skolithos has been reported from exposures within this formation (Prave and Wright, 1986; Prave, 1988).

Carrara Formation (Cambrian). — Many types of trace fossils have been reported from exposures within this formation (Bates, 1965).

Recommended Taxonomy Projects

- Complete a thorough literature review and record all fossil taxa identified from the park;
- Inventory all Death Valley fossil collections in the park museum and outside repositories;
- Identify any “type” fossil specimens from the park;
- Produce a paleo-taxa list of all known park fossil specimens;
- Create a paleo-taxa database including all known park fossils and associated data.

Figure 6: California Institute of Technology field crew in 1935 drilling a hole for the placement of dynamite in a vertebrate rich locality in Titanothera Canyon (top right). Blasting to remove overburden from the vertebrate rich beds in Titanothera Canyon (bottom right, LACM photo collection).
Fossil Vertebrate Tracks

Copper Canyon Formation (Eocene).—An abundant and diverse vertebrate track assemblage has been reported from within lacustrine deposits of Copper Canyon in the Black Mountains (Curry 1939, 1941; Figures 7A-F). The locality was first documented by Don Curry in 1937. Bauer originally mapped twenty track sites in 1941. Raymond Alf and Mary Leakey visited Copper Canyon in 1978. Scolnick added an additional twenty-one track sites during the 1980s.

In 1984, Paul Scrivner conducted a morphological study of the Copper Canyon Track Locality for his master’s thesis (Scrivner, 1984; Scrivner and Bottjer, 1986). Scrivner was the first to apply a morphological classification scheme to the tracks in the canyon. Nyborg (1998) expanded the total to fifty-six track sites within Copper Canyon. This trace fossil assemblage contains fossilized carnivore, camel, horse, mastodon and bird casts and molds (Alf, 1959, 1966; Santucci, 1998; Nyborg, 1998). Nyborg (1998) noted three

Figure 7: Composite of vertebrate tracks from Death Valley. A, *Avipeda* ichnospies (cast) from the Cow Creek Track Locality; B, *Ovipeda* ichnospecies B (imprint) from the Copper Canyon Track Locality; C, *Hippipeda* ichnospies A (imprints) from the Copper Canyon Track Locality at the “Carnivore Ridge” Sub-locality; D, Bioturbated trample tracks from the Copper Canyon Track Locality within the “Barnyard” Sub-locality; E, Undescribed Carnivore track from Copper Canyon Track Locality; and, F, *Proboscipeda* ichnospies (imprint) from the Copper Canyon Track Locality.
additional localities within Death Valley which contain fossil vertebrate track assemblages including: Twenty Mule Team Canyon, Salt Creek, and Cow Creek. The precise stratigraphic units containing the track sites at these three additional sites has not yet been determined, therefore their age is not currently known.

A comprehensive inventory and mapping of the Copper Canyon Track Locality is strongly recommended. Removal of particularly significant fossils, already out of their primary context (talus material), is also recommended. Casting of larger trackways will produce exact replicas for curation, research, and interpretation. Due to the scientific importance of Copper Canyon, continued guided tours into the canyon to view the tracks should be limited. Interpretation at the visitor center could utilize track casts and exhibits to minimize in situ theft or vandalism.

LOCALITIES

Death Valley National Park has been divided into areas designated as regions. These regions are defined geographically based upon geomorphic features, landmarks, and park roads. Specific paleontological localities are organized within each region (see Death Valley Regional Map).

GRAPEVINE MOUNTAINS REGION

The region extends along the eastern boundary between Highway 374 and Highway 267. Highway 267 defines the northern and western boundary of the region. It extends south along Highway 267 to its intersection with Highway 374. The southern boundary is along Highway 374. The Grapevine Mountains consist of highly faulted and folded Paleozoic marine sedimentary rocks, Tertiary continental deposits, and volcanic rocks (Foster, 1961). The mainly calcareous Lower Paleozoic rocks compose the western and central portions of the mountains.

The Wood Canyon Formation and the Campito Formation outcrop extensively throughout the Grapevine Mountain Region. Within these outcrops: trilobites, gastropods, nautiloids, brachiopods, peltatozoa, cystoid plates, and archaeocyathid fossils occur (Foster, 1961; McAllister, 1970; Hall, 1971; Hunt, 1975).

Titus/Titanotherae Canyon. —This area within the central portion of the Grapevine Mountains has yielded an important late Eocene vertebrate assemblage. The fossils indicate a Chadronian fauna (Stock, 1949). The locality was named after Morris Titus, a mining engineer who died in the canyon in 1905 while on a prospecting trip. Palmer and Halley (1979) have reported on a trilobite assemblage in the region.

Daylight Pass. —Olenellids are common in the upper member of the Wood Canyon formation, where it is exposed in Daylight Pass area (McAllister, 1970).

OWLSHEAD MOUNTAIN REGION

This region extends along the southern park boundary west from Saratoga Spring, where it then turns north along the park’s boundary up to the dirt road at Goler Canyon. The northern boundary extends east along this dirt road to the West Side Road, where the boundary continues along this road to Ashford Mill. The eastern boundary is along the Harry Wade Road between Ashford Mill and Saratoga Spring.

No known paleontological work or locality information has been reported from the Owlshead Mountain Region.

TUCKI MOUNTAIN REGION

This region extends west along Highway 190 to Emigrant. It then extends down Emigrant Canyon and to the south near Aguereberry Point. From Aguereberry Point the boundary extends directly east to the boundary of the Central Death Valley Region. The boundary then extends north along the Central Death Valley Region up to Highway 190 where it follows this highway to Stovepipe.

Extensive geological fieldwork has been done in the Trail Canyon Region. Fossils have been collected from the Cambrian Bonanza King Formation and Devonian Lost Burro Gap Formation.

Trail Canyon. —The Bonanza King Formation outcrops extensively within the Trail Canyon area and between Tucki Mountain and Wildrose Canyon (Sears, 1955). Elliot and Ilyes, (1993, 1996a, 1996b) have reported on Devonian agnathans from the Lost Burro Formation from this locality.

WILDROSE REGION

This region extends along the central and southern portions of the west park boundary between the Goler Canyon dirt road and the intersection of the Panamint Valley Road and Highway 190. The north boundary extends along Highway 190 to Emigrant. The boundary then extends south through Emigrant Canyon and east to Aguereberry. From Aguereberry Point the boundary extends due east to the northern intersection of the Badwater and West Side roads. The boundary then extends south along the West Side Road to the southern intersection of the Badwater and West Side roads. The southern boundary is the dirt road beginning in Warm Spring Canyon. Limited geologic work in this area has not documented any paleontological resources.

FUNERAL MOUNTAINS REGION

This region extends along the central portion of the eastern park boundary, between Highways 190 and 374. The northern boundary is along Highway 374 to its intersection with Highway 190. The boundary extends south and east along Highway 190 to the eastern park boundary.

Fossiliferous units in the Funeral Mountains Region include the Cambrian Carrara and Mississippian Tin Mountain Limestone Formations, and a series of Tertiary lacustrine units.
Echo Canyon. —Palmer and Halley (1979) have reported on trilobites from the Carrara Formation. Rugose and tabulate corals, and spirifer, pentameroid, and rhynchonellid brachiopods have been reported from mid-Silurian deposits (Easton, 1955).

Cow Creek Track Locality. —Tracks from this locality are preserved in a medium grained sandstone unit containing intermittent lacustrine beds, located just west of the Cow Creek housing facility. The site is limited in exposure and preserves a low diversity of fossil vertebrate tracks.

Pyramid Peak. —A diverse assemblage of trilobites and associated fauna is located within the exposures that make up Pyramid Peak (Palmer and Halley, 1979).

Black Mountain Region

This region extends along the southern portion of the eastern park boundary. The northern boundary is highway 190 between the eastern park boundary and Furnace Creek. The western boundary is the Badwater Road from Furnace Creek to Ashford Mill and extending southeast from Ashford Mill along the Harry Wade Road to the southeast corner of the park.

This region consists of Tertiary lacustrine deposits interfingered with extrusive volcanics. The lacustrine deposits make up much of the Furnace Creek, Artist Drive and Copper Canyon Formations. These deposits contain important vertebrate tracks and other fossils.

Copper Canyon Track Locality. —Late Miocene lakebeds contain a well-preserved and diverse assemblage of fossil vertebrate tracks (Figure 8). This represents one of the worlds most important fossil mammal track localities, including: twelve bird ichnospecies, five cat ichnospecies, five camelid ichnospecies, three horse ichnospecies, one proboscidian ichnospecies, and one tridactyl track “cf. Tapirpeda n. sp.” ichnospecies (Santucci and Nyborg, 1998).

Twenty Mule Canyon Track Locality. —Several camel tracks have been collected from this area and are in the park collections (Nyborg, 1998).

Artist Drive. —Hardy (1988) reports on paleobotanical fossils from this area.

Central Death Valley Region

This region incorporates the central low-lying region of the park. Its eastern boundary extends along the West Side Road, south to the intersection of this road and the Badwater Road, where it extends north along this road. From the intersection of the Badwater Road and Highway 190, it extends northwesterly along Highway 190 and then Highway 267 to Grapevine. The boundary is situated due south to the entrance of Marble Canyon where it extends to the east along a dirt road to Stovepipe Wells. A few miles to the east of Stovepipe Wells, at about the Devils Cornfield, the boundary takes another shot to the south where it intersects with the West Side Road.

Salt Creek Track Locality. —The Salt Creek Track Locality is located within an isolated outcrop in the Central Death Valley Playa. (Curry, personal communication, 1998) has reported avian, artiodactyl, perissodactyl, and possibly proboscidian tracks from the lacustrine deposits within the Salt Creek area (Figure 8).

Cottonwood Mountain Region

This region extends northwest from Grapevine along Highway 267 to Ubehebe Crater. The boundary extends along the dirt road to the Racetrack, taking a southeast turn at TeaKettle Junction. The boundary then continues down the dirt road through Hidden Valley. It then takes a direct shot east to the dirt road at Cottonwood Canyon where it follows this road up to Marble Canyon. The boundary then takes a straight shot north back up to Grapevine.

Highly fossiliferous formations include: Bonanza King Formation, Hidden Valley Dolomite, Lost Burro Formation, Tin Mountain Limestone, Perido Formation, and Tihvah Limestone (Peck, 1950; McAllister, 1952; Langenheim and Tischler, 1959; Gordon, 1964; Hall, 1971).

Quartz Spring. —Extensive cephalopod-bearing units (Langenheim and Tischler, 1959) and stromatoporoids (Hall, 1971), have been reported from this locality.

Rest Spring. —Gastropods (Peck, 1950) and hapsiphyllid tetracoral (Tischler, 1956) have been reported from this locality.

Lost Burro Gap. —Stromatoporoids (Hall, 1971), fifteen genera and twenty-three species of conodonts, and silicified corals (R. H. Miller and Hanna, 1972) have been reported from this locality.

Panamint Springs Region

This region extends along the central western part of the park boundary. The south boundary extends along the park boundary to the intersection of the Panamint Valley Road and Highway 190. The boundary continues along Highway 190 from Panamint Springs up to Stovepipe Wells. From Stovepipe Wells, the boundary extends along the dirt road to Cottonwood Canyon. The northern boundary extends from Cottonwood Canyon Road directly west to the dirt road that extends through Hidden Valley.

Dolomite Canyon. —Solitary corals, trace fossils, brachiopods, echinoderm plates, crinoid columnals, and an extensive assemblage of conodonts have been reported from the north side of Dolomite Canyon (Hall, 1971).
Lemoigne Mine. — Solitary corals and gastropods have been reported by Hall (1971).

Towne Pass. — Fifteen species of gastropods, two species of pelecypods, orthoceroid cephalopods, bryozoan, and sixteen species of brachiopods have been reported from exposures at Towne Pass (Hall, 1971).

Panamint Canyon. — Solitary corals have been reported by Hall (1971).

Lake Hill. — Fifteen species of corals, fifteen species of gastropods, two species of pelecypods, cephalopods, bryozoan, and rhychoonellid brachiopods occur within the formations at Lake Hill (Hall, 1971).

Last Chance Range Region

This region extends along the northern and eastern boundaries of the park and to the west to Big Pine Road, where it then follows the dirt road south through Eureka Valley. The boundary then cuts across the Saline Range to the Racetrack and the road that extends along Hidden Valley to the east. The boundary then extends northeast along the dirt road between the Racetrack and Ubehebe Crater. It then extends to the east along Highway 267 to Grapevine and the eastern park boundary.

Last Chance Range. — The massive carbonate buildup of the Cambrian system above the Carrara Formation is exposed in the southern portion of the Last Chance Region. According to Taylor and Palmer (1981), at that time, regional details of its internal stratigraphy had not yet been worked out, and it was found to be fossiliferous at only a few levels.

Cucomungo Canyon. — The formations typical of the White-Inyo facies are exposed within the entrance to this canyon.
Lake Rogers. —A flat-lying Pleistocene lake which covered several square miles, from which Clements (1973) has reported part of a tusk from a mastodon.

Saline Valley Region

This region extends along the northwestern boundary of the park up to and to the east to Big Pine Road, where it then follows the dirt road south through Eureka Valley. The boundary then cuts across the Saline Range to the Racetrack and the road that extends along Hidden Valley to the east. The southern boundary extends west from Hidden Valley bisecting Lee Flat and incorporating the Nelson Range.

Exposures within the Waucoba area include: the Campito Formation (Andrews Mountain Member and Montenegro Member), the Poleta Formation, the Harkless Formation, the Saline Valley Formation, and the Mule Spring Limestone (Seiple, 1984).

Waucoba. —This thick, well exposed and conformable sequence of lower Cambrian rocks in the White-Inyo Mountains of California was designated by Walcott (1895, 1908) as the type section of the Lower Cambrian Waucoban Series. This section contains some of the oldest known fossils of complex multi-celled organisms. The fossils include trilobites, brachiopods, mollusks, archaeocyathids, echinoderms, and trace fossils. The base of the Waucoban section is found one mile north of Waucoba Spring within the Campito Formation (Nelson, 1976). From its base, the section extends southeastward, encompassing strata 2,100 meters thick (Seiple, 1984).

Devils Hole Region

This region is within Ash Meadow National Wildlife Refuge which extends the boundaries of Devils Hole.

Ash Meadows. —This quadrangle, which incorporates Devils Hole, contains the following formations: Bonanza King, Nopah, Lost Burro and Tin Mountain, which have fossils reported from them by Denny and Drewes (1965).

Interpretation

Current Interpretive Program

The most recent Death Valley National Park interpretive prospectus was produced in 1990. There is a small section in the plan addressing paleontological resources that could be expanded. The current Death Valley National Park General Management Plan identifies the following interpretive theme, “the rocks found within Death Valley National Park represent all of the great eras of geologic time and include important fossil resources that provide a glimpse into ancient habitats and the prehistoric plants and animals that once lived here.” There are currently no site bulletins developed for the park’s paleontological resources. The park staff has historically been discouraged from “advertising” the fact that fossils exist in Death Valley (Baldino, personal communication, 1998).

A number of paleontological exhibits currently are on display at the Furnace Creek Visitor Center. A cast of a titanothere skull and other bones from Titus Canyon along with five fossil vertebrate track specimens are on display inside the visitor center. A camelid track-slab is located on the visitor center patio at Furnace Creek. Four additional fossil track-slabs are exhibited in the Borax Museum at the Furnace Creek Ranch, which is a non-National Park Service facility.

