25 October 2002

Bahr Vermeer Haecker Architects, Ltd.

in association with

Wiss Janney Elstner Associates, Inc.
MEMORANDUM

TO: Technical Information Center, Denver Service Center, PGT

FROM: Felix Revello, Acting Superintendent, Nicodemus National Historic Site

DATE: June 30, 2003

SUBJECT: Historic Structures Report, Nicodemus National Historic Site

The Historic Structures Report (HSR) for Nicodemus National Historic Site (NICO) was recently completed. We have enclosed a copy of the HSR for your organization’s reference. The HSR focused on the five historic structures designated in the enabling legislation establishing NICO. Those structures are: Nicodemus Township Hall, Old First Baptist Church, A.M.E. Church, Nicodemus School District No. 1 structure and St. Francis Hotel/Switzer Residence. The HSR is very important not only for recording the evolution of these structures over time, but also for managing and preserving them well into the future. Please contact me at 620-285-6911 if you have any questions or comments about this document.

Sincerely,

Felix Revello
Acting Superintendent
Nicodemus National Historic Site
Nicodemus, Kansas

Historic Structures Report

Bahr Vermeer Haecker Architects, Ltd.
Lincoln, Nebraska

Wiss, Janney, Elstner Associates, Inc.
Chicago, Illinois

Recommended
Chief, Cultural Resources
Midwest Regional Office

Concurred
Sheryl M. Capone, Acting Site Manager, Nicodemus National Historic Site

Concurred
Superintendent, Fort Larned National Historic Site

Approved
Regional Director, Midwest Regional Office

Date: 30 Dec 02

Date: Jan 6, 2003

Date: 1/6/03

Date: 1/3/03
NICODEMUS NATIONAL HISTORIC SITE

Nicodemus, Kansas

A.M.E. Church
Old First Baptist Church
St. Francis Hotel/Fletcher-Switzer Residence
Nicodemus District No. 1 School Building
Township Hall

HISTORIC STRUCTURES REPORT

Prepared for the

National Park Service
Midwest Regional Office
Omaha, Nebraska

Prepared by

Bahr Vermeer Haecker Architects, Ltd.
Lincoln, Nebraska

Wiss, Janney, Elstner Associates, Inc.
Northbrook, Illinois

in association with

OCULUS
Charlottesville, Virginia

Alvine and Associates, Inc.
Omaha, Nebraska

Terracon
Omaha, Nebraska

David Arbogast
Iowa City, Iowa

25 October 2002
NICODEMUS NATIONAL HISTORIC SITE

Nicodemus, Kansas

A.M.E. Church
Old First Baptist Church
St. Francis Hotel/Fletcher-Switzer Residence
Nicodemus District No. 1 School Building
Township Hall

HISTORIC STRUCTURES REPORT

25 October 2002

ACKNOWLEDGEMENTS

National Park Service

Midwest Regional Office
Jim Creech, Historical Architect
Bill Harlow, Historical Architect
Billy Davis, Contracting Officer
Sherda Williams, Historical Landscape
Architect

Nicodemus National Historic Site
Dennis Carruth, Nicodemus Site Manager
Robert Brogden, Nicodemus

Fort Larned National Historic Site
Felix Reveles, Chief Ranger
Steve Linderer, Superintendent

Special Assistance
Angela Bates-Tompkins, Consulting Historian
and Community Liaison

Project Team

Bahr Vermeer Haecker Architects, Ltd.
Dan Worth, AIA, Principal-in-Charge
Matthew Hansen, Graduate Architect
Lori Jorgenson Unick, Graduate Architect

Wiss, Janney, Elstner Associates, Inc.
Deborah Slaton, Principal Investigator and
Architectural Conservator
Michael Ward, Project Architect/Engineer
Ken Igle, Project Architect
Stephen Kelley, AIA, SE, Project Consultant

OCULUS
Rob McGinnis, Historical Landscape Architect
Liz Sargent, Historical Landscape Architect
Rachel Lloyd, Landscape Architect

Alvine and Associates, Inc.
Steve Alvine, PE, Project Mechanical/Electrical
Engineer
Thomas J. Thibodeau, Senior Project Manager

Terracon
Steve Hudson, Hazardous Materials
Consultant
Trevor Tobias, Hazardous Materials
Consultant
John Fannon, Hazardous Materials Consultant

David Arbogast
David Arbogast, Architectural Finishes
Consultant
CONTENTS

Executive Summary

1. Administrative Data
 Project Background
 Study Boundaries and Description of Properties Involved
 Project Scope and Methodology

2. Developmental History
 Nicodemus, Kansas
 A.M.E. Church
 Old First Baptist Church
 St. Francis Hotel/Fletcher-Switzer Residence
 Nicodemus School District No. 1 Building
 Township Hall

3. Physical Assessment
 Physical Description
 A.M.E. Church
 Old First Baptist Church
 St. Francis Hotel/Fletcher-Switzer Residence
 Nicodemus School District No. 1 Building
 Township Hall
 Condition Assessment
 A.M.E. Church
 Old First Baptist Church
 St. Francis Hotel/Fletcher-Switzer Residence
 Nicodemus School District No. 1 Building
 Township Hall

4. Assessment of Significance and Integrity
 Evaluation of Cultural Significance
 Evaluation of Architectural Significance
 Evaluation of Integrity
5. Treatment and Use
Preservation Objectives
Requirements for Treatment
Alternatives and Recommendations for Treatment
 A.M.E. Church
 Old First Baptist Church
 St. Francis Hotel/Fletcher-Switzer Residence
 Nicodemus School District No. 1 Building
 Township Hall
Opinion of Probable Costs

6. Bibliography

Appendices
 Appendix A - Measured Drawings
 Appendix B - Detailed Cost Estimate
 Appendix C - Historical Documentation
 Table of current property owners of the Nicodemus townsite, 2001
 Graham County, Kansas, deed records, various dates
 National Register nomination form, Nicodemus Historic District, 1974
 HABS / HAER Inventory forms, 1983–84
 United States Public Law 104-333 sec. 512, Nicodemus National Historic
 Site, 1996
 Field Notes, A.M.E. Church re-roofing project, National Park Service, 2001
 Appendix D - Previous Studies
 First Baptist Church, Condition Assessment Report, Restoration Associates,
 1986–87
 A.M.E. Church: Repair and Reconstruction Alternatives, Architecture 2000,
 PC, 1999
 Appendix E - Consultant Reports
 Terracon Hazardous Materials report
 David Arbogast Finish Analysis report
 David Arbogast Mortar Analysis report
EXECUTIVE SUMMARY

At the request of the National Park Service, Bahr Vermeer Haecker Architects, Ltd. (BVH) and Wiss, Janney, Elstner Associates, Inc. (WJE), in association with OCULUS, Alvine and Associates, Inc., Terracon, and David Arbogast have prepared this Historic Structures Report for Nicodemus National Historic Site. The Historic Structures Report addresses five structures within the National Historic Site, all of which are located within the Nicodemus Townsite. The five structures include the African Methodist Episcopal (A.M.E.) Church, the Old First Baptist Church, the St. Francis Hotel/Fletcher-Switzer House, the Nicodemus District No. 1 School Building, and the Nicodemus Township Hall.

The national significance of Nicodemus was recognized by its designation as a National Historic Landmark (NHL) on 7 January 1976. In 1996, the five buildings discussed in this Historic Structures Report were established as a National Historic Site to be administered by the National Park Service, which is presently developing a General Management Plan (GMP) for the site. In addition, a Historic Resources Study is in process by the National Park Service at this writing. Bahr Vermeer Haecker Architects, Ltd., in association with OCULUS, is presently preparing a Cultural Landscape Report (CLR) for the National Park Service to provide background information in support of the GMP as well as a treatment plan to supplement the GMP management alternatives.

The Cultural Landscape Report has identified an appropriate period of national significance for the community to be 1877-1888, the "boom" years of Nicodemus. Two of the five National Historic Site structures—the A.M.E. Church and the St. Francis Hotel/Fletcher-Switzer residence—survive from this period. The Schoolhouse, First Baptist Church, and Township Hall, which postdate the period of national significance, are significant for their association with important themes in the history and development of Nicodemus as well as of other African-American communities during the nineteenth and twentieth centuries: home, church, school, business, traditions of mutual assistance, and local government. The five buildings in this study are also of interest as examples of vernacular architecture using local building materials. In addition, although all of the buildings have changed over time, and some of their materials and features have deteriorated, each building retains enough integrity to illustrate its historic character. In addition to the period of national significance discussed above, the Cultural Landscape Report suggests that the property be assessed for significance as a Traditional Cultural Property, with a period of significance extending from 1877 through the present.

