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Presilience: what Can Be Done?

® Understand Impacts and plan responses
@ Conduct Vulnerability Assessment
@ Careful, long-term research and monitoring
C Implement and monitor BMPs! Best Practices.

@ Focus on consequences & sensitivity,
not exposure & probability

c Aggressively and relentlessly reduce carbon emissions
of your operations, physical plant, and provisioning
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Climate Change & Variability Concepts

>
Climate

/V change

/ Long term:
multi-decadal
to century

/ K/ e trends

variability

Climate
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= QGlobal surface temperature
= QOcean heat content down to 2,300 feet

1880-1920 baseline
for surface temperature
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oastal Climate Refu ugia: ?




North America
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Reference Location: 40.99 N, 123.55 W

Country: United States Nearby Cities: Eureka, Arcata, Fortuna
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Reference Location: 40.99 N, 123.55 W

Country: United States

Nearby Cities: Eureka, Arcata, Fortuna
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PROJECTED CHANGES IN ANNUAL TEMPERATURE, NORTHERN CALIFORNIA

10 | ] I I | I | l | I | I | ] | I 1 I 1 ‘s 10
gl (| Business as Usual emissions 23 8
I — A2 ©MISSIons
— B2 emissions
O 6 | m== A7fiemissions 6 O
s we BT emissions »
g “ t o
S 5]
s 2 & 2 3
0B 0
-2 : 3 } SRR ' oYt LR \ -2
A 1 1 l | l | l | l | l 1 l | 1 1 l |
1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100
[ | — B2 emissions A 4
3 y ! - g?ﬂ;n"?;;f;ggs YREd Strong consensus for
> 2 SR warming
8 - : :
: 'E, 1% But large uncertainty with
of ¢ 0 precipitation
g : 3 : e o1
.J ST EE NI I "I S——— —— ——" —ee. . p- Ay Co\yan & Dettinger

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100




0
3
b
—
)
=
N
b
2
=
o
=
Q

Change in Annual Temperature by the 2080s

Model: Ensemble Average, SRES emission scenario: A2
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Projected changes to a “new”
climate
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Comparison of observed year-to-year variabil-
ity and projected shifts in temperature and
precipitation from climate models




Témberatuhe’ .eaéy, Precipitation hard

Temperature easy and changes large
Precipitation hard and echanges small here.
But .... Degree of change in variability unknown
But more heat affects water:

=>More ET, drier seils, and vegetation

=>Less streamflow, streamflow timing A

=»Less precip as snow, more as rain
=» Earlier snhowmelt
= More wildfire
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Precipitation changes in General

m Wet areas get wetter

m Dry areas get dryer

m Wet season gets wetter
m Dry season gets drier

m Variability goes up

m Less show
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Post-Glacial
Sea Level Rise
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Sea Level Rise: Observed and Predicted

Predictions for 2100:

B 1PCC, 2007: 0.6-1.9 ft

I Rahmstorf, 2007: 1.6 - 4.6 ft

Pfeffer et al., 2008: 2.6 - 6.6 ft

2100
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Climate change. Is a risk
multiplier

Problems, stresses and risks are multiplied
oy climate change.

—0or example:

= Drought

= Flooding

= Population pressures

= Shortage of suitable water supply

= Development and disturbance of watersheds
= And so on




Climate change. Is a risk
multiplier ...
So adapting Is
BMPs and Best Practices
that we already know.
We have the know-Rew to adapit.

More crucial than ever, and more
consequential if skipped or inadeguate
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Modelling climate variability

= \We don’t get variablility from
models

s NO extremes or storminess

= But, this Is what matters most



Difficulty discerning trends
for rare events

Rare event still rare If their probabillity
Increases.

Probability of Exceedance




_L.oss of Statlonarlty
Assumption: What it means

Assume that probabilities will
worsen...

...Consider that they might
worsen a lot.
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| oss: ofiStationarity. Assumption:
What It means

Use scenarios:

For example:

= The 100-year flood =>» 10-year flood or 25-year flood

= The 10-year, 7-day low flow =» annual low flow, 2-year low
flow



Vulnerability
Assessment
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resilience vulnerability

"Two sides of the same coin.”



Vulnerability
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Exposure => Sensitivity =2 Values

. . Fussel 2007
Adaptive Capacity
Inherent and by Human intervention Time scale
Spatial scale

What is valued or domain
Attribute of concern
Hazard



Vulnerability
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Two earthquakes

Lorna Prieta Haiti 2010

(San Francisco USA) 1989

. Magnitude 6.9 . Magnitude 7

. 62 dead . 316,000 dead

. 4,000 injured . 300,000 injured
. $6 billion in . $14 billion in

damages damages
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= Vulnerability to Wildfire
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We can with:

Maintaining fire suppression
resources,

Doing fuels treatments,
Remote fire detection, and so on.

Weather
Wind
Temperature
Humidity

Fuel
Topography
Suppression
Resources
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Generalizations about ecosystem
vulnerability &

Vulnerability will be greater in low diversity ecosystems

|
Vulnerability will be greatest in areas of high stressors, cumulative effects,
and population pressure

Vulnerability will be greatest in areas of over-allocated and inadequate
water supplies

Vulnerability will tend to be greater in boundary ecosystems and at the
limits of species current ranges.

Vulnerability will be greater in areas where soils are thin, droughty, or
highly erodible.

Vulnerability will tend to be greater in areas with extensive invasive species
Greater problems for species already in decline
Vulnerability will be greater in fragmented ecosystems

Ecosystem changes will have significant effects on wildlife and aquatic biota
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Thickness increases are larger in high latitudes than in
mid-latitudes => expect 2 main effects:

First effect: Weaker poleward temperature gradient
=> weaker zonal wind speeds.

N. America and N. Atlantic
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Second effect:

Larger warming at high latitudes causes peaks of
ridges of the Jet Stream to elongate

PR = Wave amplitude
increases

Higher-amplitude waves
progress more slowly

More persistent weather
patterns

500 hPa isopleth



Summary

Arctic Amplification
High latitudes warming more than mid-latitudes

=> Poleward thickness gradient weakening

74 AN

Weaker upper-level, Peaks of upper-level
zonal-mean flow, ridges elongate
reduced phase northward, wave

speed % @plitude increases

Rossby waves progress more slowly

Weather conditions more persistent

Increased probability of extremes: cold spells,

heat waves, flooding, prolonged snowfall, and
d rO u g ht J.A. Francis — Rutgers Univ.



Presilience: what can

® Understand Impacts and plan respemnses; =
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@ Conduct Vulnerability Assessm_e'"‘nt
@ Careful, long-term research and monit‘oring
» Implement and monitor BMPs! Best Practices.
@ Scenario planning & risk assessment
@ Focus on conseguences, not probability

c Aggressively and relentlessly reduce carbon
emissions of your operations, physical plant, and
provisioning