Interpretive Themes

Fossils, paleontology, and the history of life on earth provide exciting opportunities for interpretation. Both children and adults are interested in fossils. If the public had a greater awareness of the significant paleontological resources that occur at Death Valley National Park, there would be more demands placed on park staff to provide increased interpretation about the fossils and the ancient ecosystems.

Public misconceptions, media misinformation, controversial scientific opinions, and discussions involving evolution and geologic time can present challenges when interpreting paleontology. These issues have often been encountered in some of the fossil parks such as Agate Fossil Beds National Monument, Badlands National Park, Dinosaur National Monument, Fossil Butte National Monument, Hagerman Fossil Beds National Monument, John Day Fossil Beds National Monument, and Petrified Forest National Park. Strategies associated with paleontological resource interpretation have been discussed at the previous National Park Service Fossil Resource Conferences. Specific

<table>
<thead>
<tr>
<th>Recommended Mapping Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Establish a database for all known fossil localities within the park;</td>
</tr>
<tr>
<td>• Establish a standardized system for cataloging and identifying park fossil localities with cross-references for any previously used numbers or site names;</td>
</tr>
<tr>
<td>• Map all fossil localities with GPS and incorporate the data into a park-wide GIS system;</td>
</tr>
<tr>
<td>• Use digital mapping system to generate a paleontological locality map for the park.</td>
</tr>
</tbody>
</table>
training related to interpreting fossils has been conducted at many of the National Park Service units that preserve paleontological resources.

A variety of interpretive themes could be developed for Death Valley National Park’s paleontological resources. Pick a moment in time when Death Valley’s story is best told. The Death Valley story is dynamic and not yet complete. The fossil record of life provides evidence of ancient wildlife and vegetation. The present climate and landscape is not representative of those from the past. The fossilized remains of the plants and animals contain the secrets of Death Valley’s past that remain to be discovered. Here are some examples of possible interpretive themes for Death Valley:

Biological History of Death Valley

The public’s interest in the modern animals and plants in Death Valley may indicate potential interest in the ancient life of the area.

Geological History of Death Valley

Fossils provide information that helps geologists understand past geologic events, processes, and environmental conditions. Fossils can yield information related to ancient depositional environments (i.e., lake, stream, desert, etc.). The presence of fossils in a particular rock unit, along with the changes in fossils within successive layers, can provide valuable information about the past history of Death Valley.

Paleoecology of Death Valley

The short-term changes evident at Death Valley can markedly influence the visitor’s view of the park and provide for continued sources of public inquiry. The fossil record, dating back hundreds of millions of years, can assist the interpreter in presenting Death Valley as a dynamic and naturally evolving area. A greater understanding of Death Valley’s past and how the recent setting has evolved may increase the public’s appreciation of the park.

Fossil material from Death Valley includes some exceptionally well preserved specimens. Some of these specimens would be ideal for use in interpretive exhibits or programs. However, it is important to recognize that increasing public awareness of and interest in fossils should be accompanied by resource protection information. Specific paleontological resource locality data should not be given in interpretive contacts or through other public information. Slides or photos that would reveal the locations of sensitive fossil sites should not be used. Wayside exhibits should not be placed where they could direct the public to fossiliferous exposures.

Recommended Interpretive Actions

- Update interpretive planning documents to include paleontological resources and issues;
- Incorporate significant park paleontological resources in interpretive exhibits and displays;
- Develop geologic/paleontologic resource components for education programs;
- Provide paleontological resource training for interpretive staff;
- Continue park policy of not divulging paleontological localities to park visitors;

PALEONTOLOGICAL RESOURCE MANAGEMENT

National Park Service Policy

Fossils are non-renewable resources that require specific actions for appropriate management. Paleontological resource management on federal lands has gained considerable attention over the past decade and has gained recognition as an independent discipline by the scientific community and land management agencies.

National Park Service Management Policies state “Management actions will be taken to prevent illegal collecting [of fossil resources] and may be taken to prevent damage from natural processes such as erosion. Protection may include construction of shelters over specimens for interpretation in situ, stabilization in the field or collection, preparation, and placement of specimens in museum collections. The locality and geologic data associated with a specimen will be adequately documented at the time of specimen collection. Protection may also include, where necessary, the salvage collection of threatened specimens that are scientifically significant.”

Within the National Park Service, paleontological resource management has received initial direction through the Natural Resources Management Guidelines (NPS-77). The National Park Service Geologic Resources Division provides service-wide support to assist parks with achieving some of the objectives outlined in NPS-77. Special management actions that are recommended in NPS-77 for paleontological resource sites include:
Monitoring

Periodic re-examination of a known fossil localities should be conducted to assess site stability and the need for management action. Photodocumentation of the site is essential to monitor any changes.

Cyclic Prospecting

In areas of high rates of erosion, periodic surveys should be undertaken to identify the exposure of any new fossil material at the surface and the loss of previous exposed material.

Stabilization/Reburial

The management of in situ paleontological resources can be accomplished through a wide range of techniques and methodologies. In situations where the excavation of fossil material is not feasible, reburial of the material may be the appropriate interim management action. Reburial can stabilize or slow down the destructive forces of weathering and erosion.

Excavation

The removal and collection of a fossil from a geologic context may be the appropriate action for management of in situ paleontological resources. Depending upon the scientific significance, immediate threats, or other variables, the careful collection of a fossil specimen may be warranted. Appropriate collecting permits must be secured in advance for any excavation or collection of paleontological resources.

Closure

A fossil locality may be best managed through closure or restricted access to the area. Closed areas may be completely withdrawn from public use, restricted to ranger-led activities, or require special permit for entry (i.e., research).

Patrols

Significant or well known fossil sites require periodic monitoring by park staff. Patrols may be important in preventing or reducing paleontological resource theft and vandalism.

Management of paleontological resources should be distinguished from the management of archeological resources. Paleontological resources are typically recognized as natural resources and should be managed accordingly. The Archeological Resources Protection Act (1979) and the NPS Cultural Resources Management Guidelines (NPS-28) provide guidance for cases when paleontological resources occur in an archeological context.

Baseline Paleontological Resource Inventories

The inventory and monitoring of paleontological resources serves as the foundation of any paleontological resource management program. Without the baseline data available from a paleontological survey, any further actions or management decisions would be based upon insufficient information.

To complete a paleontological survey of Death Valley National Park, the following information is needed:

- Geographic data on fossil localities, including topographic coordinates, UTMs, the geographic extent of each locality, maps, GPS measurements, etc.;
- Stratigraphic data related to the geology at each locality, including the formations or subunits and the age of the units;
- Paleontological data related to the identification of paleo taxa present within park localities;
- Geologic data related to the lithology and depositional environment of the fossiliferous units.

All fossil localities should be documented using both ground and aerial photographs whenever possible. Ground photos should include close-up details showing the fossils, sedimentary structures, and general setting of the locality. Aerial photos should be at a scale appropriate to the physical characteristics of the locality.

Natural erosion is a major threat to all paleontological resources. Fossils exposed at the surface are subjected to physical and chemical forces that can often be destructive. Continued inventory and monitoring of fossil areas subject to significant erosion is recommended.

Construction and visitor use may generate increased levels of erosion. In some cases, however, these activities may also lead to the exposure of subsurface fossil material. The titanothere remains discovered by H. Donald Curry in
1934 in Titus Canyon were first uncovered during a road construction project (Stock and Bode, 1935).

The draft Death Valley National Park General Management Plan addresses paleontological resources as follows: “...little paleontological research has been initiated or funded by the National Park Service.” Most research is accomplished by outside institutions that request and receive NPS research permits. The institutions, in exchange for the opportunity to study park resources, agree to provide information that the National Park Service can use to develop strategies for resource protection, management, and interpretation.

Paleontological resources, including both organic and mineralized remains in body or trace form, would be protected and preserved for public enjoyment, interpretation, and scientific research in accordance with park management objectives and approved resource management plans. Although paleontological research by the academic community would be encouraged and facilitated under research permits subject to NPS management criteria, the National Park Service would enhance its own knowledge of paleontological resources through comprehensive inventory and monitoring programs. To enhance the conservation and management of paleontological resources, the National Park Service would seek to develop collaborative partnerships with government agencies, academic institutions, and public and private organizations with paleontological resource management or research capabilities/expertise. Management actions would be taken to prevent illegal collecting. Actions also might be taken to prevent damage from natural processes such as erosion. Protection could include construction of shelters over specimens for interpretation in situ, stabilization in the field, or collecting, preparing, and placing of specimens in museum collections. Localities and geologic settings of specimens would be adequately documented when specimens were collected.

PALEONTOLOGICAL RESOURCE PROTECTION

The greatest damage to paleontological resources in the southwestern deserts is probably due to erosion (San Bernardino County Museum Department of Community and Cultural Resources memo). The actions of water, acids, and mineral growth affect fossils at the surface and down to several feet below the surface. Erosion should be considered the most damaging factor to the preservation of paleontological material.

A rapidly growing commercial interest in fossils has resulted in a lucrative fossil market, especially for vertebrate fossils. This escalating commercial market has led to an increase in unauthorized fossil collecting on federal lands. The removal of fossils or any other natural objects without a permit is illegal in National Park Service areas. However, the extremely large monetary rewards gained through the sale of fossils far exceed any potential penalties that can be levied through enforcement under 36 CFR.

![Figure 10: Park naturalist examines vandalized track slab in Death Valley National Park.](image)

The unauthorized removal of paleontological resources generally destroys the ability to obtain the appropriate and scientifically important data associated with the fossil. Generally, the poacher removes the fossil material and does not record stratigraphic, sedimentological, or other valuable data. Once fossils are removed from their geologic context, it can become very difficult to reconstruct the available information. The Society of Vertebrate Paleontology recommends that significant fossils near the surface should be removed to a museum or academic repository so that the specimens are available to the scientific community for study.

In November 1998, the first Paleontological Resource Protection training was provided to Death Valley National Park law enforcement staff. The training consisted of eight hours of classroom presentation and discussions, and eight hours in the field visiting a paleontological locality in the park. Visiting researchers should be encouraged to provide similar type training or lectures for Death Valley staff during their visits to the park.

There are a few known incidents of paleontological resource theft or vandalism at Death Valley National Park. The earliest evidence is contained in an early photo found in a park photographic archive collection. The photo caption suggests damage to a fossil track slab due to vandalism by a park visitor (Figure 10). In 1998, Park Ranger Henry Kodele prepared a case incident report documenting some unauthorized activities related to paleontological resources in Death Valley National Park. The report was well prepared and included a comprehensive narrative, site photos and a locality map. Additionally, the report included an estimate of costs for restoration of the disturbed paleontological locality.

Significant paleontological resources occur within the lands acquired in the 1994 park boundary expansion. These fossiliferous localities were previously administered by the Bureau of Land Management and were routinely visited by academic groups and fossil collectors. Collecting activities may continue to occur in these well-known localities in and
around the monument. An article, recently published in a popular amateur rock collecting magazine, identifies an important Cambrian trilobite locality adjacent to Death Valley, as a place to collect fossil specimens (Seiple, 1999).

Recommendations for Fossil Protection

- Review park records relative to incidents of paleontological resource theft or vandalism;
- Assess the history of any paleontological collecting activities in newly acquired areas in Death Valley;
- Assess commercial values of paleontological resources preserved within the park;
- Participate in interagency cooperative efforts pertaining to fossil resource protection (i.e. Paleontological and Cultural Resources Action Team - a subgroup of the California Desert Managers Group: PACRAT);
- Provide paleontological resource

RESEARCH

According to the National Park Service Natural Resource Management Guidelines (NPS-77), “Paleontological research by the academic community will be encouraged and facilitated under the terms of a permit…”

In Death Valley National Park a collecting permit is required for research that includes the field collection of fossils. A Special Use Permit (Form 10-114) is required for any other research. The Special Park Uses Guidelines (NPS-53) provide details on the issuance of permits and is currently being revised.

CURRENT RESEARCH

There are two recent research projects involving Death Valley’s paleontological resources. These recent projects include:

- Elliott, David “Early Devonian vertebrates from Death Valley”. A new Devonian fossil fish locality was surveyed in the park and new early fish specimens were collected and described from the Panamint Range.
- Nyborg, Torrey, Santucci, Vincent, and Reynolds, Robert “Inventory and description of Tertiary vertebrate track sites in Death Valley National Park.” This work is intended to provide baseline data on the diversity, distribution and interpretation of vertebrate track sites in the park. The project includes photodocumentation, mapping, GPS data acquisition, and track replication.

PROPOSED RESEARCH

Background research, including bibliographic reviews and direct communication with paleontological researchers, has generated many ideas for future research projects at Death Valley National Park. The following projects are considered to have the highest priority:

Coffin Canyon Survey. —Coffin Canyon is an isolated canyon just north of Copper Canyon in the Black Mountains. Aerial photos show a thick lacustrine sequence in the canyon that appears similar to the fossiliferous sediments in Copper Canyon. Difficult access to Coffin Canyon has limited surveys of the sedimentary units in that area. There is a potential for the discovery of fossil vertebrate tracks similar to those preserved in the adjacent Copper Canyon.

Paleomagnetic testing of Late Eocene/Oligocene sediments. —The Titus Canyon formation contains an important assemblage of Late Eocene/Early Oligocene vertebrates. Similar fauna are known from a number of other localities in North America. Paleomagnetic testing, which has been unsuccessful in the past, would enable a greater correlation of the rocks and fossils preserved in these geographically separate areas.

Lacustrine chronology of Death Valley. —There are numerous late Tertiary and Quaternary lacustrine deposits in Death Valley National Park. Very little research has been directed towards the history and paleoecology of these lake systems. A detailed examination of the lacustrine stratigraphy, sedimentology, geochemistry, and mineralogy would greatly enhance the understanding and interpretation of the recent geologic history of Death Valley.

Geologic Map of Death Valley. —The single most important need for geology and paleontology at Death Valley National Park is the publication of a park-wide geologic map. This data would benefit future paleontological fieldwork and research.

Further paleontological field work. —Paleontological field work is recommended within the Devils Hole region of Death Valley National Park and a reported bird track locality just outside the park’s east boundary in the Funeral Mountain section of Nevada (Troxel, personal communication, 1999).
PERMIT SYSTEM

Fossil parks within the National Park System often benefit from the information obtained through park-related research. New discoveries and interpretations of the resources have expanded park management’s and the public’s understanding of the resource significance.

The research permit serves as an administrative tool to help ensure resource protection by identifying the limitations on and responsibilities of researchers working in the park. The park management should ensure that information gained through research is obtained by the park, and that any specimens collected under a permit remain accountable and properly cataloged into a museum collection.

FUNDING

Funding for paleontological research has traditionally been difficult to secure within the National Park Service. Fossils lack specific legislation for appropriation of funds to support paleontological resource projects. Most of the financial support for paleontological resource projects has come from park cooperating associations, park donation accounts, or from academic institutions. With limited funding for paleontological resource projects, the training and utilization of volunteers can be a valuable way to accomplish management objectives.

The National Park Service has moved toward a greater recognition of paleontological resources within the last few years. A staff position in Washington was created to oversee geologic and paleontologic resource issues. The newly created Geologic Resources Division in Denver is working towards securing sources of funding to support paleontological research in the national parks.

PUBLICATION NEEDS

Communication with research geologists and paleontologists indicates that there is a wealth of unpublished paleontological resource data from Death Valley. Various sources of unpublished data should be obtained for park archives, and if possible published in some format. The NPS Geologic Resource Division has initiated a Technical Report series and published the Third NPS Paleontological Research Volume in 1998. Future volumes will be published annually and provide an outlet for reporting on paleontological research in the national parks.