The conditions represented by the five buildings in the study are widely varied. The A.M.E. Church is in a deteriorated condition but has recently received structural stabilization and roofing replacement by the National Park Service. The Fletcher/Switzer House and Old First Baptist Church are in need of repair and maintenance. The Schoolhouse has been repaired by the National Park Service but requires maintenance. The Township Hall, which is the only one of the five buildings still in use, is in good condition and is well maintained. Although each of the five buildings is different from the others in some materials uses, architectural features, and structural systems, all have many materials and conditions in common.

The Historic Structures Report identifies a recommended scope of repairs to address existing deterioration and future maintenance needs of the buildings. All recommendations have been developed in accordance with the Secretary of the Interior’s Standards, and in accordance with the general treatment preservation (the act or process of applying
measures necessary to sustain the existing form, integrity, and materials of an historic property). Recommended work, including preliminary measures to protect and stabilize the property, focuses upon the ongoing maintenance and repair of historic materials and features rather than extensive replacement and new construction. Specific treatment recommendations are provided for structural stabilization, weatherproofing, safety and protection of building fabric, interior repairs, cyclical inspection and maintenance. Recommendations for future research are also addressed, including structural analysis, ADA compliance, code compliance, termite inspection, and archaeological investigation.
ADMINISTRATIVE DATA

PROJECT BACKGROUND

On 12 November 1996, Congress established Nicodemus National Historic Site, encompassing a portion of the town of Nicodemus, Kansas, to be administered by the National Park Service with the express purpose:

1. to preserve, protect, and interpret for the benefit and enjoyment of present and future generations, the remaining structures and locations that represent the history (including settlement and growth) of the town of Nicodemus, Kansas; and

2. to interpret the historical role of the town of Nicodemus in the Reconstruction period in the context of the experience of westward expansion in the United States.¹

The establishment of this new unit of the National Park system built upon previous efforts to recognize the national significance of the town, including its designation as a National Historic Landmark (NHL) on 7 January 1976, an Historic American Buildings Survey documentation project conducted in 1983 by students and staff of the College of Architecture and Design at Kansas State University, and a 1993 special resources study prepared by the National Park Service. In 1996, the five buildings discussed in this Historic Structures Report were established as a National Historic Site to be administered by the National Park Service.

The National Park Service is presently developing a General Management Plan (GMP) for the site that is intended to guide the management and care of the property over a ten to fifteen year period. In addition, a Historic Resources Study is in process by the National Park Service at this writing. Bahr Vermeer Haecker Architects, Ltd., in association with OCULUS, is presently preparing a Cultural Landscape Report (CLR), commissioned by the National Park Service during fall 1999, to provide background information in support of the GMP, as well as a treatment plan to supplement the GMP management alternatives.

This Historic Structures Report has been developed with consideration to the present draft of the GMP. The recommendations presented in this report are based on the analysis of integrity and treatment performed for this study; and may need to be slightly modified when the preferred alternative is selected after the public review and input process is completed for the GMP. The recommendations in this report are based on the treatment Preservation, as this treatment focuses on stabilizing and protecting the properties as they currently exist. However, this approach does not preclude the possibility of changing to either Restoration or Rehabilitation as a treatment after the GMP is complete.

STUDY BOUNDARIES AND DESCRIPTION OF PROPERTIES INVOLVED

Nicodemus National Historic Site is located in Nicodemus Township, Graham County, Kansas. The site is in the northwestern portion of the state, approximately 40 miles north of Interstate 70 and the city of Hays. The National Historic Site consists of five noncontiguous parcels of land within the Nicodemus Township.
This Historic Structures Report addresses the five properties that comprise the Nicodemus National Historic Site:

- the former African Methodist Episcopal (A.M.E.) Church – a 0.17 acre lot located at the northwest corner of Third Street and Adams Avenue
- the Old First Baptist Church – a 0.18 acre property located at the northeast corner of Fourth Street and Washington Avenue
- the former St. Francis Hotel (also known as the Fletcher-Switzer Residence) – a 0.55 acre property located at the southeast corner of Third Street and Washington Avenue
- the former Nicodemus School District No. 1 Building – a 2.33 acre site located at the northwest corner of Fourth Street and Madison Avenue
- Township Hall – an approximately 0.73 acre site at the northwest corner of Second Street and Washington Avenue.

These five structures are also addressed in the Cultural Landscape Report, which focuses on the landscape and context of the buildings. The Cultural Landscape Report also addresses Township Park, located at the northwest corner of Third Street and Washington Avenue; and Roadside Park, located at the northwest corner of Second Street and Washington Avenue. The CLR also provides a general discussion of the Nicodemus townsite and Nicodemus Township.

PROJECT SCOPE AND METHODOLOGY

The purpose of the Historic Structures Report is to provide a compilation of the findings of research, investigation, analysis, and evaluation of the historic structures. The preservation objectives for the historic properties are identified and treatment measures recommended for implementing and accomplishing these objectives. The Historic Structures Report serves as a basis for decision-making for preservation of the buildings. The report also serves as a record document of existing conditions and as a basis for planning future preservation and maintenance.

Each Historic Structures Report is tailored to the requirements of the specific project. For this Historic Structures Report, key issues to be addressed involve existing materials deterioration, structural problems, and development of appropriate repair and preservation treatments. This Historic Structures Report study included the following tasks:

1. Research and review of archival documentation to develop historical background and to determine the chronology of the physical evolution of the buildings
2. Documentation of the buildings with measured drawings and photographs
3. Visual inspection and condition assessment of architectural features and building materials
4. Visual inspection and condition assessment of structural systems
5. Visual inspection and condition assessment of mechanical, electrical, and plumbing systems
6. Identification of significant character-defining elements and systems
7. Selection of a preferred treatment approach and development of specific treatment recommendations
8. Preparation of the Historic Structures Report

Limited sample removal of building envelope materials (stone, mortar, stucco) was performed for laboratory evaluation during this study. No destructive testing or investigation was performed as part of this study. Further investigation that requires extensive removals, dismantlement, excavation, or more extensive testing is addressed in the recommendations provided in this report.

The following tasks were performed as part of this study:

Research and Document Review. Archival research was performed to search out documentation of the history and construction of the buildings. The purpose of this research and review of documents was to gather information about the original construction and past repair and restoration of the buildings for use in assessing existing conditions and developing treatment recommendations. The research for this study built upon the significant historical and archival research performed and currently in progress for the Cultural Landscape Report.

Copies of selected archival documentation gathered at these resources are included in Appendix C of this report. A description of research materials and sources reviewed and discovered is provided in the annotated Bibliography within this report.

Measured Drawings. Measured drawings were prepared to document the existing properties. These drawings were used for this study as baseline documents to record existing conditions. The drawings can be used in the future to prepare construction drawings for the recommended treatments.

Several of the buildings in this study had already been documented as part of a Historic American Building Survey (HABS) project in 1983–1984. The HABS drawings and photographs were used as a basis for this study. In addition, drawings prepared by Architecture 2000, P.C., were available from the National Park Service stabilization work on the A.M.E. Church. Where existing drawings were unavailable, drawings were prepared using Microstation SE. For this report, reduced size copies are provided in Appendix A. In addition, full size reproducible copies are provided under separate cover.

The following drawings are attached, incorporating both existing HABS drawings and new drawings prepared as part of this study:

Nicodemus, Kansas (HABS, 1983–84)
- Title sheet with historic overview, location maps, plat of Nicodemus, and typical block layout
- Townsite plan – 1877–1890
- Townsite plan – circa 1920
- Townsite plan – circa 1950
- Townsite plan – 1983
- Site plan
- Plans and details
- Exterior elevations
- Building section
- Wall section and roof details
- Existing north wall elevations - notes
- Existing north wall elevations - dimensions

First Baptist Church (HABS, 1983)
- Title sheet
- Site plan
- Floor plan
- North elevation
- South elevation
- East elevation
- West elevation
- Building sections (2 sheets)

St. Francis Hotel/Fletcher-Switzer Residence (HABS, 1983)
- Title sheet
- Site plan 1880
- Site plan 1930
- Site plan 1983
- First floor plan
- Second floor plan
- North and south elevations
- East and west elevations
- Building sections

Nicodemus School District No. 1 Building (HABS, 1983)
- Title sheet and site plan
- Floor plan
- Building section
- East and north elevations
- West and south elevations

Township Hall (Bahr Vermeer Haecker Architects, 2001)
- Main floor plan
- Basement plan
- North elevation
- South elevation
- East elevation
- West elevation
- Building sections (2 sheets)

Condition Assessment and Documentation. Members of the project team performed site visits for data collection, building measurement and documentation, and condition assessment at several intervals throughout the project. The primary site visit for condition assessment was performed in January and February 2001, by project team
members from BVH, WJE, and Alvine. During this site visit, visual observation was made of all five buildings in the study and existing conditions were documented with field notes and photographs. The visual inspection addressed the exterior envelope of each building; interior spaces and features; and mechanical, electrical, and plumbing systems.