In the future, the organization of a Geology/Paleontology of Death Valley Symposium would provide a means to bring together researchers working in and around the park. As a companion to this meeting, a special publication could be produced to compile research. This publication would be an up to date reference for the interpretation of the park’s paleontological resources.

LITERATURE SURVEYS

As a part of the Death Valley Paleontological Survey, searches on biological, geological, paleontological and government bibliographic databases were conducted to locate any published information related to paleontological resources at Death Valley. The research library at Death Valley provided access to copies of unpublished material and park archives. Current and past paleontological researchers were contacted directly to obtain copies of their published and unpublished research. The bibliographic information obtained through this search was cross-referenced with the collections at the park’s research library.

COLLECTIONS AND CURATION

MUSEUM COLLECTIONS

The Death Valley National Park collections include approximately 700 paleontological specimens. Of this total, 650 are manually and minimally cataloged, 22 are backlog, and only 35 have been entered into the ANCS+ database. Park fossil collections in outside repositories are not currently cataloged and only have accession record documentation in the ANCS+ system.

Fossil collections from Death Valley National Park are managed in four categories: museum storage within the curatorial facilities at park headquarters; on exhibit at the Furnace Creek Visitor Center; on exhibit in the Borax Museum at Furnace Creek Ranch; and in outside repositories. All of these collections should be evaluated in terms of the scope of the collection, security, and organization.

SCOPE

Death Valley’s fossil collection may be better refined through the data provided in this document. Currently, the collection lacks many of the representative fossil taxa known from the park. Representative specimens could be obtained either through future field collection, return of park specimens from collections outside of the park, or by obtaining replica casts of park specimens. Additionally, some of the paleontological specimens within park collections are poor quality and could be supplemented by higher quality material.

SECURITY

The park museum collections are maintained in reasonably secure facilities. Likewise, the paleontological locality data and field notes are well secured in the curatorial facilities at headquarters. Under the authority of the 1998 National Park Service Omnibus Act, paleontological resource locality data should not be publicly disclosed if the resource is rare or potentially threatened.

ORGANIZATION

Park fossil specimens are contained in a number of cabinets within the curatorial storage facilities. As the fossil
collections expand, a different organization of specimens may be considered to accommodate research needs. Typically, paleontological collections are organized based either on taxonomy or stratigraphy. In larger collections with adequate storage space availability, stratigraphy should be the primary organizational division and taxonomy the secondary subdivision. Storage cabinets could be arranged according to the geologic time scale, and the stratigraphic unit (e.g., Devonian Lost Burro Formation) could be represented sequentially within each geologic time period. Within each stratigraphic unit, specimens could be organized taxonomically (e.g., invertebrates, vertebrates, etc.).

Routinely, researchers making collections of park fossils should provide copies of all field notes and sketches. These records may be valuable for future research and should be incorporated into the museum records.

Photographic Archives

Historic Photos

A small collection of historic photographs associated with paleontology in Death Valley are curated into the park’s museum collection. These include a few images of fossil vertebrate tracks from Copper Canyon, Cow Creek, and Salt Creek. An outstanding photodocumentation of the Copper Canyon tracks was undertaken by park volunteer Reuben Scolnik between 1979 and 1983. Scolnik mapped and photographed forty-one sites in Copper Canyon, providing an important baseline inventory. This work was expanded to fifty-six sites in the summer of 1998 by park paleontology intern Torrey Nyborg. Nyborg relocated Scolnik’s localities and discovered numerous new localities in Copper Canyon. At each site, Nyborg obtained new photos and global positioning data.

Park curator Blair Davenport visited the Death Valley collections at the Los Angeles County Museum (LACM) in California. During her visit, she learned that the LACM possessed a number of historic photos related to paleontological work in Death Valley. Blair is in the process of obtaining copies of these photos for the Death Valley collections.

Museum Specimens

In early 1998, Vince Santucci photographed representative paleontological specimens in the Death Valley. Torrey Nyborg photographed all of the fossil track specimens in park collections, including those in museum storage, on exhibit at the Furnace Creek Visitor Center, and on exhibit at the Borax Museum. These efforts support NPS collection management policies and will facilitate future paleontological research. All remaining unphotographed fossil specimens in the collections should eventually be photographed. The park should seek to obtain photos of all known “type” fossil specimens from the park that are curated into outside repositories.

Interpretive Slides

A number of paleontological resource slides are located in the interpretive slide collection at Furnace Creek Visitor Center. This slide collection includes a number of images depicting *in situ* fossils from Death Valley National Park. There is very little information associated with these slides. Donald Curry has a few slides showing himself and another ranger in uniform mapping in Gold Canyon. Copies

Recommendations for Park Fossil Collections

- Secure staff/funds to complete cataloging backlog of paleontological specimens;
- Attempt to obtain field notes/records/maps etc. for all paleontologic collections from within the park;
- Obtain photos of all park fossil specimens in park museum, on exhibit, and in all outside repositories;
- Review status of fossil specimens on loan;
- Obtain better quality and representative collections for parks collection;
- Prepare fossil specimen within collections for more efficient use of storage space.

Recommendations for Photo Archives

- Photodocument all specimens curated into the park’s collections;
- Photodocument all Death Valley fossil specimens in outside collections;
- Attempt to locate historic photos of park fossils in outside collections (i.e., Smithsonian Institution, Los Angeles County Museum, Raymond Alf Museum, etc.);
- Photodocument all known fossil localities;
of these slides will be obtained for the park’s interpretive and archival photographic collections.

Fossil Collections in Outside Repositories

As part of the Death Valley Paleontological Survey, an intensive search was conducted for Death Valley specimens in outside repositories. A list of outside repositories with park collections is listed below. A number of “type” fossil specimens were documented from Death Valley during this inventory in outside collections. A list of “type” vertebrate fossil specimens from Death Valley are listed in Appendix B.

According to 36 CFR 2.5, all NPS museum objects placed on exhibits or stored in collections, including outside repositories, must be accessioned and cataloged into the park’s museum collection. All undocumented collections within outside repositories should be thoroughly inventoried by the curator at Death Valley. For specimens collected prior to the establishment of Death Valley as a National Park Service unit, any available data should be recorded in order to obtain the highest level of resource information. Likewise, maintaining paleontological resource data from adjacent lands may be valuable to an understanding of the park’s resources.

Los Angeles County Museum (LACM). —A number of Tertiary vertebrate fossils have been collected from the Titus Canyon Formation since the 1930s. Many of these specimens were collected by Chester Stock and originally stored at the California Institute of Technology (CIT). These specimens were later transferred to the LACM.

Smithsonian Institution (USNM). —A few type specimens of Tertiary fossil fish from Death Valley are contained in the Smithsonian collections. Additionally, a number of Cambrian trilobite type specimens are at this institution.

Field Museum of Natural History (FMNH). —A small collection of Devonian fish from Death Valley are in the Chicago Field Museum.

Raymond Alf Museum. —A number of Death Valley vertebrate tracks are on display at the Alf Museum in Claremont, California. There are few field notes or records associated with these specimens.

United States Geological Survey (USGS). —A large number of Cambrian trilobites collected by Palmer and others are contained within the USGS collections at the Denver Federal Center.

Museum of Paleontology, University of California, Berkeley (UCMP). —A small collection of mammals were collected from Titus Canyon in 1987 by Howard Hutchinson, Mark Mason, and Donald Savage.

Department of Geology, Eastern Washington University, Cheney, Washington. —Paleozoic invertebrates from Death Valley were collected by Linda McCollum.

Recommendations for Fossil Collections in Outside Repositories

- Organize a meeting with park curator and relevant staff to discuss issues related to managing the park’s fossil collections within the park or outside repositories;
- inventory the park’s fossil collections and associated data or field notes stored in outside repositories and incorporate into the Death Valley collection curatorial database;
- Review status of recent park fossil collections and evaluate with regard to compliance with permits and NPS standards.

Stanford University Collections. —A collection of Paleozoic cephalopods is retained at Stanford University.

Paleontological Resources Near Death Valley

Tecopa Basin. —The basin consists of badlands and ancient lakebed sediments. These white lacustrine sediments are the remnants of the perennial Pleistocene Lake Tecopa. Several hundred feet of lake-sediments have accumulated within the basin. Fossil remains of mammoths, horses, camels, and rodents are found in the uppermost layers of lake deposits. Fossil mammal tracks occur near the town of Shoshone and a few locally collected fossils are on exhibit at the town museum. Ash layers within the lake sediments date Lake Tecopa to between 500,000 to nearly 3 million years ago (Hillhouse, 1987).

Waucoba lakebed. —Charles Walcott of the U.S. Geological Survey first reported the Waucoba lacustrine embayment deposits. The light-colored lakebeds tilt gently to the west. Fossil gastropods are preserved in the lacustrine sediments and radiometric dating yield evidence that Waucoba Lake began to form about 2 to 3 million years ago (Bachman, 1978).

Gold Point. —Twelve species of trilobites were reported from a locality near Gold Point, Nevada (Palmer, 1964).
Well-preserved specimens of the families Olenellidae, Oryctocephalidae, Ogygopidae, Doriphyidae, Zacanthoididae, and Ptychopariidae have been reported. Palmer (1964) believes that this fauna may represent the largest single assemblage of trilobites yet described from Lower Cambrian beds in North America.

Westgard Pass.—Echinoderms associated with the trilobite zones of the White-Inyo facies have been reported by Durham and Caster (1963). The echinoderms represent a new class of Helicoplacoidea including two new species *Helicoplacus gilbertii* and *H. curtisi*. Coral-like microfossils have been reported from the Montenegro Member of the Campito Formation, and the lower member of the Poleta Formation within the vicinity of Westgard Pass (Tynan, 1983). This assemblage includes a new order (Paiutuithida), a new family (Paiutitubulitidae), and the following taxa: *Paiutitubulites variabilis*, *P. durnhami*, and *Cambrotubulites tristepta*. Firby and Durham (1974) have reported the *Volborthella Campitius tinniatis*, trilobites, inarticulate brachiopods, archeocyathids, and numerous ichnofossils from Montenegro and Andrews Mountain members of the Campito Formation from exposures within the Westgard Pass area. In the White-Inyo Mountains, the trace fossil *Bergaueria* (Alpert, 1976) and *Westgardia gigantea*, a “large, valve-shaped fossil of uncertain affinity” (Rowland and Carlson, 1983) have been reported from exposures at Westgard Pass.

Ediacaran-Type Fossils.—New assemblages of Ediacaran type fossils from the Stirling Quartzite and the lower member of the Wood Canyon Formation, have undergone recent research (Horodyski, 1991; Corsetti, 1993; Horodyski et al., 1994; Runnegar et al., 1995; Runnegar, 1998). From within these formations, a new assemblage of soft-bodied fossils and elongate tube-like fossils has been reported (Waggoner and Hagadorn, 1997; Hagadorn and Waggoner, 1998). The small shelly fossil *Cloudina*, described by Langille (1974), is the only known occurrence of unquestionably metazoan Proterozoic fossils in Death Valley National Park.

White-Inyo Mountains.—The Upper Proterozoic to Lower Cambrian strata of the White-Inyo facies, comprise more than 6000 meters of principally siliclastic sedimentary rocks, of which the upper 2000 meters contain olenellid trilobites (Nelson, 1976). This succession is widely exposed in the surrounding Death Valley area and can be seen within Death Valley National Park across a zone of faulting within the Last Chance Range in the most northern section of the park. A good exposure of White-Inyo facies can be observed at the entrance of Cuomongo Canyon where there are good exposures from the Hardless Formation through the Mule Spring Limestone (Taylor and Palmer, 1981).

Lower Cambrian strata in the White-Inyo facies are divided into three trilobite zones, plus a lowermost pre-trilobite interval. The three trilobite zones: the *Fallotaspis*, *Nevadella*, and *Bonnia-Olenellus*, first described by Fritz (1972) are named and defined by the occurrence of these trilobite genera.

Exposures within the White-Inyo Mountains have produced simple horizontal traces from the Wyman Formation (Alpert, 1976). Moderately well-preserved pre-trilobite shelly fossils occur in the Deep Spring Formation (Signor et al., 1987). Trilobites, and archaeocyathans, occur in the Campito Formation (Signor and Mount, 1986).

“Two fragmentary specimens of frondose Ediacaran soft-bodied fossils occur within the middle member of the Lower Cambrian Poleta Formation in the White Mountains of California” (Hagadorn, personal communication, 1999). Brachiopods, helicoplacoids, archeocyathids, trilobites, and the trace fossils *Skolithos* and *Taphrhelminthopsis*, have also been reported from the middle member of the Poleta Formation (Durham and Caster, 1963; McKee and Gangloff, 1969; Alpert, 1975; Moore, 1976; Nelson, 1976; Hagadorn, 1994).

Funeral Mountains.—A Late Tertiary vertebrate track locality has been reported within the Funeral Mountains just outside of the eastern boundary of Death Valley National Park (Troxe, personal communication, 1999).

Hines Ridge.—This ridge preserves the “best exposures of Precambrian-Cambrian transition in the southwestern Great Basin” (Mount and Signor, 1989b, p. 92). These formations contain a similar paleoenvironmental assemblage of earliest Cambrian, pre-trilobite shelly fauna as seen in other White-Inyo facies localities, such as Westgard Pass and the “type” Waucoba Springs section.

Andrews Mountain.—This locality within the White-Inyo Mountains contains the trace fossil *Bergaueria* (Alpert, 1976).

Horse Thief Springs.—Horodyski and Mankiewicz (1990) reported on a possible late Proterozoic alga - *Tenuocharta cloudii* from chert and dolomite exposures within the Beck Spring Dolomite. Horodyski (1993) reported a “vase-shaped” microfossil, possibly *Melanocyrillium* in medium gray silty mudstones near the contact of the Beck Spring Dolomite and Kingston Peak Formation. They were found associated with the sheet-like alga *Tenuocharta cloudii*. Horodyski (1993) believes that this transitional unit may represent a “distinct lithostratigraphic unit” that may be traceable throughout the exposures of the Kingston Peak Formation, including those within Death Valley. Carbonaceous, non-branching tubular microstructures identified as *Girvanella* are interpreted as probable cyanophytes and are described by Licari (1978). A
number of chroococcean cyanophytes, nostoccean cyanophytes, chlorococcean chlorophytes, chlorophytes, and chrysophytes have been reported.

Mt. Dunfee. —A pre-trilobite shelly fauna has been described by Gevirtzman and Mount (1986) from the lower member of the Deep Spring Formation. This fauna consists of *Coleoloides, Sinotubulites, Salanythea* and the ichnofossils *Paleophycus* or *Planolites, Neoperites, Scolicia,* and *Bergaueria.* The fauna is similar to the pre-trilobite shelly fauna found in Deep Spring exposures in Death Valley.

Lake Manly. —This is the name given to all late Pleistocene (240,000 - 10,500 years before present) lake bodies placed within the Death Valley area. Lacustrine deposits occur on the western front of the Black Mountains nearly to Artists Drive and along the Badwater Road on the flank of Copper Canyon. Faint strandlines cross the west face of low hills north of the park’s residential complex at Cow Creek. Geologic data indicates that Lake Manly fluctuated frequently. It appears that there was no outlet to the lake (Collier, 1990). The maximum depth was between five to six hundred feet. Well developed strandlines occur throughout the valley. These strandlines probably extended up to one hundred miles long and was seven to eight miles wide. The strandlines indicate that pluvial conditions in the valley were extensive due to cooler and wetter conditions in the desert.

Other Areas. —Other National Park Service areas with paleontological resources near Death Valley include Joshua Tree National Monument, Lake Mead National Recreation Area, and Mojave National Preserve. The only known dinosaur tracks from California occur just south of Death Valley National Park (Reynolds, personal communication, 1998).
REFERENCES

Aitken, J. D. 1966. Middle Cambrian to Middle Ordovician cyclic sedimentation, southern Rocky Mountains of Alberta. Bulletin of the Canadian Petroleum Geologist, 14:405-411.

Diehl P. E. 1979. The stratigraphic, depositional environments, and quantitative petrography of the Precambrian-Cambrian

Hewett, D. F. 1956. Geology and mineral resources of the Ivanpah...

McAllister, J. F. 1970. Geology of the Borate Area, Death Valley, Inyo County, California. p. 84-90. In Guidebook: Death Valley Region, California and Nevada, prepared for the 70th annual meeting of the Cordilleran Section, the Geological Society of America, field trip number 1.

Sheehan, J. R. 1988. Overview of the tectonics of Death Valley,

Wheeler, H. E. 1948. Late Precambrian-Cambrian stratigraphic

APPENDIX A:

DEATH VALLEY PALEO-SPECIES LIST

The names cited here are uncritically compiled from the literature and may not always be the current correct generic identifications.

PALEOBOTANY

Stromatolites
Baicalia sp. (Cloud et al., 1969) Crystal Spring Fm.
Boxonia gracilis (Cloud and Semikhakov, 1969) Johnnie Fm.
Conophytan sp. (Cloud et al., 1969) Crystal Spring Fm.
(Marion and Osborne, 1992) Beck Spring Do.
Jacutophytan sp. (Howell, 1971) Crystal Spring Fm.
Linella ukka (Cloud and Semikhakov, 1969) Johnnie Fm.
Paniscollema sp. (Cloud et al., 1969) Johnnie Fm.
Stratiffa sp. (Marion and Osborne, 1992) Beck Spring Do.
(Cloud et al., 1974) Noonday Do.

Dasyclad Algae (Receptaulids)
Ischadites mammillaris (Foster, 1973) Pogonip Group

Algae generic
Girvanella(?) sp. (Seiple, 1984) Mule Spring Ls.
(Palmer and Halley, 1979) Carrara Fm.
(Hall, 1971) Pogonip Group
Palaeosiphonella sp. (Pierce et al., 1994) Kingston Peak Fm.
Melanocrystallum sp. (Pierce et al., 1994) Kingston Peak Fm.
Tenuochrta claudini (Pierce et al., 1994) Kingston Peak Fm.

Plant Macrofossils
Abundacapsa impages (Licari, 1978) Beck Spring Do.
Batiola mammillaris (Foster, 1961) Campito Fm.
Beckspringia communis (Licari, 1978) Beck Spring Do.
Bullasphaera variegata (Licari, 1978) Beck Spring Do.
Calanites sp. (Langenheim, 1954) Perido Fm.
Congloboxela trocelli (Licari, 1978) Beck Spring Do.
Coleogyne ramosissima (Woodcock, 1986) Greenwater townsite
Erodisum sp. (Woodcock, 1986) Greenwater townsite
Eurocia lanata (Woodcock, 1986) Greenwater townsite
Fossil wood (Peck, 1950) Tim Mt. Ls.
Grayia spinosa (Woodcock, 1986) Greenwater townsite
Haplopausus larcifolius (Woodcock, 1986) Greenwater townsite
Larrea tridentata (Woodcock, 1986) Greenwater townsite
Latisphaera wrightii (Licari, 1978) Beck Spring Do.
Lyonothamnus mohavensis (Spar, 1903) Furnace Creek Fm.
Maculosphaera kingstonensis (Licari, 1978) Beck Spring Do.
Sphaeralcea ambigua (Woodcock, 1986) Greenwater townsite
Stromatopora sp. (Hall, 1971) Pogonip Group
Tetradyiys spinosa (Woodcock, 1986) Greenwater townsite
Thamnosma montana (Woodcock, 1986) Greenwater townsite

FOSSIL INVERTEBRATES

Phylum Protista
Class Sarcodina
Order Foraminiferida
Bathyphoton sp. (Skipp, 1969) Tim Mt. Ls.
Calcisphere pachysphaera (Skipp, 1969) Perido Fm.
Diatoms (Hardy, 1988) Artist Drive/Furnace Creek Fm.
Earlandia sp. (Skipp, 1969) Perido Fm.
Earlandia minima (Skipp, 1969) Tin Mt. Ls.
Endothyra bowmani (Skipp, 1969) Perido Fm.
Fusiilids sp. (Foster, 1961) Tihiivah Ls.
(Hall, 1971) Keeler Canyon Fm.
Globoendothyra tomiliensis (Skipp, 1969) Perido Fm.
Latendothyra parakosvensis (Skipp, 1969) Tim Mt. Ls.
Palaeospirolectanina parva (?) (Skipp, 1969) Tim Mt. Ls.
Septaglomospiranella primaeva (Skipp, 1969)........ Tim Mt. Ls.
Stachela sp. (Skipp, 1969) Perido Fm.
Pseudoschwagerina sp. (Hall, 1971) Owens Valley Fm.
Pseudoschwagerina moranensis (?) (Hall, 1971) Owens Valley Fm.

Phylum Porifera
Chancelloria sp. (Cooper et al., 1982) Nopah Fm.
Hindespongia(?) sp. (Cooper et al., 1982) Nopah Fm.

Class Archaeocyatha (Wood et al., 1992)
Ajaicystus sp. (McKee and Gangloff, 1969) Poleta Fm.
Ajaicystus ichnusae (McKee and Gangloff, 1969) Campito/Poleta Fm.

Annulofungia sp. (McKee and Gangloff, 1969) Campito/Poleta Fm.

Archeocystus sp. (McKee and Gangloff, 1969) Campito/Poleta/Harkless Fm.
Archeocystus atlanticus (McKee and Gangloff, 1969) Poleta Fm.
Archeocystus(?) arboresis (McKee and Gangloff, 1969) Poleta Fm.
Archeocystus yavoskii (McKee and Gangloff, 1969) Poleta Fm.
Archeoopharetta(?) sp. (McKee and Gangloff, 1969) Poleta Fm.
Cambrocystus sp. (McKee and Gangloff, 1969) Campito/Poleta/Harkless Fm.

Copleicystus sp. (McKee and Gangloff, 1969) Campito Fm.
Coscinocyathidae(?) (McKee and Gangloff, 1969) Poleta Fm.
Coscinocyathus sp. (McKee and Gangloff, 1969) Harkless Fm.
Erboctys sp. (McKee and Gangloff, 1969) Poleta Fm.
Ethmophyllum sp. (McKee and Gangloff, 1969) Campito/Poleta Fm.
Ethmophyllum whitneyi (McKee and Gangloff, 1969) Campito/Poleta Fm.
Metethmophyllum meeki (McKee and Gangloff, 1969) Campito/Poleta Harkless Fm.
Nevadacyathus septaporus (McKee and Gangloff, 1969) Campito Fm.

Protopharetta sp. (McKee and Gangloff, 1969) Poleta Fm.
Protopharetta(?) raymondi (McKee and Gangloff, 1969) Campito/Poleta Fm.
Pyroidocythys sp. (McKee and Gangloff, 1969) Campito/Poleta/Harkless Fm.
Pyroidocythys ceratodictyoides (McKee and Gangloff, 1969)
Phylum Cnidaria

Class Anthozoa

Order Rugosa

Amplexus sp. (Sudo, 1969) ... Tin Mt. Ls.
Brevipenthes invaginatus (McAllister, 1955) Hidden Valley Do.
Brevipenthes lonensis (McAllister, 1974) Hidden Valley Do.
Brachyelasma sp. (McAllister, 1974) Hidden Valley Do.
Caninia sp. (Langenheim, 1954; Sudo, 1969) Tin Mt. Ls.
Caninia corniculata (Tischler, 1954) Lost Burro Fm.
Caninophyllium incrassatum (Langenheim and Tischler, 1959) Tin Mt. Ls.
Clistiophyllum sp. (Langenheim and Tischler, 1959) Tin Mt. Ls.
Cyathaxonia sp. (Sudo, 1969) Tin Mt. Ls./Perdido Fm.
Ekvasophyllum sp. (Langenheim and Tischler, 1959) Tin Mt. Ls.
Enygmophyllum sp. (Hall, 1971) Tin Mt. Ls.
Homalophyllites sp. (Sudo, 1969) Tin Mt. Ls.
Lithostrotionella sp. (Hall, 1971) Tin Mt. Ls.
Lophophyllidium sp. (Langenheim and Tischler, 1959) Tin Mt. Ls.

(R. H. Miller, 1982) ... Ely Springs Do.
Halysites catenulairia (R. H. Miller and Hanna, 1972) Hidden Valley Do.

Order Conulariida

Combolaria sp. (Peck, 1950) ... Tin Mt. Ls.
Syringopora sp. (Hunt, 1975) ... Lost Burro Fm.
Syringopora surcularia (Hall, 1971) ... Tin Mt. Ls.

Phylum Annelida

Class Polychaeta

Order Sedentaria

Playsolenites sp. (Firby and Durham, 1974) Campto Fm. (Signor and Mount, 1986) Deep Spring Fm.
Proterebria sp. (Firby and Durham, 1974) Campto Fm.
Spirorbis sp. (Hall, 1971) ... Tin Mt. Ls.

Order Errantia

Onuphionella sp. (Signor and Mount, 1986) Deep Spring Fm. Annellida(?) (Bates, 1965) Carrara Fm.

Phylum Arthropoda

Class Trilobita

Order Agnostida

Agnostus tumidus (Cooper et al., 1982) Nopah Fm.
Geragnostus cf. (Foster, 1961) ... Antelope Valley Ls.
Homagnostus sp. (Hunt, 1975) ... Nopah Fm.
Homagnostus obsitus (Cooper et al., 1982) Nopah Fm.
Homagnostus tumidus ... Devils Hole region
Pseudagnostus communis (Cooper et al., 1982) Nopah Fm.

Trinodus acutus (Cooper et al., 1982) Nopah Fm.

Order Redlichida

Bristolia sp. (Nelson, 1976) Saline Valley Fm. (Nelson, 1978) Carrara Fm./Mule Spring Ls.
Brontosia anteros (Palmer and Halley, 1979) Carrara Fm.
Brontosia bristolensis (Palmer and Halley, 1979) Carrara Fm.
Brontosia fragilis (Palmer and Halley, 1979) Carrara Fm.
Daguinaspis sp. (Nelson, 1976) Campto Fm.
Crasifimbria sp. (Nelson, 1978) Carrara Fm.

(Nelson, 1978) Mule Spring Ls./Saline Valley Fm.
Crasifimbria walcotti (Bates, 1965) .. Campto Fm.
Fallosaspis sp. (Nelson, 1976) .. Campto Fm.
Fallosaspis longa (Firby and Durham, 1974) Campto Fm.
Fallosaspis tazemournensis (?) (Firby and Durham, 1974) Campto Fm.
Fremontella sp. (Nelson, 1978) Carrara Fm./Mule Spring Ls.
Fremontia sp. (Bates, 1965) .. Campto Fm.

Fremontia freemonti (Bates, 1965) Carrara Fm.
Holmia sp. (Nelson, 1976) .. Campto Fm.
Laudonia sp. (Nelson, 1976) .. Poleta Fm.

(McKee and Gangloff, 1969) Campto Fm.
Judonia sp. (Nelson, 1976) .. Campto Fm.
(Signor and others, 1988) Wood Canyon Fn.
Nevada sp. (Seiple, 1984) Campito Fn.
Nevadla weeksi (Firby and Durham, 1974) Campito Fn.
Olenellus arcuatus (Palmer and Halley, 1979) Carrara Fn.
Olenellus clarkei (Palmer and Halley, 1979) Carrara Fn.
Olenellus cylindricus (Palmer and Halley, 1979) Carrara Fn.
Olenellus fremondii (Palmer and Halley, 1979) Carrara Fn.
Olenellus gilberti (Palmer and Halley, 1979) Carrara Fn.
Olenellus howelli (Bates, 1965) Carrara Fn.
Olenellus multinosus (Palmer and Halley, 1979) Carrara Fn.
Olenellus nevadensis (Palmer and Halley, 1979) Carrara Fn.
Olenellus puertoblancoensis (Palmer and Halley, 1979) Carrara Fn.

Order Corynexichida
Bonnia sp. (Palmer and Halley, 1979) Carrara Fn.
Fieldaspis (?) sp. (Palmer and Halley, 1979) Carrara Fn.
Glassopleura walcotti (Palmer and Halley, 1979) Carrara Fn.
Mexicaspis radius (Palmer and Halley, 1979) Carrara Fn.
Pteroplicancifides hexacantha (Palmer and Halley, 1979) Carrara Fn.

Order Ptychopariida
Alokistocarella (?) brighamensis (?) (Bates, 1965) Carrara Fn.
Amphx virginensis (?) (Foster, 1961) Pogonip Group
Apachia prima (Cooper et al., 1982) Nopah Fn.
Apachia butlerensis (Cooper et al., 1982) Nopah Fn.
Aphelaspis haguei (Cooper et al., 1982) Nopah Fn.
Aphelaspis subditus (?) (Cooper et al., 1982) Nopah Fn.
Bathyurellus pogonipodes (Foster, 1961) Campito Fn.
Blountia bristolenis (Cooper et al., 1982) Nopah Fn. (Bates, 1965) Carrara Fn
Carolinites genicanica (Foster, 1961) Pogonip Group
Cernuolimbus depressus (?) (Cooper et al., 1982) Nopah Fn.
Cernuolimbus gracilis (Cooper et al., 1982) Nopah Fn.
(Carrara Fn)
Cernuolimbus laevifrons (Cooper et al., 1982) Nopah Fn. (Bates, 1965) Carrara Fn
Cernuolimbus ogygmatosDevis Hole region
Cernuolimbus semigranulosisDevis Hole region
Ceratocephala lacinata (?) (Foster, 1961) Pogonip Group
Dicanthopyge quadrita (Cooper et al., 1982) Nopah Fn.
Dimeropygiella caudaniosa (Foster, 1961) Pogonip Group

Order Phacopida
Cybelopsis sp. (Foster, 1961) Pogonip Group
Ectenomus westoni (?) (Foster, 1961) Pogonip Group
Kawino (?) sp. (Foster, 1961) Pogonip Group
Protolithophyes sp. (Hunt, 1975) Pogonip Group
Pseudomera barrandeii (?) (Foster, 1961) Pogonip Group
(Rossaspis ?) sp. (Foster, 1961) Pogonip Group

Order Odontopleurida
Albertella nitida (?) (Bates, 1965) Carrara Fn.
(Nelson, 1978) Saline Valley Fn./Mule Spring Ls.
Dicanthaspis sp. (Foster, 1961) Pogonip Group
Fieldaspis furcata (?) (Bates, 1965) Carrara Fn.
Mexicaspis radius (Palmer and Halley, 1979) Carrara Fn.
Olenoides sp. (Nelson, 1976) Saline Valley Fm.
Ogygopsis sp. (Nelson, 1976) Saline Valley Fm./Harkless Fm.
(Palmer and Halley, 1979) Carrara Fm.
(Taylor and Palmer 1981) Mule Spring Ls.
(Nelson, 1978) Monola Fm.
Oryctocephalus sp. (Nelson, 1978) Monola Fm.
Plagiura minor (Palmer and Halley, 1979) Carrara Fm.
Plagiura ceroxps? (Palmer and Halley, 1979) Carrara Fm.
Schistometopus sp. (Palmer and Halley, 1979) ... Carrara Fm.
Stephanospis? sp. (Nelson, 1976) Saline Valley Fm.
Zacanthoides sp. (Palmer and Halley, 1979) Carrara Fm.
Zacanthopsis sp. (Nelson, 1976) Saline Valley Fm.
Zacanthopsis levis (Bates, 1965) Carrara Fm.