Paint and Mortar Analysis. The site visits for paint sampling and the paint analysis were performed in May–June 2001. Paint analysis results are documented in the consultant report attached in Appendix E.

Selected mortar, stone, and stucco samples were removed during the project team site visit and were examined in the WJE in-house laboratories. Results are summarized in the Physical Assessment chapter of this report.

Development of History and Evaluation of Significance. Based on historical documentation and physical evidence gathered during the study, a chronology of construction was developed for each of the buildings. Information gathered in the 1983 HABS study and from the oral histories conducted as part of the concurrent CLR study was also used in developing these chronologies. In conjunction with the CLR and in cooperation with the National Park Service, an evaluation of the significance of the five subject buildings was performed. This evaluation provided the basis for the recommended treatment alternatives.

Development of Preservation Objectives, Requirements for Treatment, and Treatment Recommendations. In cooperation with the National Park Service, and in coordination with the GMP and CLR, the preservation objectives and requirements for treatment of the five subject buildings were developed. Based on the requirements for treatment, recommendations for treatment were developed for each building. Recommendations, with alternatives where appropriate, are provided in this report.

Preparation of Historic Structures Report. The information gathered through research, condition survey, and review and discussion was compiled into this Historic Structures Report. This report has been compiled following the organizational guidelines of the National Park Service. One report has been prepared to address all five buildings included in the study.

NOTES
1 U.S. Congress Public Law 104-333, 12 November 1996, section 512. See Appendix C.
DEVELOPMENTAL HISTORY

The architectural development of Nicodemus and of the five buildings addressed in this Historic Structures Report survey are summarized below. Chronological development plans for the five buildings are provided as Figures 1 to 5.

NICODEMUS, KANSAS

On 18 April 1877, the Nicodemus Town Company was registered with the Kansas Secretary of State for the purpose of developing and selling lots within the town of Nicodemus. The Nicodemus Town Company was registered by W.H. Smith, president; Ben Cart, vice president; S.P. Roundtree, secretary; W.R. Hill, treasurer; and Jerry Allsop, Jeff Lenze, and William Edmonds, trustees. All except Hill were black; and all except Hill had lived in Kansas, while Hill was from Indiana. By June of the same year, Hill selected the site of Nicodemus and on 8 June, the Nicodemus Town Company registered the site and filed a plat for the town.

Advising for the town of Nicodemus began in April 1877, and the first settler, Simon P. Roundtree, secretary of the Nicodemus Town Company, arrived on 18 June. Roundtree was followed by thirty additional residents, including officers of the company and a few blacks from Topeka on 30 July. The first shelters constructed by these pioneers were dugouts, constructed entirely underground. These first structures soon evolved to partial above-ground structures with sod walls. The founders continued to promote the town, and on 17 September 1877, W.R. Hill led the first formal colony of 350 settlers from Kentucky to Nicodemus.

Like many other towns in western Kansas at the time, Nicodemus was laid out on a grid system. In 1877, the formal town boundaries included seven blocks east to west, named after presidents, and six and one-half blocks north to south, with numbered street names. Each block contained 12 lots on each side of the street, with each lot measuring 25 feet wide by 150 feet long. In addition to residential structures, commercial, religious, and educational buildings were part of the early town development. By late 1879, a lumber yard had opened, and buildings of locally quarried stone and wood frame began to replace the sod dugouts. By the spring of 1879, the town of Nicodemus contained at least 35 dwellings, a general store, post office, hotel, real estate office, stables, schoolrooms, and two churches.

The towns developed steadily in the 1880s, as the first settlers became more established and more permanent structures were erected. The town experienced a substantial speculative commercial boom in 1887 and 1888 in anticipation of securing railroad service. In 1887, both the Santa Fe Railroad and the Central Branch of the Union Pacific Railroad considered routes through Nicodemus. The Santa Fe Railroad surveyed Nicodemus but selected another route. The Missouri Pacific Railroad Company also considered routing a rail line through Nicodemus but by September 1887, the railroad had decided upon another route. In September 1888, it became clear that the Union Pacific had also bypassed Nicodemus. The railroad decided to lay its tracks on the south bank of the South Fork of the Solomon River and a new town named Bogue was established, four and a half miles southwest of Nicodemus. With commercial prospects clearly better in the new town, many
settlers relocated to Bogue between September and December 1888. In addition, many of the wood frame structures and even some stone buildings were transported to Bogue. After the commercial decline of 1888, Nicodemus reverted to a social and religious center for the dispersed farming community. A few remaining businesses provided basic services, but Nicodemus never experienced significant further growth. The surrounding farmland remained heavily settled until the dust bowl of the early 1930s, when many of the descendents of the early pioneers were forced to give up their homesteads and seek better prospects in California or the Pacific Northwest. After World War II, many young people chose not to return to Nicodemus, instead seeking educational and work opportunities elsewhere. The Rural Electrification Act brought electrical service to Nicodemus in the 1950s. As the population continued to decline in the 1950s, the post office, the school district, and the few remaining businesses closed. Several historic structures on the townsite were lost in the 1970s, including the Masonic Hall and Sayer’s General Store and Post Office.

The many scattered descendents of the Nicodemus pioneers across the country continued to revisit the site for Emancipation Celebrations. Although many features of the original townsite were lost, Nicodemus remained significant as a historic site as well as a community. Awareness of the significance of Nicodemus led to listing of the Nicodemus Historic District as a National Historic Landmark on 7 January 1976. Nicodemus has been recognized for its importance as the oldest continuously occupied black town in the West, and as an example of a planned black community established at the end of Reconstruction. Nicodemus also represents the five pillars of many African-American communities during this period: re-establishment of home and family life, participation in organized religious activities, the importance of education, the need to make a living and be self-sufficient, and the opportunity to participate in local government. Finally, Nicodemus exemplifies western expansion and the settlement of the Great Plains, and is a symbol of black pioneer spirit.

The town and buildings were documented with a Historic American Buildings Survey (HABS) project in the summer of 1983. In 1996, the five buildings discussed in this Historic Structures Report were established as a National Historic Site, to be administered by the National Park Service.
A.M.E. CHURCH

The African Methodist Episcopal (A.M.E.) congregation was organized on the Nicodemus town site in late 1878 by the Rev. Jerry Myers and five charter members: Charles Barter, Moses Wims and his wife, Kitty, Mrs. Jeanie Fletcher, and Mary Myers. The congregation met in various sod buildings before purchasing S. G. Wilson's stone residence and converting it into a church in 1881. There is no information available about the location or appearance of this structure.

The congregation constructed a new stone and frame church building north of the original District No. 1 school building in 1887. The appearance and later history of this structure is unknown. According to the townsite plan prepared in 1983 for the HABS survey project, this church was located northeast of the school building, at the southeast corner of Block 19.

The existing A.M.E. church building in Block 11 was built by the Mt. Pleasant Baptist Church congregation in 1885. This Baptist congregation had declined after the turn of the century, and the Baptist State Convention granted the building to the Methodist congregation in 1908. In 1910, the A.M.E. congregation moved into the church. The church building as it existed in 1910 was probably a simple rectangular building with a gable roof, consisting of the sanctuary space only. The building included an arched entrance at the east end. In the early 1920s, Reverend Joe D. Wilson became pastor of the A.M.E. Church.

Numerous alterations and additions were made to the church during the 1920s and 30s. The precise dates of these alterations are not documented. A cross-gable was built onto the north side of the roof, under which a large arched window was added to the north facade. In 1923, a window opening at the east end of the north facade of the building was converted to an entrance door, and a shed roof vestibule was added to the northeast corner of the building. This vestibule had double doors in an arched opening facing east. In 1931, a small anteroom was added at the east facade of the church. The east anteroom had double doors to the exterior on the east facade. The original exterior entrance of the sanctuary became the door from the sanctuary to the east anteroom, and the arched door opening was lowered to accommodate the anteroom ceiling. (This east anteroom is currently the entry vestibule.) The church as it appeared after these various additions is shown in Photo A-1 from 1943.

Sometime between 1943 and 1949, the exterior of the building was covered with stucco, painted white. The 1949 photograph provided as Photo A-2 shows the church covered with stucco. The doors and wood trim appear to be freshly painted white as well. The north cross-gable roof is also visible in this photograph. Circa 1950 electric service was provided to the building. The 1953 aerial photograph of the townsite also clearly shows the various additions to the church; an enlargement showing the church is provided as Photo A-3.