Unknown Taxonomic Placement

Flexilimus porrectus (Foster, 1961) Pogonip Group
Goldfieldia sp. (Nelson, 1976) Saline Valley Fm.
Holmiella sp. (Nelson, 1976) Campito Fm.
Minupelitis conservator (Cooper et al., 1982) Nopah Fm.
Morosa extensa (Cooper et al., 1982) Nopah Fm.
Prehoussia sp. Devils Hole region
Prehoussia alata? (Cooper et al., 1982) Nopah Fm.
Prehoussia diverta (Cooper et al., 1982) Nopah Fm.
Prehoussia indenta (Cooper et al., 1982) Nopah Fm.
Prehoussia prima (Cooper et al., 1982) Nopah Fm.
Proveedoria sp. (Bates, 1965) Carrara Fm.
Pseudosararogota leptogranausta Devils Hole region
Quadrastria infrequens (Foster, 1961) Pogonip Group
Sigmochelus grata (Cooper et al., 1982) Nopah Fm.
Sigmochelus noha (Cooper et al., 1982) Nopah Fm.
Simulofernus wilsoni Devils Hole region
Strigambitus blepharinus (Cooper et al., 1982) Nopah Fm.
Strigambitus transversus (Cooper et al., 1982) Nopah Fm.

Ostracodes

Subclass Ostracoda

Order Podocopida

Acratia similis? (McAllister, 1974) Tin Mt. Ls.
Bairdia sp. (McAllister, 1974) Tin Mt. Ls.
Monoceratina elongata? (McAllister, 1974) Tin Mt. Ls.
Monoceratina virgata (?) (McAllister, 1974) Tin Mt. Ls.

Order Paleocopida

Amphissites similaris? (McAllister, 1974) Tin Mt. Ls.
Kirbyella annenis? (McAllister, 1974) Tin Mt. Ls.
Kirbyella reticulata? (McAllister, 1974) Tin Mt. Ls.
Roundyella (McAllister, 1974) Tin Mt. Ls.
Scrubicula crestiformis (McAllister, 1974) Tin Mt. Ls.
Tetrasaccus stewartiae? (McAllister, 1974) Tin Mt. Ls.

Unknown Taxonomic Placement

Acantostephanus? bammensis (McAllister, 1974) Tin Mt. Ls.
Graphiadactylus morider (McAllister, 1974) Tin Mt. Ls.
Kummerovia sp. (McAllister, 1974) Tin Mt. Ls.
Psilokirbyella ozarkensis? (McAllister, 1974) Tin Mt. Ls.
Rectobaidera fragosa? (McAllister, 1974) Tin Mt. Ls.
Shivaelia macallisteri (McAllister, 1974) Tin Mt. Ls.

Phylum Mollusca

Class Gastropoda

Subclass Prosobranchia

Order Archaegastropoda

Anomphalus sp. (Hall, 1971) Tin Mt. Ls.
Baylea? sp. (Hall, 1971) Tin Mt. Ls.
Bellerophon? sp. (Hall, 1971) Tin Mt. Ls.
Eucoria? sp. (R. H. Miller, 1982) Pogonip Group
Euomphalus? sp. (Foster, 1973) Pogonip Group
Liospira sp. (R. H. Miller, 1982) Pogonip Group
Macturites sp. (Foster, 1961) Pogonip Group
Macturites magnus (Foster, 1961) Pogonip Group
Matherella sp. (Yochelson et al., 1965) Nopah Fm.
Mitrospira longwelli (R. H. Miller, 1982) Pogonip Group
Mourolonia sp. (Hall, 1971) Tin Mt. Ls.
Marchisonia sp. (Langenheim, 1954; Hall, 1971) Tin Mt. Ls.
Naticopsis (Hall, 1971) Tin Mt. Ls.
Oreocassia ambigua (McAllister, 1974) Lost Burro Fm.
Palliseria longwelli (Foster, 1961) Pogonip Group
Palliseria robusta (Foster, 1961) Pogonip Group
Palliseria robusta (Foster, 1973) Pogonip Group
Platycecaras sp. (Langenheim, 1954; Yochelson, 1965) Tin Mt. Ls.
Platycecaras platystoma (Tischler, 1954) Tin Mt. Ls.
Rheoidea? sp. (Yochelson, 1965) Tin Mt. Ls.
Scaevinga sp. (Yochelson et al., 1965) Nopah Fm.
Straparolus sp. (Hall, 1971) Tin Mt. Ls.
Straparolus utahensis (Hall, 1971) Tin Mt. Ls.
Straparolus subplanus (Langenheim, 1954) Tin Mt. Ls.
Strepsodiscus sp. (Yochelson et al., 1965) Nopah Fm.
Worthenia sp. (Langenheim, 1954) Perdido Fm.
(Peck, 1950) Tin Mt. Ls.

Gastropoda incertae sedis

Microgastropod steinkersn (Youngquist and Heinrich, 1966) Lost Burro Fm.
Wyattia (Taylor, 1966) Reed Fm.

Class Bivalvia

Subclass Protobranchia

Order Nuculoida

Cenodonta sp. (R. H. Miller, 1982) Pogonip Group

Order Pterioida

Canecyprina wapanuckensis? (Peck, 1950) Tin Mt. Ls.

Order Pholadomyoida

Unknown Taxonomic Placement

Platycecaras sp. (McAllister, 1974) Hidden Valley Do.

Class? Matheva

Mathevia sp. (Hardy, 1988) Nopah Fm.

Class Cephalopoda

Subclass Nautiloidea

Order Barrandocerida

Cyrtoroceris cesser (Gordon, 1964) Perdido Fm.

Order Nautilida

Liroceras(?) sp. (Gordon, 1964) Perdido Fm.

Order Orthocerida
Mitrotheceras clatum (Gordon, 1964) Perdido Fm.
Mitrotheceras perfolium (Gordon, 1964) Perdido Fm.
Mooreoceras sp. (Peck, 1950) Tin Mt. Ls.

Subclass Actinoceratoidea
Order Actinocerida
Armenoceras sp. (Hall, 1971) Ely Springs Dolomite
Bryonoceras sp. (Peck, 1950) Tin Mt. Ls.
Rayonoceras solidiforme (Gordon, 1964) Perdido Fm./Rest Spring Shale
Rayonoceras(?) vaughanianum (Langenheim, 1954) Perdido Fm.

Subclass Bactritoida
Order Bactritoida
Bactrites sp. (Peck, 1950) Tin Mt. Ls.
Bactrites carbonarius (Gordon, 1964) Perdido Fm.
Stenoponites sp. (Gordon, 1964) Tihvipah Ls.

Subclass Ammonoidea
Bisatoceras greenei (Gordon, 1964) Tihvipah Ls.
Eumorphoceras paucinodum (Gordon, 1964) Perdido Fm.
Prolecanites (Rhipecanites) sp. (Gordon, 1964) ... Perdido Fm.

Cephalopoda generic:
Coiled nautiloid (Foster, 1961) Pogonip Group
Orthoconic nautiloids (Foster, 1961) Pogonip Group
(Foster, 1973) Pogonip Group

Taxa doubtfully classified as nautiloids:
Anthracoceras macallisteri (Gordon, 1964) Perdido Fm.
Cravenoceras sp. (Langenheim, 1954) Perdido Fm.
Cravenoceras hesperium (Gordon, 1964) Perdido Fm.
(Peck, 1950) Tin Mt. Ls.
Cravenoceras inyoense (Gordon, 1964) Perdido Fm.
(Gordon, 1964) Tin Mt. Ls.
Cravenoceras merriami (Gordon, 1964) Perdido Fm.
(Gordon, 1964) Rest Spring Shale
(Peck, 1950) Tin Mt. Ls.
Cravenoceras nevadense (Gordon, 1964) Perdido Fm.
(Peck, 1950) Tin Mt. Ls.

Delepinoceras californicum (Gordon, 1964) Perdido Fm.

Phylum Brachiopoda
Class Inarticulata
Order Lingulida
Lingula sp. (McAllister, 1952) Nopah Fm.
Lingulella sp. (Foster, 1961) Campito Fm.
(Cooper et al., 1982) Nopah Fm.

Lingulella amphora(?) Devis Hole region
Lingulella kanabensis (Bates, 1965) Carrara Fm.
(Cloud, 1968) Wood Canyon Fm.
(Rowell, 1977) Poleta Fm.

Obolus sp. (McAllister, 1952) Nopah Fm.

Order Acrotritida
Acrotrita idahoensis(?) (McAllister, 1952) Nopah Fm.
Angulotritra trigularis (Cooper et al., 1982) Nopah Fm.
Apsotreta expansa (Cooper et al., 1982) Nopah Fm.

Apsotreta stricta Devils Hole region
Conotreta sp. (Foster, 1961) Pogonip Group
Linnarssonella girtyi (Cooper et al., 1982) Nopah Fm.
Scaphelasma septatum(?) (Foster, 1961) Pogonip Group
Spinulotha dubia (Rowell, 1977) Poleta Fm.

Order Obolellida
Obolella sp. (Rowell, 1977) Poleta/Harkless Fm.
(Firby and Durham, 1974) Campito Fm.
Obolella excelsis (Rowell, 1977) Campito Fm.
Obolella vermilionensis (Rowell, 1977) Campito Fm.

Order Paterinida
Mickwilza occidentis (Rowell, 1977) Harkless Fm.
Micromitra sp. (Firby and Durham, 1974) Campito Fm.

Class Articulata
Order Orthida
Dalmanella sp. (Hazzard, 1937) Ely Springs Do.
Hesperonema sp. (R. H. Miller, 1982) Pogonip Group
Nuxia sp. (Rowell, 1977) Campito Fm.
Nuxia montanaensis (Bates, 1965) Carrara Fm.
Orthobranchites eucarchis (Foster, 1961) Pogonip Group
Orthis sp. (R. H. Miller, 1982) Pogonip Group
Orthidella longwelli (Foster, 1961) Pogonip Group
Pauciceras(?) sp. (Hall, 1971) Ely Springs Do.
Plaeosynsps sp. (Hall, 1971) Ely Springs Do.
Platycestra sp. (Hazzard, 1937) Ely Springs Do.
Pompeckium argenteum (Rowell, 1977) Poleta Fm.
Rhipidomella sp. (McAllister, 1974) Tin Mt. Ls.
Rhipidomella micheli(?) (Hall, 1971) Tin Mt. Ls.
Rhipidomella nevadensis (Hall, 1971) Keeler Canyon Fm.

Order Strophomenida
Buxtonia(?) sp. (Hall, 1971) Tin Mt. Ls.
Chonetes sp. (Langenheim, 1954; Hall, 1971) Tin Mt. Ls.
Dictyclostus sp. (Langenheim, 1953) Perdido Fm.
(Langenheim and Tischler, 1954) Tin Mt. Ls.
Fardenia sp. (McAllister, 1974) Hidden Valley Do.
Ingria claudi (Foster, 1961) Pogonip Group
Leptaena sp. (McAllister, 1974) Hidden Valley Do.
Marginifera sp. (Langenheim, 1954) Perdido Fm.
Nervostraphia sp. (Langenheim, 1954) Tin Mt. Ls.
Orthotetes sp. (Langenheim, 1954) Tin Mt. Ls.
Productella sp. (Hall, 1971) Lost Burro Fm.
(Hall, 1971) Tin Mt. Ls.
Productus sp. (Peck, 1950) Tin Mt. Ls.
Productoid sp. (McAllister, 1974) Tin Mt. Ls.
(McAllister, 1974) Tin Mt. Ls.
Rhipidum sp. (McAllister, 1974) Hidden Valley Do.
Schizophoria sp. (Hall, 1971) Tin Mt. Ls.
Schuchertella sp. (Langenheim, 1954) Perdido Fm.
(McAllister, 1974) Tin Mt. Ls.
Schuchertella rubra(?) (McAllister, 1974) Tin Mt. Ls.
Sowerbyella sp. (Hall, 1971) Ely Springs Do.

Order Rhynochellida
Camarotoechia sp. (Gordon and Langenheim, 1954) Tin Mt. Ls.
Leiro rhynchus(?) sp. (McAllister, 1974) Tin Mt. Ls.
Paryphorhynchus(?) sp. (Langenheim and Tischler, 1959) Tin Mt. Ls.
Rhynochellid sp. (McAllister, 1974) Tin Mt. Ls.
Rhynochopora sp. (Hall, 1971) Tin Mt. Ls.
Rhynchotheca(?) sp. (Hall, 1971) Ely Springs Do.
Rhynchotheca argenticulata (Hazzard, 1937) Ely Springs Do.

Order Spiriferida

Athyris (?) sp. (Tischler, 1954) Tin Mt. Ls.
Athyra sp. (Langenheim and Tischler, 1959) Tin Mt. Ls.
Atrypis sp. (McAllister, 1974) Hidden Valley Do.
Brachythyris suborbiculata (McAllister, 1974) Tin Mt. Ls.
Choristites sp. (Langenheim, 1954) Tin Mt. Ls.
Choristites glemfosi (Tischler, 1954) Tin Mt. Ls.
Cleiothyridina sp. (Langenheim, 1954) Tin Mt. Ls.
Cleiothyridina hirustala (?) (Tischler, 1954) Tin Mt. Ls.
Cleiothyridina obmaxima (?) (Hall, 1971) Tin Mt. Ls.

Composita sp. (McAllister, 1974) Tin Mt. Ls.
Crurithyris sp. (Hall, 1971) Keeler Canyon Fm.
Cyclina sp. (Hall, 1971) Tin Mt. Ls.
Cystrospirifer sp. (Langenheim and Tischler, 1959) .. Tin Mt. Ls.
Dimegalasma sp. (McAllister, 1974) Tin Mt. Ls.
Eospirifer sp. (McAllister, 1974) Hidden Valley Do.
Eumetria sp. (McAllister, 1974) Tin Mt. Ls.
Hustedia sp. (McAllister, 1974) Tin Mt. Ls.

Order Terbratulida

Craena sp. (McAllister, 1974) Tin Mt. Ls.
Dielasma (?) sp. (Hall, 1971) Tin Mt. Ls.

Class Uncertain

Order Kutorginida

Kutorgina perugata (Rowell, 1977) Poleta Fm.

Unknown Taxonomic Placement

Acrosperfor kohbena (McAllister, 1974) Hidden Valley Do.
Apsotera sp. (Hunt, 1975) Nopah Fm.
Cleiothyridina devonica (?) (McAllister, 1974) Lost Burro Fm.
Conchidium sp. (McAllister, 1974) Hidden Valley Do.
Gypidula loweryi (McAllister, 1974) Hidden Valley Do.
Mericostella robertsisis (McAllister, 1974) Hidden Valley Do.
Physotretta sp. Devils Hole region

Resserella sp. (McAllister, 1974) Lost Burro Fm.
Setigerites sp. (McAllister, 1974) Perdido Fm.
Striatifera sp. (McAllister, 1974) Perdido Fm.
Swantoniana weeksi (Rowell, 1977) Poleta Fm.

Symphysurina woosteri (Foster, 1961) Poigenip Group
Stringocephalus sp. (McAllister, 1974) Lost Burro Fm.
Tenticosperfor cyrtiformis (McAllister, 1974) Lost Burro Fm.
Tyleothyris raymondii (?) (McAllister, 1974) Lost Burro Fm.

Phylum Bryozoa

Order Cryptostomata

Fenestella sp. (Langenheim, 1954) Tin Mt. Ls.
Rhomboropora sp. (Hall, 1971) Keeler Canyon Fm.

Order Cystoporata

Cystodictya sp. (Hall, 1971) Tin Mt. Ls.

Unknown Taxonomic Placement

Polypora sp. (Hall, 1971) Keeler Canyon Fm.

Phylum Echinodermata

Class Eocrinidea

(Eocystites) (Nelson, 1976) Poleta Fm.
(Cooper et al., 1982) Nopah Fm.

Class Helicoplacoidea (Nelson, 1976) Poleta Fm.

Subphylum Crinozoa

Class Crinoidea

Order Cladida

Hypselocrinus pleist (?) (Tischler, 1954) Tin Mt. Ls.

Echinoderm generic

Cystoid plates (Foster, 1961) Poigenip Group
Echinoderm plates (Hall, 1971) Poigenip Group
Pelmatozoan columnals (Foster, 1961) Poigenip Group

Phylum Hemichordata

Dendroid Graptolites

Dictyomena sp. (Foster, 1961) Poigenip Group
Monograptus sp. (McAllister, 1974) Hidden Valley Do.

Incertae Sedis

Hyolithids (Mount, 1982) Campito Fm.
(Signor and Saverese, 1988) Deep Spring Fm.
(Signor and Saverese, 1988) Wood Canyon Fm.
(Onken and Signor, 1988) Poleta Fm.

Agglutinated tubes

Campitius (Firby and Durham, 1974) Campito Fm.
(Signor and Mount, 1989) Poleta Fm.
Playasolenites (Signor and Mount, 1989) Campito Fm.
Onuphionella (Signor and McMenamin, 1988) Campito Fm.
Salterella (Signor and Mount, 1989) Harkless Fm.

Small Shelly Fossils

Bemella (Signor and Mount, 1989) Poleta Fm.
Chancelloria (Signor and Mount, 1989) Poleta Fm.
Hyolithellus (Signor and Mount, 1989) Campito Fm.
Lapworthella (Signor and Mount, 1989) Poleta Fm.
Microdictyon (Signor and Mount, 1989) Campito Fm.
paitituubulids (Signor and Mount, 1989) Campito Fm.
(Signor and Mount, 1989) Poleta Fm.

Pre-trilobite shelly fauna

Cloudina (Parsons, 1996) Deep Spring Fm.
(Langille 1974) Stirling Quartzite
Nevadatubulus (Parsons, 1996) Deep Spring Fm.
(Signor and Mount, 1989) Reed Fm.
Sinotubulites (Parsons, 1996) Deep Spring Fm.
FOSSIL VERTEBRATES

Phylum Chordata (conodonts)

Order Condontophorida

Acodus cambricus (R. H. Miller and Paden, 1976) Nopah Mm.
Acodusunicostatus (R. H. Miller and Hanna, 1972)

Hidden Valley Do.

Ambalodus sp. (R. H. Miller, 1982) Hidden Valley Do.
Aphelognathus sp. (R. H. Miller, 1982) Ely Springs Do.
Aulacognathus sp. (R. H. Miller, 1982) Hidden Valley Do.
Belodina sp. (R. H. Miller, 1982) Ely Springs Do.
Belodina ornata (Hall, 1971) Ely Springs Do.
Carniodus sp. (R. H. Miller, 1982) Hidden Valley Do.
Coelocerodontus burkei (R. H. Miller and Paden, 1976)

Nopah Mm.

Cordylodus sp. (McAllister, 1974) Lost Burro Fn.
Delotaaxis (?)(R. H. Miller, 1982) Hidden Valley Do.
Distacodus obliquicostatus (?) (R. H. Miller and Hanna, 1972) Hidden Valley Do.
Distacodus palmeri (Cooper et al., 1982) Nopah Mm.
Diadelognathus nicoletti (R. H. Miller, 1982) Hidden Valley Do.
Distomodus sp. (R. H. Miller, 1982) Hidden Valley Do.
Distomodus kentuckyensis (R. H. Miller, 1982)

Hidden Valley Do.

(Draperodus sp. (R. H. Miller and Hanna, 1972) Hidden Valley Do.
Elicitognathus sp. (McAllister, 1974) Tin Mt. Ls.
Euprioniodina sp. (McCallister, 1974) Perido Fm./Tin Mt. Ls.
Exoghnathus sp. (R. H. Miller and Hanna, 1972)

Hidden Valley Do.

Falcodus sp. (McAllister, 1974) Tin Mt. Ls.
Furcaria sp. (R. H. Miller, 1982) Pogonip Group
Furnishina asymetrica (Cooper et al., 1982) Nopah Mm.
Gnathodus punctatus (McAllister, 1974) Tin Mt. Ls.
Gnathodus texanus (McAllister, 1974) Perido Fn.
Hadrogognathus sp. (R. H. Miller, 1982) Hidden Valley Do.
Hertznia (?)(Cooper et al., 1982) Nopah Mm.
Hibbardella sp. (Youngquist and Heinrich, 1966) Tin Mt. Ls.
Hindeodella sp. (McAllister, 1974) Tin Mt. Ls.
(Hindeodella sp. (McAllister, 1974) Tin Mt. Ls.
(McAllister, 1954) Lost Burro Fn.
(Hindeodella confluentiae) (R. H. Miller and Hanna, 1972)

Hidden Valley Do.

Icriodus latericeps (R. H. Miller, 1976) Hidden Valley Do.
Icriodus symmetricus (McAllister, 1974) Hidden Valley Do.
Juanognathus (?) (R. H. Miller, 1982) Pogonip Group
Leptochirognathus sp. (R. H. Miller, 1982) Pogonip Group
Ligodonida sp. (McAllister, 1974) Tin Mt. Ls.
Lonchidina sp. (McAllister, 1974) Perido Fn.
(R. H. Miller and Hanna, 1972) Hidden Valley Do.
Lonchidina fluviata (?) (R. H. Miller and Hanna, 1972)

Hidden Valley Do.

Multioistodus sp. (R. H. Miller, 1982) Pogonip Group
Muellerina pomeraniensis (Cooper et al., 1982) Nopah Mm.
Nogamiconus cambricus (Cooper, 1982) Nopah Mm.
Neoprmioniodus sp. (R. H. Miller and Hanna, 1972)

Hidden Valley Do.

Neoprmioniodus costatus (?) (R. H. Miller and Hanna, 1972)

Hidden Valley Do.

Neoprmioniodus planus (R. H. Miller, 1982) Hidden Valley Do.
Neoprmioniodus sp. (R. H. Miller and Hanna, 1972)

Hidden Valley Do.

Neoprmioniodus celloni (R. H. Miller and Hanna, 1972)

Hidden Valley Do.

Oistodus multicoloratus (R. H. Miller, 1982) Pogonip Group
Oneotodus gallatini (Cooper et al., 1982) Nopah Mm.
Oneotodus termius (Cooper et al., 1982) Nopah Mm.
Ooulus sp. (R. H. Miller, 1982) Ely Springs Do.
Ozarkodina adriaticae (R. H. Miller and Hanna, 1972)

Hidden Valley Do.

Ozarkodina crassa (?) (McAllister, 1974) Hidden Valley Do.
Ozarkodina excavata (?) (R. H. Miller, 1982) Hidden Valley Do.
Ozarkodina fundamentata (?) (McAllister, 1974)

Hidden Valley Do.

Ozarkodina hanoverensis (R. H. Miller, 1982) Hidden Valley Do.
Ozarkodina media (R. H. Miller, 1976) Hidden Valley Do.
Palmateopus sp. (Youngquist and Heinrich, 1966) Tin Mt. Ls.
Palmateopus distorta (Youngquist and Heinrich, 1966)

Lost Burro Fn.

Paliodus (?) sp. (R. H. Miller and Hanna, 1972) Hidden Valley Do.
(Paliodus (?) sp. (R. H. Miller and Hanna, 1972) Hidden Valley Do.
Paliodus acostatus (McAllister, 1974) Hidden Valley Do.
Panderodus serratus (R. H. Miller, 1982) Hidden Valley Do.
Panderodus simplex (R. H. Miller and Hanna, 1972)

Hidden Valley Do.

Panderodus unicostatus (McAllister, 1974) Hidden Valley Do.
Plectodina sp. (Hall, 1971) Ely Springs Do.
Polycalodons sp. (R. H. Miller, 1982) Pogonip Group
Polygnathus sp. (Youngquist and Heinrich, 1966) Tin Mt. Ls.
Polygnathus communis (McAllister, 1974) Tin Mt. Ls.
Polygnathus inornatus (McAllister, 1974) Tin Mt. Ls.
Polygnathus inornatus (?) (McAllister, 1974) Tin Mt. Ls.
Polygnathus linguiformis (Youngquist and Heinrich, 1966)

Lost Burro Fn.

Polygnathus symmetricus (McAllister, 1954) Tin Mt. Ls.
Prioniodina sp. (McAllister, 1974) Perido Fn.
Prioniodus evae (R. H. Miller, 1982) Pogonip Group
Proconodontus (?) sp. (Cooper et al., 1982) Nopah Mm.
Proconodontus gallantini (Cooper et al., 1982) Nopah Mm.
Proconodontus rotundatus (Cooper et al., 1982) Nopah Mm.
Proconodontus tenus (Cooper et al., 1982) Nopah Mm.
Prostegidodontus danderbergiae (Cooper et al., 1982) Nopah Fn.
Prosantodontus eureka (Cooper et al., 1982) Nopah Fn.
Protapodous sp. (R. H. Miller, 1982) Pogonip Group
Pseudobelodina sp. (R. H. Miller, 1982) Pogonip Group
Pseudognathodous sp. (Cooper et al., 1982) Nopah Mm.
Pterospathodus sp. (R. H. Miller and Hanna, 1972)

Hidden Valley Do.

Pterospathodus amorphognathiodes (R. H. Miller, 1978)

Hidden Valley Do.

Sagittodontus sp. (Cooper et al., 1982) Nopah Mm.
Sagittodontus dahlmani (Cooper et al., 1982) Nopah Mm.
Sagittodontus eureka (Cooper et al., 1982) Nopah Fn.
Sagittodontus furnisii (Cooper et al., 1982) Nopah Fn.
Scandognus sp. (Cooper et al., 1982) Nopah Mm.
Scelopodus cornutiformis (?) (R. H. Miller, 1982) Pogonip Group
Siphonodella cooperi (McAllister, 1974) Tin Mt. Ls.
Siphonodella obsoleta (McAllister, 1974) Tin Mt. Ls.
Spaghognathodus sp. (R. H. Miller and Hanna, 1972)
	Hidden Valley Do.
	(McAllister, 1974) Perdido Fm. Tin Mt. Ls.
Spaghognathodus anteposicorins? (McAllister, 1974)
	Tin Mt.Ls.

Spaghognathodus polinclinitus (R. H. Miller, 1976)
	Hidden Valley Do.
Spaghognathodus primus? (R. H. Miller and Hanna, 1972)
	Hidden Valley Do.
Spaghognathodus tyroleensis (R. H. Miller and Hanna, 1972) ...
	Hidden Valley Do.

Synprioniodina silicata? (R. H. Miller and Hanna, 1972)
	Hidden Valley Do.
Taphrognathus varians (McAllister, 1974) Perdido Fm.
Tetraprioniodius? (sp. (R. H. Miller, 1982) Pogonip Group
Trianguloidus? (R. H. Miller, 1982) Pogonip Group
Trichonoidella sp. (R. H. Miller and Hanna, 1972)
	Hidden Valley Do.
Trichonoidella excavata (R. H. Miller and Hanna, 1972)
	Hidden Valley Do.
Trichonoidella papilio (R. H. Miller and Hanna, 1972)
	Hidden Valley Do.

Walliserodus deboli (R. H. Miller, 1978) Hidden Valley Do.
Westergaardodina bicuspidata (Cooper et al., 1982) . Nopah Fm.
Westergaardodina moessebergensis (Cooper et al., 1982) Nopah Fm.

Zyognathus? (sp. (Hall, 1971) Ely Springs Do.

Class Agnatha

Order Pteraspidiformes

Family Pteraspidae

Panamintaspis novii (Elliott and Ileyes, 1996) Lost Burro Fm.
Blickaspis priscillae (Elliott and Ileyes, 1996) Lost Burro Fm.

Class Placodermi

Order Arthrodira

Family Dinichthyidae

Dunkleosteus terreus (Dunkle and Lane, 1971) Lost Burro Fm.

Class chondrichthyces

Subclass Elasmobranchii
cladodont (Dunkle and Lane, 1971) Lost Burro Fm.

Subclass Holoccephali

Family Cochliodontidae

Cochliodont (Dunkle and Lane, 1971) Lost Burro Fm.

Class Osteichthyces

Order Cyprinodontiformes

Family Cyprinodontidae

Fundulus curvy (R. R. Miller, 1945) Titus Canyon Fm.
Fundulus eulepis (R. R. Miller, 1945) Titus Canyon Fm.
Cyprinodon breviradius (R. R. Miller, 1945) Titus Canyon Fm.

Class Reptilia

Order Chelonia (Stock, 1949) Titus Canyon Fm.

Class Mammalia

Order Rodentia

Family Paramyida (Stock, 1949) Titus Canyon Fm.

Order Carnivora

Family Canidae (Stock, 1949) Titus Canyon Fm.

Order Perissodactyla

Family Brontotheriidae

Protitanops curvy (Stock, 1936) Titus Canyon Fm.

Family Equidae

Mesobippus sp. (Stock, 1949) Titus Canyon Fm.
Mesobippus westoni (Mason, 1988) Titus Canyon Fm.

Family Helaletidae

Colodon sp. (Stock, 1949) Titus Canyon Fm.

Family Rhinocerotidae

Teletaceras mortivallis (Stock, 1949) Titus Canyon Fm.

Order Artiodactyla

Family Agrochoeridae

Protoreodon transmontanus (Stock, 1949) Titus Canyon Fm.

Family Protoceratidae

Posobromylus robustus (Stock, 1949) Titus Canyon Fm.

Family Leptomerycidae

Leptomeryx blacki (Stock, 1949) Titus Canyon Fm.
Leptomeryx cf. yoderi (Mason, 1988) Titus Canyon Fm.

TRANCE FOSSILS

Archaenassa sp. (Nelson, 1976) Harkless Fm.
Arthroptus sp. (Nelson, 1976) Harkless Fm.
Astericites? (sp. (Nelson, 1976) Campto Fm.
Astroplithon? (sp. (Nelson, 1976) Campto Fm.
Belorhaphe sp. (Nelson, 1976) Campto Fm.
Berggaueria sp. (Nelson, 1976) Harkless Fm.
Cochlichus sp. (Nelson, 1976) Campto Fm.
Dactyloides sp. (Nelson, 1976) Campto Fm.