Use of the building as a church was reportedly discontinued in the 1950s. Alvin Bates acquired the building in 1977 and used it for farm storage. Many of the liturgical furnishings remained in the building during this period. A view of the church as it appeared in the 1970s is provided as Photo A-4.
By the time of HABS photography in 1983 (Photos A-5 through A-9), the north cross-gable had been removed from the roof, and the northeast vestibule had become a ruin. Serious deterioration of the north wall, including loss of stone near the location of the arched window, is visible in the HABS photographs.

The National Park Service Midwest Regional Office conducted a condition survey in 1992 and recommended major stabilization work to the foundation, stone masonry, stucco, roof, doors and windows, interior finishes, and mechanical systems. The partially collapsed masonry walls of the northeast vestibule and north facade are shown in Photo A-10 from the mid-1990s. In 1993, the Bates family trust transferred the church property to the Nicodemus Historical Society.

The National Park Service became especially interested in the A.M.E. church in 1996, as legislation which would establish the Nicodemus National Historic Site moved through Congress. The recommendations of the 1992 survey were partially implemented when the National Park Service performed the first phase of stabilization repairs in November and December 1996. Overgrown vegetation was cut back from the walls of the building, debris was removed from the interior, a corrugated metal roof was installed on the main church and east anteroom, and wood shoring was placed to help support the failing north wall. The brick chimney was stabilized by boxing around with plywood. New 2x6 lumber was splayed to the roof rafters at the northwest corner. A wood post and beam structure was constructed in the interior along the north and south walls, to support the roof structure and remove the roof load from the exterior stone walls. The four window openings on the south side were boarded up and provided with small louvers for ventilation. The remaining church furnishings were removed for storage off site.

In 1998, it was determined that the 1993 transfer of ownership to the Nicodemus Historical Society was invalid, and ownership of the church reverted to the Bates family. After negotiations among the Bates family, the National Park Service, and Graham County, the title to the property passed to the United States. The Trust for Public Land paid $2,500 to the Bates family trust for the property, minus $243.41 to reimburse the Nicodemus Historical Society for property taxes paid in 1993–1998. The church furnishings that had been moved off site were donated by the Bates family trust to the National Park Service.

In 1999, an updated condition survey was undertaken. The report “African Methodist Episcopal Church, Nicodemus, Kansas: Repair and Reconstruction Alternatives” by Architecture 2000, P.C., of Denver, Colorado, was submitted to the National Park Service on 15 November 1999 (see Appendix D). This report described the severe distress of the north stone wall. The twelve foot wide opening of the former cross gable arch window and the six foot wide door opening into the northeast vestibule were described. The northeast vestibule had completely collapsed. At the west end, the north wall had shifted six inches of out plumb and was extremely unstable; it was held up only by temporary wood shoring. On the interior, it was noted that much of the plaster ceiling and wood flooring had collapsed or had been removed. Recommendations and cost estimates for the stabilization and reconstruction of the church were prepared.

Based on this report, Architecture 2000, P.C. prepared stabilization drawings (see Appendix A). In 2000, this second phase of stabilization work was implemented. The unstable and partially collapsed stone masonry north wall was dismantled. At the west and east ends of the north facade, salvaged stone was used to rebuild the corners of the...
building; these zones of reconstruction are visible in Photos A-13 through A-16 as the areas of exposed stone without stucco. The remainder of the north wall was not rebuilt. Rather, the north wall was replaced by a temporary wood stud wall clad in painted plywood on the exterior. A few louvers were included for ventilation. The drawing set for this work also included removal of the exterior stucco, replacement of the roof, repairs to wood fascia and trim, and other exterior rehabilitation work. However, only the work directly related to the stabilization of the north wall was actually performed at this time.23

In May 2001, the National Park Service removed the temporary corrugated metal roofing on the sanctuary roof. The deteriorated layers of asphalt roofing and wood shingles underneath were removed down to the structural roof deck. A new wood shingle roof was installed on the sanctuary roof, as shown in Photos A-14, A-16, and A-18. As of this writing, the east anteroom roof is covered with the corrugated metal installed in 1996.24
Original structure circa 1885

North vestibule added circa 1923

East anteroom added circa 1931

Area of collapse and stabilization

Partial collapse at west end of north wall circa 1996

Temporary stabilization of north wall 1996 and 2000

Church re-roofed with wood shingles 2001
Photo A-1. The A.M.E. Church, view from the east showing the various additions to the original building, 1943. HABS photo by William T. Belleau.

Photo A-2. The A.M.E. Church, view from the east showing the addition of stucco, 1949. Photo by Van Shaw.
Photo A-3. The A.M.E. Church, seen in the aerial photograph of the townsite, 1953. Aerial photograph courtesy Bernice Bates.

Photo A-4. The A.M.E. Church during its years as a storage building, circa 1970s. Photo courtesy Kansas State Historical Society, Topeka, Kansas.
Photo A-5. The A.M.E. Church, view from the east, 1983. HABS photo by Clayton T. Fraser.

Photo A-6. The A.M.E. Church, view from the northwest, 1983. HABS photo by Clayton T. Fraser.
Photo A-7. The A.M.E. Church, view from the southwest, 1983. HABS photo by Clayton T. Fraser.

Photo A-8. The A.M.E. Church, view from the southeast, 1983. HABS photo by Clayton T. Fraser.

Photo A-10. The A.M.E. Church, view from the northeast, 1990s. The northeast vestibule and much of the north wall had collapsed. Photo from National Historic Landmark files.
OLD FIRST BAPTIST CHURCH

The congregation of the First Baptist Church was organized in 1878, and met first in several dugout structures around the townsite and then in a sod church building in 1879. In May 1880, the congregation, under the direction of Rev. Silas M. Lee, completed a stone structure at the site of the present church. This building is visible in the historic photograph from circa 1885 included as Photo B-1.

By 1907, a larger structure with limestone exterior walls was constructed on the same site as the 1880 building. Local lore has it that the previous church building remained in use while the new structure was built around it; then the old building was dismantled and carried out the door of the new church. No evidence of the foundation of the previous church structure was observed in the sanctuary; there is no information regarding past excavations below the floor that may have encountered foundations of the original stone church, nor were such excavations part of this study.

By 1920, a new cross-gable wing, foyer, and bell tower had been added to the west side of the church (see Photo B-2). The ceiling in the sanctuary was lowered and the existing pressed metal ceiling installed. The church began to develop structural problems by the late 1920s. To help stabilize the church, limestone buttresses were constructed along the east wall, and the windows along the north wall were filled in.

In the mid-1930s, the bell tower was lost during a dust and windstorm. A 1943 photograph shows the bell tower truncated (see Photo B-3). The exterior walls were covered with stucco after 1950 to seal cracks in the walls and help tie the building together structurally. Reportedly, the stucco was adhered to the stone with nails driven into the mortar joints. A 1949 photograph shows the exterior limestone still exposed, as does a photograph published in the October 1950 issue of Ebony magazine, but the exterior walls appear to be covered with stucco in the 1953 aerial photograph of the townsite. (See Photos B-4 and B-5.) At about the same time as the installation of the stucco, the original peaked exterior windows were replaced with stock double-hung wood windows. The original front doors were also replaced; the historic photographs show four-panel stile and rail doors similar to some surviving original interior doors.

A concrete masonry unit addition containing a pastor's study and restrooms was constructed circa 1960. In 1975, a new red brick church building was constructed directly north of and adjacent to the existing stone building on the site. The old church building thereafter was used as a social hall, until safety concerns raised by its deteriorating condition led to its disuse.

In 1986-1987, a Condition Assessment Report was prepared by Restoration Associates, a division of Solomon Claybaugh Young Architects Inc., Kansas City, Missouri, for the National Park Service (see Appendix D). This report cataloged all interior and exterior features. A variety of distress conditions were identified, including weathering of the stone, delamination of stucco, and termite damage to wood at the vestibule roof structure and sanctuary floor joists and decking. Large patched areas of stucco on the north facade were noted, with the date 1979 visible inscribed into the patches. One note indicates that the pressed metal ceiling in the sanctuary and kitchen was installed circa 1936, but no source is provided for this statement.
There is no evidence that any of the repairs recommended in the 1986–1987 report were implemented. The 1983 HABS photography (Photos B-8 to B-12) shows the exterior of the church in substantially the same condition as today. On the interior, the serving counter that exists today between the sanctuary and kitchen was added at some time after the 1983 HABS photography, but before the 1986–1987 Condition Assessment Report.
Original structure circa 1907

Additions circa 1920

Northwest addition circa 1967
Photo B-1. The original First Baptist Church is visible at left in this circa 1885 view of Washington Street. Historical Society collection.

Photo B-2. The Old First Baptist Church, view from the west, circa 1920s, showing the bell tower. Historical Society collection.
Photo B-3. The Old First Baptist Church, view from the southwest, 1943. Photo by William T. Belleau.

Photo B-4. The Old First Baptist Church, view from the southwest, 1949. Photo by Van Shaw.
Photo B-5. View from the east down Washington Street, the Old First Baptist Church is visible at left, 1950s. Stucco had not yet been applied to the building. Historical Society collection.

Photo B-6. The Old First Baptist Church, view from the southwest, circa late 1950s. Historical Society collection.
Photo B-7. The Old First Baptist Church, view from the southwest, circa late 1960s. Compared to Photo B-6, this shows the construction of the northwest Study addition. Historical Society collection.

Photo B-8. The Old First Baptist Church, view from the south, 1983. HABS photo by Clayton T. Fraser.
Photo B-9. The Old First Baptist Church, view from the southeast, 1983. HABS photo by Clayton T. Fraser.

Photo B-10. The Old First Baptist Church, view from the northeast, 1983. HABS photo by Clayton T. Fraser.
Photo B-11. The Old First Baptist Church, interior view, 1983. HABS photo by Clayton T. Fraser.

Photo B-12. The Old First Baptist Church, interior view, 1983. HABS photo by Clayton T. Fraser.
ST. FRANCIS HOTEL/FLETCHER-SWITZER RESIDENCE

The first owner of the St. Francis Hotel site was Zach T. Fletcher, who arrived in Nicodemus in 1877. Fletcher opened the first business enterprise in Nicodemus, a general store, during the winter of 1877–1878.12 Fletcher and his wife lived in a dugout structure at the northwest corner of Lot 12, Block 12. There Fletcher opened a post office and his wife ran a school. A limestone structure was eventually constructed around the Fletcher’s original dugout, where they continued to operate the post office until 1886. They also ran a store at this site while living on Block 14.13

In 1881, Fletcher built the St. Francis Hotel on Lot 10 of Block 12 and a livery stable on Lots 13 and 14. The hotel was a one-and-a-half-story limestone structure, rectangular in plan, with a one-story shed-roofed kitchen to the east.14 In 1887, the St. Francis Hotel received a new roof.15 In June of 1888, the St. Francis Hotel reopened with a new addition.16 No documentation of the original kitchen wing or the 1888 addition exists. The limestone portion of the hotel was subdivided into two rooms on each floor, with living and dining rooms on the first floor and two guest bedrooms upstairs.

After rail service failed to reach Nicodemus, Fletcher sold his town lots to the original promoter, W.R. Hill, but continued to run his business. Ownership of the St. Francis Hotel site reverted to Graham County, but the hotel was purchased in the 1920s by Fred Switzer, a great-nephew of the Fletchers. In 1921, Switzer married Ora Wellington, and they made the former hotel their home. Switzer farmed in Nicodemus Township and his wife ran a restaurant.17

The house is visible in a photograph of Washington Street in 1922 (see Photo F-1). Although this view is not entirely clear, it seems that the house at the time the Switzers purchased it consisted of only the original one-and-a-half-story limestone structure. The various nineteenth century additions appear to no longer exist. According to Ora Switzer, the interior was divided into two rooms downstairs and two upstairs. (These four rooms are labeled as Bedrooms on the HABS plan drawings.)

The Switzers gradually expanded the house during the 1920s and 1930s, by constructing new additions and relocating older wood frame buildings to the site. Ora Switzer describes this process: “And then... we found a frame building, and added it in there, and I used it for my dining room. ... And then we put some more additions onto it, and made me a kitchen-dining room, and then on the other side, we made a place to go in, you know, just went around the house and made what you wanted.”18 Several historic photographs document the result of these additions to the house (See Photos F-2 through F-5). Based on these photographs, in 1950 the house appears to have a one-story gable roof wood frame addition on the east side (the Dining Room). The peak of the roof of this addition is about equal to the eave of the roof over the original stone house. Behind the Dining Room addition is a shed roof lean-to (the Kitchen, Pantry, and Bath). Although not visible in the available historic photographs, the HABS drawings also indicate that the first floor Bedroom at the southwest corner had also been added in the 1930s. The view of Washington Street published in the October 1950 Ebony magazine shows that the stone was not yet covered with stucco.19 There is also a broad stoop across the north facade of the house.
The house was further expanded in the 1950s and 1960s. Stucco was applied to the exterior. A new half-story was constructed over the kitchen and dining room, creating a third Bedroom upstairs and raising the roof line of the east wing to the same height as the roof over the limestone portion. Wood frame shed roof front and rear porches were added to the north and south facades. These porch additions included the Storage Room, Entry, and Front Porch along the north facade, and the Back Porch at the southeast corner of the house. By the 1970s, the house appeared much as it does today (See Photo F-6).

Ora Switzer moved into the brand-new Villa Housing in 1976 and since that time, the house has been intermittently used by the Switzer family. The house was documented with photographs and measured drawings as part of the HABS project in the summer of 1983. The HABS photographs are provided as Photos F-7 to F-10.

In the summer of 1998, the shed roofs over the southwest corner Bedroom and the Back Porch were reconstructed by Val and Easter “Clark” Williams Construction. Previously, these had been separate structures with slightly different slopes, but the reconstructed roof consists of a single roof across the entire south portion of the building, covered with rolled asphalt. Compare Photo F-9 to Photo F-12. Some roof rafters were replaced. Also, the rest of the roof was re-shingled with asphalt shingles. As of this writing, the house is unoccupied.
Original structure
circa 1881
Configuration of interior and location of door and window openings unknown
No information about additions constructed prior to 1920s

Dining room and kitchen addition
circa 1924
First floor

stoop

Second floor

Interior configuration unknown

gable roof

shed roof

Southwest bedroom added
circa 1930

First floor

Second floor

Porches enclosed, second floor added above dining room and kitchen
circa 1953
Photo F-1. View west along Washington Street, 1922. The Fletcher-Switzer House is visible in the distance on the left side of the street. Photo courtesy Ernestine VanDuvall.

Photo F-2. View west along Washington Street, 1950. The Fletcher-Switzer House is visible in the foreground at the left edge of the photograph. Photo published in *Ebony* magazine, October 1950.

Photo F-4. Enlarged view of Photo F-3 showing the Fletcher-Switzer House.
Photo F-5. The Fletcher-Switzer House, seen in a detail of the aerial photograph of the townsite, 1953. Aerial photograph courtesy Bernice Bates.

Photo F-6. View west along Washington Street, 1970s. The Fletcher-Switzer house is visible on the left side of the street. Photo courtesy Kansas State Historical Society, Topeka, Kansas.
Photo F-7. The Fletcher-Switzer House, view from the northwest, 1983. HABS photo by Clayton T. Fraser.

Photo F-8. The Fletcher-Switzer House, view from the southwest, 1983. HABS photo by Clayton T. Fraser.

Photo F-10. The Fletcher-Switzer House, view from the northwest, 1983. HABS photo by Clayton T. Fraser.
NICODEMUS SCHOOL DISTRICT NO. 1 BUILDING

The wife of Z. T. Fletcher held classes for the children of the first families in Nicodemus during the winter of 1877–1878. In the summer of 1879, School District No. 1 was established as the first school district in Graham County, Kansas. Prior to construction of the school building, classes were held in private homes as well as in the St. Francis Hotel belonging to Z. T. Fletcher.

Residents of Nicodemus transferred lots to the school district to create the 2.45-acre site on Block 24 at the northwest corner of Fourth and Madison Streets. Circa 1887, a two-story four-room wood frame schoolhouse was built at a cost of more than $1,000. This original school was destroyed by fire circa 1916. In 1917–1918, the existing one-room school building (Photo S-1) was built on or near the site of the previous school.

In 1945, the Fairview schoolhouse was moved from the southeast quarter of Nicodemus Township Section 23 to the north side of the present structure at the District No. 1 site. This building was used as an annex for classroom space for grades one through four. The District No. 1 School Building provided classroom space for grades four through eight. A 1949 photograph (Photo S-2) of the school complex shows the two school buildings, an outbuilding at the back, and a small trestle with school bell at the east side. The District No. 1 School Building appears to have been repaired and repainted in the 1940s, as seen by comparing Photos S-1 and S-2 from 1943 and 1949, respectively.

As school enrollment declined in the 1950s, the Fairview school building was no longer needed to serve Nicodemus. Soon after the 1953 aerial photograph of the townsite, the Fairview School was purchased by the American Legion and moved to a site diagonally across the street from the Township Hall on Washington Street. (The Fairview school building is visible in its new location in Photo S-4 from the 1970s.)

By 1955, there were too few children in Nicodemus to maintain a local school, and the District No. 1 School closed. Thereafter, students from Nicodemus traveled to nearby Bogue for classes. In a transaction recorded 20 June 1966, the school building was donated by the school district to the Nicodemus 4-H Club.

By the time of the 1983 HABS documentation (Photos S-5 to S-9), the school bell trestle had disappeared, the original wood porch railing had been removed, and the existing steel pipe columns had been installed on the porch. In 1983, the school building was purchased by the American Legion Post and used for meetings and social events. Not long thereafter, the Fairview school building, which had previously been used by the American Legion, was demolished.