Diplichnites sp. (Signor and Mount, 1989) Deep Spring Fm.
(Nelson, 1976) Campto Fm.
(Cooper et al., 1982) Nopah Fm.

Helminthopsis sp. (Nelson, 1976) Campto Fm.
Laevicyclus sp. (Nelson, 1976) Harkless Fm.
Monocereterion sp. (Mount, 1982) Campto Fm.
(Nelson, 1976) Harkless Fm.

Phycodes sp. (Nelson, 1976) Campto Fm.
Planolites sp. (Nelson, 1976) Wyman Fm.
(Alpert, 1976) Deep Spring Fm.
(Bates, 1965) Carrara Fm.

Psammichnites? (sp. (Nelson, 1976) Harkless Fm.
Rusophycus sp. (Signor and Mount, 1989) Deep Spring Fm.
(Nelson, 1976) Harkless Fm.

Scolicia sp. (Nelson, 1976) Campto Fm.
(Mount, 1982) Campto Fm.
(Nelson, 1976) Harkless Fm.

Skolithos sp. (Wright et al., 1978) Noonday Do.
(Stewart, 1970) Wood Canyon Fm.
(Prave and Wright, 1986) Zabrisky Quartzite

Teichichnus sp. (Nelson, 1976) Campto Fm.
(Nelson, 1976) Saline Valley Fm.

Zoophycos sp. (Nelson, 1976) Campto Fm.
APPENDIX B:
DEATH VALLEY VERTEBRATE FOSSIL
SPECIMENS IN OUTSIDE REPOSITORIES

This appendix provides information regarding vertebrate fossil specimens collected from Death Valley National Park. The first group of specimens consists of type specimens. The second group is a systematic listing and descriptions of other significant vertebrate fossils from the park.

INSTITUTIONAL LIST:
Field Museum of Natural History (FMNH)
Natural History Museum of Los Angeles County (LACM)
United States National Museum (USNM-Smithsonian Institution)

SYSTEMATIC TYPE SPECIMEN LIST:
Class Pteraspidomorpha
Subclass Heterostraci
Order Pteraspidiformes
Family Pteraspididae

Panamintaspis snowi
(FMNH-1014146)
Park: Death Valley National Park.
Locality: Trail Canyon area of Panamint Range.
Material: Large dorsal shield and elongated rostrum.
Author: Elliott and Ilyes, 1996.
Paratypes: FMNH-14147-14177.
Description: The remains of this primitive fish were collected from the basal part of the Lippincott Member of the Lost Burro Formation. This is a large pteraspid with a slender dorsal shield and elongate rostrum. The type specimen is from Death Valley. There are a number of paratypes including FMNH-14147-14177. The genus name is based upon the locality in the Panamint Mountains and the species is named in honor of J.C. Snow, who first recognized the presence of vertebrates in the Lost Burro Formation (Elliott and Ilyes, 1996).

Class Osteichthyes
Subclass Actinopterygii
Order Cyprinodontiformes
Family Cyprinodontidae

Fundulus curyi
(LACM CIT 10239)
Park: Death Valley National Park.
Locality: 3 miles SE of Chloride Cliffs in Funeral Mountains.
Material: Excellent specimen except for crushed cranium.
Collector: Donald Curry.
Author: R.R. Miller, 1949.
Paratypes: LACM 10240, 10247, 10249.
Description: The type is an excellent specimen except for a crushed cranium. Specimens LACM 10240, 10247 and 10249 are designated as paratypes and are from the same locality in Death Valley. There is some question regarding the unit from which these specimens were collected. They were originally reported from the Upper Eocene Titus Canyon Formation; however the fish were actually collected several miles from Titus Canyon proper within the same unit where the titanothere material was obtained. The fish locality was 3 miles southeast of Chloride Cliffs in the Funeral Mountains. The species name curyi is in honor of Death Valley park naturalist Donald Curry who collected the original specimen (R. R. Miller, 1945).

Fundulus eulepis
(USNM 16883)
Park: Death Valley National Park.
Locality: 6 miles southeast of Furnace Creek Ranch in the Black Mountains.
Material: Partial specimen.
Collector: Donald Curry (12/5/35).
Author: R.R. Miller, 1949.
Paratypes: USNM 16884, 16885.
Description: Collected by Don Curry on December 5, 1935. The partial specimen was collected approximately 6 miles southeast of Furnace Creek Ranch in the Black Mountains. USNM 16884 and 16885 are designated as paratypes for this species. The species name eulepis means “well scaled” in reference to the close-set, numerous scales present on the holotype (R. R. Miller, 1945).

Cyprinodon breviraadius
(LACM CIT 10245)
Park: Death Valley National Park.
Locality: 3 miles SE of Chloride Cliffs in Funeral Mountains.
Material: Nearly complete specimen except for head.
Collector: Donald Curry.
Author: R.R. Miller, 1949.
Description: Collected by Don Curry from the same locality as Fundulus curyi in Death Valley National Park. The specimen is nearly complete except that the head is missing. The name breviraadius means short-rayed, and refers to the short rays of the dorsal and anal fins (R. R. Miller, 1945).

Class Mammalia
Order Perissodactyla
Family Brontotheriidae

Protilanops curyi
(holotype - LACM 1854)
Park: Death Valley National Park.
Locality: Titus Canyon east of Thimble Peak.
Material: Skull and jaws.
Collector: Donald Curry.
Author: Stock, 1936.
Description: The type specimen of Protilanops curyi was collected in 1934 from the Titus Canyon Formation in Titus Canyon east of Thimble Peak. The skull and jaws were originally in the collections at the California Institute of Technology and later transferred to the Los Angeles County Museum. This specimen is large, brachycephalic, has strong zygomatic, reduced incisors, and
developed horns. The Death Valley specimen is overall more similar to the White River titanotheres. However, the long and broad nasals, narrow and deeply incised nario-maxillary notch and type of horns are distinctly different from the White River titanotheres (Stock, 1936).

Family Rhinocerotidae

Teleteras mortvallis

(holotype – LACM 3564)

Park: Death Valley National Park.

Locality: Titus Canyon.

Material: A fragment of left ramus and teeth.

Collector: Chester Stock.

Author: C. Stock, 1949.

Article: Contributions to Paleontology, Carnegie Institute of Washington Publication, 584(VIII):231-244.

Description: A fragment of left ramus and teeth represents the holotype for this species. A number of metapodial elements were also found in association with the ramus and assigned to _Teleteras mortvallis_. The metapodial proportions of _Subhyladododon_ but are smaller. The Titus Canyon ramus and lower molars are similar to those in _Teleteras rhinocerinus_. Overall characters indicate that _T. mortvallis_, if a distinct species, represents a true rhino intermediate between those of the Uinta and the middle Washakie from Wyoming (Stock, 1949). An additional ramus with P₂-M₁ (LACM 61303) was collected from Titus Canyon (Hanson, 1989).

Order Artiodactyla

Family Agriochoeridae

Protoedodon transmontanus

(holotype – LACM 3558)

Park: Death Valley National Park.

Locality: Titus Canyon.

Material: Partial right maxillary.

Collector: Chester Stock.

Author: C. Stock, 1949.

Article: Contributions to Paleontology, Carnegie Institute of Washington Publication, 584(VIII):231-244.

Description: Several individuals of agriochoerids have been collected from Titus Canyon and represent the most abundant mammal fossil known from the locality. The holotype consists of a partial right maxillary with upper P³-M₁. The Titus Canyon specimens resemble _Agriochoerus minimus_ from Montana, but are slightly larger in size. However, _P. transmontanus_ is considerably smaller that the species of agriochoerids from the White River and John Day formations (Stock, 1949).

Family Protoceratidae

Poaobromylus robustus

(holotype – LACM 3569)

Park: Death Valley National Park.

Locality: Titus Canyon.

Material: Left ramus, teeth, and a number of metapodial elements.

Collector: Chester Stock.

Author: C. Stock, 1949.

Article: Contributions to Paleontology, Carnegie Institute of Washington Publication, 584(VIII):231-244.

Description:

The type specimen from Titus Canyon consists of a partial left ramus with lower P₂-M₁. The specimen is larger, more robust, and has distinct differences in P₁ from _Poaobromylus kayi_ from the upper beds of the Duchesne River Formation. According to Stock (1949), there are many similarities between _P. robustus_ and _P. kayi_. There has been some controversy regarding the taxonomic identity of _Poaobromylus_. Peterson previously considered the genus to be a camelid (Peterson, 1931). More recent taxonomic revisions indicate that _Poaobromylus_ is a member of the Protocerataceae (Carroll, 1987).

Systematic Vertebrate List:

Class Pteraspidomorphi or Class Agnatha? (inventory)

Subclass Heterostraci

Order Pteraspidiformes

Family Pteraspididae

Bleichomys prisca (holotype – FMNH-PF 867)

The type specimen was described from the Water Canyon Formation near Dry Lake in northern Utah (Denison, 1953, 1970). The material collected from Death Valley provides information regarding the dorsal shield (FMNH 14178), additional shield fragments (FMNH-PF 14179-14184), three immature ventral shields (FMNH-PF 14185-14187), and four body scales (FMNH-PF 14188-14191). The Death Valley specimens were collected from the Lippincott Member of the Lost Burro Formation near the Trail Canyon area (Elliott and Ilyes, 1996). Additional indeterminate pteraspid specimens were also collected in these Devonian sediments.

Class Placodermi

Order Arthrodire

Family Dinichthiidae

cf. Dunkleostes terrelli

Weathered disassociated remains of a Devonian arthrodire have been reported from the Lost Burro Formation in the Cottonwood Region (Dunkle and Lane, 1971). The fragmentary elements of dermal armor include a right posterior dorsal lateral plate and a left interlateral plate identified as _Dunkleostes_.

Class Chondrichthyes

Subclass Elasmobranchii

A small cladodont shark tooth has been reported from the Devonian Lost Burro Formation (Dunkle and Lane, 1971). This specimen is contained within the collections at the Cleveland Museum of Natural History.

Subclass Holoccephali

Family Cichlidodontidae

An isolated unidentified cichlidodont crushing tooth was collected from the Devonian Lost Burro Formation (Dunkle and Lane, 1971).
Class Reptilia
Order Chelonia
A number of turtle scutes were collected in the Titus Canyon Formation in Titus Canyon. These chelonian scutes are in the collections of the Los Angeles County Museum.

Class Mammalia
Order Carnivora
A partial left ramus with a fragment of the M₃ crown of a canid was collected in Titus Canyon. The limited amount of material (CIT 3568) does not enable identification beyond that of

Order Perissodactyla
Family Brontotheriidae
A poorly preserved portion of a possible menodontine titanothere skull (LACM 2007) was collected in the west fork of Titus Canyon. The tentative identification as a menodontine titanothere is based upon the elongate molars and the basal cross section of the horn.

Family Equidae
Mesohippus sp.
A few rare specimens of horse material were collected from the same horizon as the *Protitalamus* specimen in Titus Canyon. This material represents the earliest equid material from the Great Basin Province and is smaller than *Mesohippus bairdii* of the White River. The best-preserved specimens include a lower M₃ (LACM 3562) and a calcaneum (LACM 3563). According to Stock (1949), this material suggests a horse intermediate in size between *Epihippus* of the Uinta and *Mesohippus bairdii*.

Mesohippus westoni
(referred specimen - UCMP 131820)
Mason (1988) described right dentary fragments and a left partial dentary with P₃-M₃ that were collected in Titus Canyon by a Berkeley field crew in 1987.

Family Helaletidae
Colodon sp.
A portion of the right mandible with molar teeth and right ramus (LACM 3567) was collected in the west fork of Titus Canyon. According to Stock (1949), this specimen is slightly smaller than *Colodon dakotensis* and larger than *C. occidentalis*.

Family Leptomerycidae
Leptomeryx blacki
(holotype – LACM 3560)
The Titus Canyon type specimen consists of a fragmentary ramus with molar teeth. *Leptomeryx blacki* is smaller than *L. evansi* and lacks a diastema between the alveoli of P₃ and P₄. Stock (1949), suggested that the molar cusp pattern and the occlusal surface enamel is similar to the pattern exhibited in other species of *Leptomeryx*.

Leptomeryx cf. yoderi
(referred specimen-UCMP 131821)
Mason (1988) described a left dentary fragment with P₃-M₃ collected in Titus Canyon by members of a University of California, Berkeley field crew in 1987.
APPENDIX C:

PALEONTOLOGICAL LOCALITIES WITHIN
DEATH VALLEY NATIONAL PARK

Stanford University Collection Sites (Gordon, 1964):
FL 5: Tihviphah Limestone, Cottonwood Region. Originally collected by McAllister (1937).
FL 23: Perdido Formation, Cottonwood Region. Originally collected by McAllister (1938).
FL 27: Perdido Formation, Cottonwood Region. Originally collected by McAllister (1938).
FL 36A: Perdido Formation, Cottonwood Region. Originally collected by McAllister (1938).
FL 36B: Perdido Formation, float block from top limestone - same locality as FL 36A.
FL 36C: Rest Spring Shale, concretion from basal few feet - same locality as FL 36A.
FL 38/SU 2776: Perdido Formation, top limestone bed, float blocks with goniatites, Cottonwood Region. Originally collected by McAllister (1938).
10 E8: Perdido Formation, top limestone bed. Float block from same locality as FL38. Originally collected by J. F. McAllister (1938).

Cleveland Museum of Natural History
A small collection of Devonian fish from the Lost Burro Formation.
Fossil material includes fragmentary placoderm remains, a small cladodont shark tooth, and an unidentified coelacanth.

US Geological Survey Collection Sites
A large listing of localities from the Silurian, Devonian, and Mississippian Formations of the Funeral Mountains is given by McAllister (1974).

Cephalopods (Gordon, 1964):
19806 PC (Merriam locality 2001): Large orthocoon cephalopod from unknown locality and horizon in the Cottonwood Mountains. This is presumably from the uppermost Perdido Formation, near Rest Spring, Cottonwood Region. Originally collected by Lawrence Dietz (1950).

Locality D-249 Antelope Valley Limestone (Pogonip Group). In gray limestone containing numerous silicified brachiopods mainly Orthidiella longwelli.
Fauna: brachiopods, orthocoon nautiloids, cystoid plates and pelmatozoan columnals.
Locality D-252 Pogonip Group
Fauna: coiled nautiloids.
Locality D-253 Pogonip Group. In interbedded, pale brown, silty limestone and gray limestone: beds are almost vertical.
Fauna: graptolites, brachiopods, trilobites and pelmatozoan columnals.
Locality D-254 Antelope Valley Limestone (Pogonip Group), pinkish silty limestone.
Fauna: trilobite fragments.
Locality D-255 Antelope Valley Limestone (Pogonip Group), in medium light gray limestone with local areas of red-brown limestone.
Fauna: Orthocoon nautiloids.
Locality D-256 Antelope Valley Limestone (Pogonip Group), in gray limestone with pink, silty partings.
Fauna: trilobite fragments.
Locality D-257 Pogonip Group.
Fauna: nautiloid7 fragments.
Locality D-258 Pogonip Group. Float, from unit 2.
Fauna: nautiloid7 fragments and calcareous algae.
Locality D-259 Pogonip Group. Float, from unit 3.
Fauna: brachiopods.
Locality D-260 Pogonip Group. In upper 3 feet of unit 5.
Fauna: orthocoon nautiloids.
Fauna: variety of brachiopods and trilobites.
Paleozoic fossils from the Tin Mountain Limestone in the vicinity of Rest Spring area have been collected by Peck (1950) for the University of California Museum of Paleontology.
Conodonts described by Miller (1978) from the Hidden Valley Dolomite of Death Valley are included within the collections at the University of California Museum of Paleontology.
Fossils collected from Tin Mountain by Peck (1950) were collected for the University of California Museum of Paleontology.
Receptaculitids are very common at a locality in the Grapevine Mountains, where specimens have been collected by the University of California Museum of Paleontology, locality number D-251.
The occurrence of the Late Cambrian problematic mollusk Matthevia (Walcott) have been reported extensively in the Nopah Formation of Death Valley, where the United States Geological Society has collections in Denver:
3814-CO/3815 Nopah Formation, Funeral Mountains, California. 3818-CO Nopah Formation, Funeral Mountains, California.
4453-CO Nopah Formation, S 39° E from Pyramid Peak, Funeral Mountains, California.
4454-CO Nopah Formation, S 23° W from Pyramid Peak, Funeral Mountains, California.
4455-CO Nopah Formation.