Significant exterior and interior repair work was performed at the District No. 1 School Building by the National Park Service (Fort Larned Historic Site – FOLS) and AmeriCorps staff from Denver, Colorado, in summer 1998. Bees that had infested the south wall of the building were removed, and several deteriorated clapboards on this wall were replaced. The new siding was installed with the smooth side exposed. In preparation for repainting, the previous lead-based paint was scraped from the siding and removed from the site using a HEPA vacuum. Intact lead-based paint under the porch was left in place and painted over. All of the wood siding and trim was repainted white. A personnel lift was used to access the flagpole so that it could be repainted as well, and a new flagpole rope was installed. The

Historic Structures Report
Nicodemus, Kansas

Developmental History
25 October 2002
roof was replaced, using 16 inch wood shingles. New shingles were also installed on the
dormer roof and over the dormer window openings. New metal flashing was installed in
the valleys where the dormer intersects the main roof. No work was performed on the
chimney. A new wood cover was installed over the well on the site. There was no painting
on the interior, but the rooms were cleaned, including washing with bleach to address
possible Hanta virus contamination. The furnishings and materials inside were sorted,
 inventoried, and documented with photographs, written descriptions, and notes on
condition. Items of potential historical interest were tagged for later reference and stored in
boxes. Electrical service to the building was disconnected, and the building has been
disused except for storage since this time.
No significant changes have been made to the configuration of the District No. 1 Schoolhouse.
Photo S-1. The District No. 1 School, view from the southeast showing the original porch and dormer windows, 1943. Photo by William T. Belleau.

Photo S-2. The District No. 1 School and Fairview school, view from the southeast, 1949. Photo by Van Shaw.
Photo S-3. The District No. 1 School and Fairview school, circa 1950. Electricity had been added to the schools by the time. Photo courtesy Kansas State Historical Society, Topeka, Kansas.

Photo S-4. The Fairview school building after its relocation to Washington Street, circa 1970s. Photo courtesy Kansas State Historical Society, Topeka, Kansas.
Photo S-5. The District No. 1 School, view from the southeast, 1983. HABS photo by Clayton T. Fraser.

Photo S-6. The District No. 1 School, view from the northeast, 1983. HABS photo by Clayton T. Fraser.
Photo S-7. The District No. 1 School, view from the northwest, 1983. HABS photo by Clayton T. Fraser.

Photo S-8. The District No. 1 School, overview from the east, 1983. HABS photo by Clayton T. Fraser.
Photo S-9. The District No. 1 School, view along the north wall, 1983. HABS photo by Clayton T. Fraser.
TOWNSHIP HALL

The Township Hall (Photo T-1) was constructed in 1937–1939 as a Works Progress Administration project. The stone for the building was quarried near Webster Reservoir in Rooks County.53 Twelve local men were employed in the construction project. "Mr. Garold Napue cut the stone blocks and patterned them with a mallet. Gilbert Alexander, project manager and timekeeper, supervised the two-year project."54 The designer of the Township Hall is unknown. The Township Hall was dedicated in 1939, and since that time has served for community events such as meetings, dances, and elections. A limestone privy was also constructed on the north side of the Township Hall, probably as part of the original WPA project; however, the existence of this structure is not documented prior to the 1953 aerial photograph of the townsit.

There have been relatively few changes to the Township Hall since its construction. The original front doors, shown in a 1949 photograph as having nine glass lights and a solid lower panel, were replaced with glazed aluminum doors sometime before 1977.55 (Compare Photos T-3 and T-4) Around 1980, a dropped acoustical tile ceiling was installed in the Hall, and the floors were refinished.56 In 1982, wood paneling was added throughout the building, bathrooms were constructed at the north end of the building at either side of the Stage, and the theatre chairs that line the long walls were reupholstered. In 1983, mini-blinds were installed on the large windows.57 The original limestone privy still existed at the time of the 1983 HABS photography (see Photo T-6), but it has since been demolished.

The roof has been replaced several times during the life of the building. The 1983 HABS Inventory described the Township Hall roof as off-white asphalt shingles.58 However, this was not the color of the original roof, as seen by comparing the 1943 and 1983 photographs. (Further documentation of the roofing in place in 1983 was not available at the time of this study.) The existing red-brown asphalt shingle roof was installed in May 1986 by Schamber Construction.59 The color and material of the original roof cannot be accurately determined from the available historical documentation.
Original plan
1939

Restrooms added at rear of building flanking stage
circa 1982
Photo T-1. The Township Hall in 1943, view from the southwest. Photo by William T. Belleau.

Historic Structures Report
Nicodemus, Kansas

Developmental History
25 October 2002
Photo T-3. The Township Hall, view from the south, 1949. Photo by Van Shaw.

Photo T-4. The Township Hall, view from the south, 1977.
Photo T-5. The Township Hall, view from the south, 1983. HABS photo by Clayton T. Fraser.

Photo T-6. The Township Hall, view from the north showing the original privy, 1983. HABS photo by Clayton T. Fraser.
Photo T-7. The Township Hall, view from the southeast, 1983. HABS photo by Clayton T. Fraser.
NOTES
2 Ibid., 4.
3 Ibid., 5.
4 Ibid., 7.
6 Ibid., 41.
7 Hamilton, 18–21.
8 Ibid.
11 Schwendemann, 26. He references the newspaper Graham County Lever, 4 February 1881.
12 La Barbara J. Wigfall Fly, HABS Inventory, March 1984.
13 Ibid.
14 Ibid.
15 Beyond his ministerial duties, Reverend Wilson was active in Nicodemus community life until his death in 1967. He also served as Nicodemus’ last postmaster until the post office closed in 1953.
16 HABS Inventory.
17 Correspondence with Robert Brogden, National Park Service, 2002.
18 HABS Inventory.
23 Architecture 2000, P.C. drawings, provided in Appendix A.
24 Correspondence with Jim Creech, National Park Service, 2002.
25 Schwendemann, 26, referencing the Topeka newspaper Commonwealth, 12 June 1878.
26 Promised Land on the Solomon, 45.
27 La Barbara J. Wigfall Fly, HABS Inventory, March 1984.
30 Promised Land on the Solomon, 78, referencing the newspaper Wichita Eagle Beacon.
"Pastor Builds Own Church," 1975.
32 Promised Land on the Solomon, 13.
33 Schwendemann, 24-26, referencing the Topeka newspaper Commonwealth, 19 September 1877.
34 Promised Land on the Solomon, 46.
36 Ibid.
39 "Wheat Town," Ebony V, no. 12 (October 1950), 27.
40 Reportedly, the stucco on the Fletcher-Switzer House was installed by Mr. Leland Clark, a stucco and asphalt contractor. Per conversations between Mr. Clark and Craig Kenkel of NPS and Sandra Washington of NPS in summer of 1998, reported to BVH/WJE by Ms. Washington in 2002.
41 HABS drawing, National Park Service, sheet 5 of 9, drawn by Everett L. Fly, 1983.
42 Interview with Ora Switzer.
43 Correspondence with Jim Creech, National Park Service, 2002.
44 Schwendemann, 26, referencing the newspaper Graham County Leve, 4 September 1879.
45 Promised Land on the Solomon, 24.
46 Ibid., 74.
47 Ibid., 75.
48 Bettina C. Van Dyke, HABS Inventory, August 1983; but in an interview with Freddie and Ivalee Switzer, a date in the early 1960s is suggested. See Cultural Landscape Report, 2002.
49 Deed record.
50 Cultural Landscape Inventory, (July 1997), 4.
51 Interview with Bertha Carter and Nathaniel Moore, 18 April 2002. The Fairview school is shown on the site map of Nicodemus prepared by the HABS team in 1983, but listed as "vacant."
52 Correspondence with National Park Service staff (Jim Creech, Gary Togstad, Carolyn Wallingford, Felix Revello, and Dennis Carruth), 2002. Painting of the school building in July 1998 was performed by Fort Larned Historic Site staff, and AmeriCorps based in Denver, Colorado. Roofing work performed during the same period was performed by Fort Larned Historic Site personnel (Jim Goatcher and Toby Bright).
53 Promised Land on the Solomon, 74.
54 Ibid., 74.
55 Ibid., 73.
56 Interview with Bert Gansel.
57 Bettina C. Van Dyke, HABS Inventory, August 1983.
58 Ibid.
59 Correspondence with Jim Creech, National Park Service, 2002.
PHYSICAL ASSESSMENT

PHYSICAL DESCRIPTION

A.M.E. CHURCH

The African Methodist Episcopal (A.M.E.) Church (Photos A-1 through A-27) is a one story structure, rectangular in plan, with a gabled roof. A small gable-roof anteroom with a double door is located at the east (front) facade and currently provides the only entrance to the building. “A.M.E. Church - 1885” is painted above the front door.

Structural Systems and Exterior

Structural stabilization work was performed at the A.M.E. Church by the National Park Service in 1996 and in 2000. The structural stabilization work was performed because a partial collapse had occurred at the north wall of the church. As part of this work, temporary wood posts and beams were installed to support the roof rafters, thereby removing the roof loads from the north and south masonry walls. A new 2 x 4 stud wall with plywood sheathing was installed to replace the collapsed portion of the north wall. At the time of this study, documentation of the National Park Service repairs provided the basis for understanding the existing structure in areas where it could not be visually observed.

The foundation of the A.M.E. church was partially visible at openings made in the floor structure during the stabilization work. A stone foundation wall extends east-west along the centerline of the church. The National Park Service drawings show a slight footing under the original exterior walls and a new concrete strip footing under the new wood framed walls; however, this was not visible for inspection.

The floor is supported on wood 2 x 8 joists spaced at 24 inches on center that span 12 feet from the exterior wall to the centerline foundation wall. As part of the National Park Service repairs, new joists were sistered to the existing floor joists, primarily along the east half of the north facade.

The walls are generally load-bearing limestone. Most of the stone is covered with a stucco parge, but the stone is exposed in certain areas where the stucco has delaminated or where the stone was rebuilt as part of the recent stabilization work. The finished face of the exposed stone is smooth. Isolated small grooves observed in the face of the stone may have been chiseled in order to help key the stucco to the stone (see Photo A-21). The walls are constructed with two outer wythes of stone with a rubble infill, 18 inches total thickness. The original mortar was analyzed and found to be generally three parts sand to one part lime. The sand used was relatively coarse and dirty. The finished mortar has a gray-buff color. In 2000, NPS re-pointed the joints with gray mortar in a raked profile.

The south facade has four regularly spaced window openings. The window openings are rectangular with a large single-piece stone lintel. Relieving arches are included above the single piece lintels to help distribute load off the lintel pieces.
Before its deterioration and ultimate collapse, the north façade included a large arch window set into a cross gable near the west end and a shed roof vestibule at the northeast corner. The existing north facade is a temporary wood stud wall with plywood cladding.

The west façade is a blank wall without window or door openings. The east façade is dominated by the projecting mass of the east anteroom, with double doors at the center. There is a concrete stoop at the exterior of the wood double doors. The opening for these double doors is capped by a stone lintel. The doors lead into the east anteroom space, from which another doorway leads west into the main interior sanctuary space. The door from the east anteroom to the sanctuary was originally a stone arch opening, but the opening has been lowered and squared off to accommodate the low ceiling of the anteroom. This door opening originally led from the sanctuary to the exterior, before the east anteroom was constructed (see Photo A-27).

The sanctuary and east anteroom spaces of the A.M.E. church have separate roof structures. The main roof is framed with wood 2 x 6 rafters and has a wood deck of 1 x 6 boards spaced 3 ½ inches apart. The rafters are notched at the bearing end, where they rest on the masonry walls. The main roof has wood trim at the eaves and soffit. A 1 x 6 vertical member extends from the apex of the wood rafters and attaches to a 1 x 6 horizontal joist that is level with the top of the stone walls (see Photo A-24). The horizontal joists tie the rafters together and support the finish ceiling. The anteroom roof is framed with wood 2 x 4 rafters. There is no eave or soffit trim at the anteroom; the projecting rafter ends are visible on the exterior.

At the time of the inspection in February 2001, both the main roof and east anteroom roof were covered with two layers of cedar shingles, over which green rolled asphalt roofing and corrugated sheet metal nailed to 1x4 pine nailing strips had been placed. (See Photos A-13, A-15, and A-17) In some areas the wood shingles were exposed. The first layer of wood shingles showed green paint on the nail heads and in some areas of the wood; this suggests that the entire roof was at one time painted green. The first layer of shingles also had the ghosted outline of the north-facing cross-gable that disappeared between 1953 and 1983. The ridge of the roof had galvanized metal caps. There was a single brick chimney covered with plywood located at the west end of the roof at the gable; the chimney is built into the center of the west wall of the church and is visible in the attic space where no plaster is present on the interior side of the masonry (see Photo A-24).

In May 2001, the main roof only was entirely replaced by the National Park Service. (See Photos A-14, A-16, and A-18) All previous roofing materials were removed down to the original decking, and new cedar shingles were installed with a 4 ½-inch exposure. (The first layer of historic shingles had a 5-inch exposure.) All soffit and fascia boards were replaced, and the brick chimney was dismantled to the roof line.

An interpretive sign located at the east side of the site reads:

African Methodist Episcopal Church: The A.M.E. Church (African Methodist Episcopal) was built in 1885 of limestone and was later finished with stucco in the 1940s. This church was one of the three churches which provided a place of worship for the many residents of Nicodemus. It was closed for religious services in the 1950s.
A plaque below this sign reads: “The Acquisition of the Nicodemus African Methodist Episcopal Church Was Made Possible By The Generous Support Of The Trust for Public Land, December, 1998.”

Interior

East Anteroom. The floor of the anteroom is finished with 3-1/4 inch wide tongue and groove flooring with a blue-gray painted finish. The ceiling is wood tongue and groove boards, painted white. The boards are approximately 3/4 inch thick by 5-1/2 inches wide. The exterior entry doors are wood stile and rail doors with three inset panels, unpainted. The glass view panel in the upper part of the door is covered with masonite. The doors into the sanctuary are white painted wood stile and rail with inset panels and spring hinges.

Hidden on the east wall of the sanctuary, behind the roof structure of the anteroom, there is an original stone carved with the inscription “Mt. Pleasant Babpt [sic] Church – 1897.” The mason had attempted to correct his misspelling by scratching out the second “b.” This stone was hidden by the wood ceiling of the anteroom, which has been partially dismantled as part of the previous stabilization work.

Sanctuary. Much of the original interior finishes and furnishings have been removed. The floor of the sanctuary is vinyl sheathing over 1 x 6 wood boards. The north wall is now a temporary plywood and stud wall constructed as part of the past stabilization work. The south, east, and west walls are plaster applied directly to stone and are painted pink (see Photo A-23). The ceiling is tongue and groove bead board. The ceiling has been partially disassembled at the side walls for the previous stabilization project.

The chancel area is defined by a raised wood platform with three tiers at the west end of the sanctuary. This platform includes wood railings, balusters, a communion rail, and several sets of steps (see Photo A-25). The wood elements are painted dark red.
OLD FIRST BAPTIST CHURCH

The Old First Baptist Church (Photos B-1 through B-24) is a one story structure, T-shaped in plan, with intersecting gable roofs. The interior is an open plan with the kitchen opening into the main sanctuary space. The entrance foyer is located at the juncture of the sanctuary and kitchen wings and has a mansard roof. A small shed roof addition at the northwest corner of the building contains a study and rest room facilities. A brick chimney rises above the kitchen space, penetrating the peak of the gable roof. The red brick is exposed on the exterior with some remnants of past stucco parging but is plastered on the interior.

Structural Systems and Exterior

The foundation of the Old First Baptist Church is limestone; observations below grade were not included in this investigation. The floor structure in the sanctuary and kitchen could not be observed during this investigation. The northwest addition floor structure is wood 2 x 8 joists spaced at 16 inches on center.

The exterior bearing walls are limestone masonry covered with a stucco finish. The addition at the northwest corner is constructed with bearing walls of concrete unit masonry, covered with a stucco finish. Buttresses of rubble limestone covered with stucco were added to the east facade for structural support; these are irregularly spaced and each is a different size and shape (see Photo B-14). The existing photographic documentation indicates that these buttresses were constructed prior to the 1950s. The north facade has large areas of unpainted stucco patches.

The existing rectangular windows are replacement units with one-over-one double hung wood sash with wood surrounds (see Photo B-17). The original Gothic Revival style windows had triangular lintels with diamond-topped two-over-two wood double hung windows. The triangular shape at the top of the window openings has been filled in with wood framing, reducing the size of the window openings. The window sills are limestone and have been covered with stucco. Typically, the double hung windows include a single light of textured glass in the upper sash and a single light of flat glass in the lower sash. At the northwest addition, the window is partially boarded up with plywood. Some windows also have wire mesh insect screening installed on the exterior. There is a single circular window in the gables on the north, west, and south facades. The south gable circular window is boarded up with plywood.