Oregon Museum of Natural History
The conodonts reported by Youngquist and Heinrich (1966) are cataloged at the University of Oregon Museum of Natural History, number 26687.

United States National Museum
Obolella excelcis (Walcott) - holotype USNM 52208a, ventral valve, internal mold USNM locality 53. From sandstone exposures within the Waucoba series, inferred from the upper part of the Montenegro Member, Campito Formation (Rowell, 1977).
APPENDIX D

RMP Statements

Project Statement: DEVA-N-012.000
Last Update: 01/31/97 Priority: 999
Initial Proposal: 1994

Title: MANAGE PALEONTOLOGICAL RESOURCES
Funding Status: Funded: 0.00 Unfunded: 0.00
Servicewide Issues: N23 (PALEONTOLOGY)
Cultural Resource Type: OBJC (Object)
N-RMAP Program codes: P00 (Paleontological Resource Management)
10-238 Package Number:

Problem Statement

The vast area encompassed by the boundaries of Death Valley National Park incorporates the complex geology which makes the area unique. The geologic ages of the formations and lithologic units exposed in the park range from the late Precambrian to recent. This broad range of units, expectedly, hosts an immense array of fossilized plant and animal remains representative of their evolutionary progression through that extended range of geologic time, thereby providing evidence of both the relative ages of the formations and of the prevailing environmental conditions. Those fossil assemblages are an integral part of the unusual scientific and educational features for which the lands were set aside for preservation by the National Park Service.

The vast majority of existing knowledge concerning fossil remains in Death Valley has been provided from investigations by non-NPS scientists. Generally, large concentrations of fossils of interpretive significance are not known in the park, except for Copper Canyon and one location near Trail Canyon. This may be due in part to a previous lack of emphasis on these resources. Certainly the discovery of the skull of a subspecies of Titanotherium, in what is known as Titanotherium Canyon, is indicative of the potential for further substantial paleontological finds from those and similarly aged formations.

The inventory and monitoring of the paleontological resources has been identified as a component of the long-range management of the resources of Death Valley. A literature and museum collection survey would undoubtedly provide a wealth of information on the knowledge of the paleontological attributes of Death Valley. Dependent upon the information supplied from a literature and collections survey, it may be necessary to prepare a Paleontology Resources Management Plan to provide for the protection of selected fossil sites within the park.

Description of Recommended Project or Activity

The preferred alternative for the management of the paleontological resources of Death Valley National Park incorporates the inventory and monitoring of those resources. An extensive preliminary list of species has been prepared which provides an appreciation of the extent of these resources which have been identified in the park. The preparation of a more complete inventory will permit the designation of those resource areas at which monitoring will be justified and appropriate.

The inventory work should include the detailed mapping and identification of selected sites such as the area containing the exposures of fossil tracks in Copper Canyon. Objectives of the mapping should be sufficient documentation to provide for monitoring and the determination of natural deterioration and vandalism of the multiple elements of the site. The inventory work should include the generation of appropriate steps of intervention and protection for specific elements, such as possible protection of the mastodon tracks and stabilization of the saber toothed cat track slab.

Action on this project should include an extensive literature and specimen survey of the park’s libraries and museum collections. Paleontological collections and data located in non-NPS institutions and obtained from previous research projects in Death Valley should be examined. Data, and in some cases the fossils themselves, should be returned to the NPS for inclusion in the park’s museum collection. Cataloging of existing specimens is difficult and should be guided by specialists in the various disciplines of paleontology.
BUDGET AND FTEs:

-------------------FUNDDED-------------------

<table>
<thead>
<tr>
<th>Source</th>
<th>Activity</th>
<th>Fund Type</th>
<th>Budget ($1000s)</th>
<th>FTEs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total:</td>
<td>0.00</td>
</tr>
</tbody>
</table>

-------------------UNFUNDDED-------------------

<table>
<thead>
<tr>
<th>Activity</th>
<th>Fund Type</th>
<th>Budget ($1000s)</th>
<th>FTEs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total:</td>
<td>0.00</td>
</tr>
</tbody>
</table>

(Optional) Alternative Actions/Solutions and Impacts
(No information provided)

Compliance codes : EXCL (CATEGORICAL EXCLUSION)
ARPA (ARCH. RES. PROT. ACT.)

Explanation: 516 DM6 APP. 7.4 E(2)
Project Statement DEVA-N-012.001
Last Update: 02/08/99 Priority: 47
Initial Proposal: 1994

Title: MANAGE PALEONTOLOGICAL RESOURCES
Sub-title: LIT & COLLECTIONS SURVEY
Funding Status: Funded: 0.00 Unfunded: 20.00
Servicewide Issues: N23 (PALEONTOLOGY)
 C46 (ACCOUNTBLY)
Cultural Resource Type: OBJC (Object)
N-RMAP Program codes : P00 (Paleontological Resources Management)
10-238 Package Number : 16

Problem Statement

The park has not been adequately surveyed for the existence, identification, location, and condition of paleontological collections. Specimens may be found in-situ in field locations considered “at-risk”, within NPS offices and buildings, or, located in regional or national, non-NPS repositories. The potential for their loss or damage is high. Both the Scope of Collection Statement and research on the potential collections themselves are needed to evaluate this material for inclusion into the park’s museum collection in order to avoid accessioning inappropriate materials into the collection. Cross-referencing existing records and contacts with subject matter experts requires significant time and effort.

The park’s museum collection of paleontological specimens consists of approximately 700 specimens. Of this amount, 22 are backlog, 650 are manually and minimally cataloged, and only 35 have been entered into the ANCS database. Park paleontological collections stored in repositories are not cataloged, and only their accession documentation is in ANCS. A backlog and recataloging project is necessary to appropriately catalog these objects and bring park specific resources to standards.

The storage of paleontological specimens in the park and at off-site repositories does not meet NPS museum storage standards. Deficiencies include inadequate storage space, lack of appropriate environmental controls, and the need for minimal security and fire detection. The proper storage of these specimens requires appropriate storage equipment and supplies, environment, security, and preservation. Ensuring NPS standard storage conditions are met will help assure the specimens long-term preservation and integrity. The purchase of new supplies and equipment and the monitoring of storage conditions will address these deficiencies.

The problems to be solved have been documented as deficiencies in the park’s completed DOI Checklist for Preservation, Protection, and Documentation of Museum Property, the current CMR, the Park’s Draft (1996) Museum Management Plan, the Park’s Resources Management Plan, and the Park’s (Draft) Paleo Resources Management Plan. Deficiencies will need to corrected as per NPS-28, Cultural Resources Management Guideline and the Museum Handbook, Part II. Lack of accountability and proper storage of these collections may result in management needs not being met. Failure to comply may also precipitate an inspection by the GAO and the IG. In addition, uncataloged and undocumented collections and data are not available for research and educational purposes.

Term personnel or contract personnel will be required to supplement existing staff resources. This process is expected to require twelve months to complete.

Description of Recommended Project or Activity

Determine workload. Program funding and priorities for NPS staff or museum professionals to conduct survey for paleontological collections. Specify the number and type of subject matter experts, the need for additional staff, and list the sites, buildings, files, and repositories to review. Develop survey in relation to park’s Scope of Collection Statement, revising SOCS and RMP if necessary. Complete survey and document results. Accession appropriate materials into museum collection and arrange for their cataloging and disposition.

Program funding and priorities to fully catalog (according to standards) the Park’s complete paleontological collection stored at the various repositories and within the park. Maintain entries in ANCS for these paleontological records and require backup copies of the database to append into the park’s ANCS database. Use the records to complete required annual inventories, Collection Management Reports, and submissions to the National Catalog. Use the data in ANCS to create additional inventories and reports.

Program funding and priorities to request the purchase and installation of new museum storage equipment and supplies. Purchase and install upgrades, consulting with museum specialists on appropriate makes and models. Follow recommendations made in the Park’s Collection Storage Plan and Museum Management Plan.
Costs for fully cataloging and recataloging paleo specimens is based on the Museum Handbook, Part II, Appendix B. For cataloging existing collections (700 specimens), at $7.00/specimen: $4,900.00.

BUDGET AND FTEs:

<table>
<thead>
<tr>
<th>Source</th>
<th>Activity</th>
<th>Fund Type</th>
<th>Budget ($1000s)</th>
<th>FTEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Fund Type</th>
<th>Budget ($1000s)</th>
<th>FTEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1:</td>
<td>RES</td>
<td>One-time</td>
<td>20.00</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>20.00</td>
</tr>
</tbody>
</table>

(Optional) Alternative Actions/Solutions and Impacts

No Action. The location and existence of paleontological collections and their history will continue to be poorly documented or unknown. Archives and specimens that can significantly increase the value of the museum collection will be lost through disposal, damage, or theft. The park will not be meeting its mandate to preserve and protect cultural resources under its management authority.

The accountability program may not meet Departmental and NPS standards for the control and accountability of museum property. The lack of catalog records may cause problems with accounting for and tracking specimens, and with specimen identification and research value.

Paleontological collections may be stored in substandard conditions which may result in object deterioration and loss. Lack of new shelving, cabinets, polyethylene bags, document boxes, etc. may cause current problems to escalate.

Compliance codes: EXCL (CATEGORICAL EXCLUSION)
ARPA (ARCH. RES. PROT. ACT.)

Explanation: 516 DM6 APP. 7.4 E(2)
Project Statement: DEVA-N-012.002
Last Update: / / Priority: 76
Initial Proposal: 1994
Title: MANAGE PALEONTOLOGICAL RESOURCES
Sub-title: SURVEY & MAP PALEO SITES
Funding Status: Funded: 0.00 Unfunded: 12.00
Servicewide Issues: N23 (PALEONTOLOGY)
Cultural Resource Type: OBJC (Object)
N-RMAP Program codes: P00 (Paleontological Resources Management)
10-238 Package Number:

Problem Statement

Please refer to project statement #012.000 for a general overview on this project statement.

Description of Recommended Project or Activity
(No information provided)

BUDGET AND FTEs:

<table>
<thead>
<tr>
<th>Source</th>
<th>Activity</th>
<th>Fund Type</th>
<th>Budget ($1000s)</th>
<th>FTEs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Fund Type</th>
<th>Budget ($1000s)</th>
<th>FTEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1:</td>
<td>MON</td>
<td>Recurring</td>
<td>6.00</td>
</tr>
<tr>
<td>Year 2:</td>
<td>MON</td>
<td>Recurring</td>
<td>6.00</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>12.00</td>
</tr>
</tbody>
</table>

(Optional) Alternative Actions/Solutions and Impacts
(No information provided)

Compliance codes: EXCL (CATEGORICAL EXCLUSION) ARPA (ARCH. RES. PROT. ACT.)

Explanation: 516 DM2 APP. 2, 1.6
Project Statement: DEVA-N-012.003
Last Update: 02/11/99 Priority: 88
Initial Proposal: 1994
Title: MANAGE PALEONTOLOGICAL RESOURCES
Sub-title: PREPARE PALEO MNGMT PLAN
Funding Status: Funded: 6.00 Unfunded: 30.00
Servicewide Issues: N23 (PALEONTOLOGY)
Cultural Resource Type: OBJC (Object)
N-RMAP Program codes: P00 (Paleontological Resources Management)
10-238 Package Number:

Problem Statement

Please refer to project statement #012.000 for a general overview on this project statement.

Description of Recommended Project or Activity

A Paleontological Resources Management Plan will be developed for the park, either on contract or by a central office such as DSC.

BUDGET AND FTEs:

<table>
<thead>
<tr>
<th>Source</th>
<th>Activity</th>
<th>Fund Type</th>
<th>Budget ($1000s)</th>
<th>FTEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996:</td>
<td>PKBASE-NR ADM</td>
<td>One-time</td>
<td>6.00</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Total: 6.00 0.10

<table>
<thead>
<tr>
<th>Activity</th>
<th>Fund Type</th>
<th>Budget ($1000s)</th>
<th>FTEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1:</td>
<td>ADM</td>
<td>One-time</td>
<td>30.00</td>
</tr>
</tbody>
</table>

Total: 30.00 0.00

(Optional) Alternative Actions/Solutions and Impacts
(No information provided)

Compliance codes: EXCL (CATEGORICAL EXCLUSION)
ARPA (ARCH. RES. PROT. ACT.)

Explanation: 516 DM6 APP. 7.4 B(4)
Project Statement DEVA-N-012.004
Last Update: 02/13/98 Priority: 777
Initial Proposal: 1994
Title: MANAGE PALEONTOLOGICAL RESOURCES
Sub-title: IMPLEMENT PALEO MGNT PLAN
Funding Status: Funded: 15.00 Unfunded: 0.00
Servicewide Issues : N23 (PALEONTOLOGY)
Cultural Resource Type: OBJC (Object)
N-RMAP Program codes: P00 (Paleontological Resources Management)
10-238 Package Number :

Problem Statement

Please refer to project statement #012.000 for a general overview on this project statement.

Description of Recommended Project or Activity
(No information provided)

BUDGET AND FTEs:
-----------------------------------FUNDED-----------------------------------
<table>
<thead>
<tr>
<th>Source</th>
<th>Activity</th>
<th>Fund Type</th>
<th>Budget ($1000s)</th>
<th>FTEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997:</td>
<td>PKBASE-NR MON</td>
<td>Recurring</td>
<td>10.00</td>
<td>0.10</td>
</tr>
<tr>
<td>1998:</td>
<td>PKBASE-NR MON</td>
<td>Recurring</td>
<td>5.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

-----------------------------------TOTAL-----------------------------------
| | | | 15.00 | 0.10 |

-----------------------------------UNFUNDED-----------------------------------
<table>
<thead>
<tr>
<th>Activity</th>
<th>Fund Type</th>
<th>Budget ($1000s)</th>
<th>FTEs</th>
</tr>
</thead>
</table>

| | | | 0.00 | 0.00 |

(Optional) Alternative Actions/Solutions and Impacts
(No information provided)

Compliance codes : EXCL (CATEGORICAL EXCLUSION)
ARPA (ARCH. RES. PROT. ACT.)

Explanation: 516 DM6 APP. 7.4 E(2)
As the nation’s principal conservation agency, the Department of Interior has responsibility for most of our nationally owned public lands and natural and cultural resources. This includes fostering wise use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for enjoyment of life through outdoors recreation. The department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people. The department also promotes the goals of the Take Pride in America campaign by encouraging stewardship and citizen responsibility for the public lands and promoting citizen participation in their care. The department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.