The main roof covers the sanctuary and kitchen spaces. It is framed with 2 x 6 wood rafters, 24 inches on center. The roof sheathing is 1 x plank in mixed widths. The lowest part of each gable roof slays outward at a shallower slope. The sanctuary ceiling is supported by 2 x 4 wood joists running east to west. Each of the joists is suspended at the middle of its span from the roof rafters with a 1 x 4. The kitchen ceiling is supported on 2 x 6 wood joists at 24 inches on center, running east to west. The main roof is covered with wood shingles on the north, south, and west faces, but has asphalt shingles on the east face (see Photos B-13 and B-14). The soffits have white painted wood trim, which wraps around the gable ends as a cornice return. The gable peak and fascias have galvanized metal flashing. There are no gutters or downspouts.
The vestibule is covered by a mansard roof. The vestibule roof is supported by four posts, one at each corner. Each post consists of three 2 x 8s. Between the posts, the roof is supported on 2 x 8 wood rafters at 24 inches on center. The mansard has two layers of wood shingles. The first layer of wood shingles has a mixture of semicircular and pointed profiles, and the second layer uses all rectangular shingles (see Photo B-15). Sheet asphalt appears to have been added to the valley between the main roof and the foyer roof. The outer corners of the mansard roof have galvanized metal trim. A steel pipe column has been installed under the sofit to support the southwest corner of the mansard roof (see Photo B-19).

The northwest addition has a shed roof constructed of 2 x 4 rafters spaced at 24 inches on center. The roof is finished with asphalt shingles.

An interpretive sign at the west (front) facade of the church reads:

First Baptist Church: The present structure of the First Baptist Church was completed in 1907 and was built around an earlier and smaller church. The stucco exterior was added in the 1940s. [N.B. This is inaccurate. The existing photographic documentation indicates that the stucco was not added until after 1950.] After the exterior of the present building was completed, the older structure was removed piece by piece through the front door. The newly built church, just to the north, was completed in the 1970s and is the sanctuary used for services today.

Interior

Foyer. The foyer floor is vinyl sheathing over hardwood strip flooring. The interior walls are plaster over masonry with a wood beaded board wainscot. All of the plaster and woodwork in the foyer has been painted white. The ceiling is wood tongue and groove bead board. The exterior entry doors are flush wood veneer hollow-core doors. Contrary to egress requirements, these doors swing inward. Above the doors is a wood framed transom. The transom has been filled in with wood framing and plaster. The vestibule doors into the sanctuary are wood rail and stile doors with six inset panels and dimension lumber trim and framing (see Photo B-23). The vestibule doors are set on a pivot hinge, which allows them to swing inward or outward. The door from the foyer to the kitchen is another six-panel wood rail and stile door; the doorknobs have been removed, rendering it inoperable.

Sanctuary. The sanctuary floor is 3/4-inch wide tongue and groove varnished wood strips, with a carpet runner at the main aisle. The stage/chancel floor is also tongue and groove wood strips covered by carpet. The walls are plaster, with a 48-inch high tongue and groove bead board wainscot, painted white. The ceiling is pressed metal panels with a pressed metal crown molding, painted silver. Photo B-22 shows the medallion at the center of the metal ceiling. Centered in the west wall of the sanctuary is a 15-foot wide opening into the kitchen. This opening has a three-part folding door across its northern half. A second matching three-part door across the southern half has been removed, and a serving counter is presently installed in this location. The stage/chancel railing has been removed, except for two main posts (see Photo B-20).

Kitchen. The kitchen floor is carpet over 3/4-inch wide varnished wood strip flooring, identical to the floor in the sanctuary. The walls have a plaster finish on wood lath and masonry, painted white, with a 48-inch high wood bead board wainscot, painted white. An abandoned chimney is located above the serving counter opening on the east wall; this chimney begins above the head of the opening and extends up through the roof (see...
Photo B-24). The ceiling is finished with silver-painted pressed metal panel and pressed metal crown molding. The door to the study is a wood stile and rail four-panel door, painted white, and dimension lumber trim and frame.

Study. The study, together with toilet rooms A and B, comprises the northwest addition. The study floor is sheet vinyl over a plywood subfloor. The north and west walls are white painted concrete masonry units. The east wall is wood veneer paneling over wood framing. The south wall is plaster over masonry. The ceiling is gypsum board. On the east wall are the doors to the toilet rooms; these are solid wood stile and rail four panel doors, painted red.

Toilet Room A. The floor is sheet vinyl over plywood. The south and east walls are white painted plaster, but the north and west walls are wood veneer paneling over wood framing. As in the study, the ceiling is gypsum board.

Toilet Room B. This room also has sheet vinyl flooring over plywood. The east wall is plaster, and the north wall is white painted concrete masonry units. The west and south walls are wood veneer paneling over wood framing. As in the study, the ceiling is gypsum board. This room contains a water heater.
ST. FRANCIS HOTEL/FLETCHER-SWITZER RESIDENCE

The St. Francis Hotel/Fletcher-Switzer Residence (Photos F-1 through F-30) is a one-and-a-half story structure with one-story shed roof additions across the north and south facades.

The original structure contains two bedrooms on the first floor and two on the second floor. The one-and-a-half story east addition includes the dining room, kitchen, pantry, and bathroom on the first floor, the staircase, and one bedroom on the second floor. The shed roof addition on the north facade includes a front porch, entry, and storage room. The shed roof additions on the south facade include a bedroom at the southwest corner and the back porch at the southeast corner.

Structural Systems and Exterior

The original part of the building has a concrete foundation that extends approximately 24 inches above grade.

The original portion of the building consists of load bearing stone masonry, covered with stucco. At the second floor, the stone masonry walls are 15 inches thick and consist of two 6-inch wythes and a 3-inch rubble infill. The windows have double stone lintels (two wythes) that bear directly on the wall beneath.

At the first floor, the thickness of the wall was measured to be 21 inches, including plaster. It is likely that the structural wall is 18 inches thick, consisting of two 6-inch stone wythes and a 6-inch rubble fill, as found on the other stone buildings of Nicodemus. The floor joists in the original portion of the building could not be observed during this survey.

All of the various additions were constructed with light wood framing. The first floor joists are 2 x 6 members spaced at 16 inches on center, located approximately 20 inches above grade. At the perimeter foundation wall, the first floor joists rest on a 2 x 6 sill plate. In the vicinity of the dining room, the floor joists were observed to run east to west, and are supported on the 2 x 6 sill plate and intermediate rough timber support posts. The second floor joists are 2 x 6 members spaced at approximately 17 inches on center.

The walls of the additions are typically 2 x 4 members spaced at 24 inches on center. The 1½ story east addition and the south additions are finished with metal lath and 1-inch thick stucco on the exterior, while the north additions have lapped wood siding with a 12-inch exposure over the stucco.

The front porch opens to the north facade, and the enclosed back porch has a door to the east facade. Both entrances have concrete stoops. Additionally, there is a concrete pad at the west half of the north facade in front of the storage area.

The windows are generally double hung wood sash, but come in a mixture of sizes and configurations. Additionally, the north facade includes one sliding window in the first floor. Most of the windows are covered with one-over-one light aluminum storm windows. Two of the north facade windows include metal awnings.

The roof of the original portion of the building is a shallow gable. The rafters for this portion of the roof are 2 x 4 wood members spaced at 24 inches on center. No sill plate was
visible; the rafters bear directly on top of the stone wall. The one-and-a-half story east addition also has a gable roof, with the peak as high as the roof over the original portion. The structure of this roof was not available for inspection. There is a single dormer on the south face of this roof. Each gable (north, south, and east facades) includes one double hung window. Both of these gable roofs are covered with asphalt shingles with metal edge trim and no gutters. At the time of the 1983 HABS documentation project, the roof was described as wood shingles. The existing asphalt shingles were installed in 1998.

The additions across the north and south facades have shed roofs. The rafters for these roofs are typically 2 x 6 members spaced at 24 inches on center. The north shed roof is asphalt shingles continuous with the gable roofs. The south shed roof is covered with rolled asphalt roofing. The south shed roof was originally two separate roofs, one over the bedroom, and one over the back porch at a slightly different slope. In 1998, these roofs were entirely reconstructed as a single shed roof over both spaces. (Compare Photos F-9 and F-12.)

At the north side of the building is an interpretive sign which reads:

St. Francis Hotel - Zach Fletcher's hotel was built in 1881 and is the two-story stuccoed portion to the right. It originally featured a cut limestone appearance with a one-story stone kitchen addition on the east. It also served as the site of the first post office in Nicodemus. The oldest recorded African-American operated post office in the U.S. [N.B. Since this sign was erected, it has been determined that this is not the first post office to be operated by African-Americans.]

Interior, First Floor

Front Porch. The north and east walls are unpainted exposed wood framing. The south and west walls are stucco. The floor is poured-in-place concrete. The ceiling is unpainted exposed framing. The exterior door and the door to the entry are missing.

Entry. The north, east, and west walls are clad with random pieces of wood veneer paneling. The south wall is covered with stucco. The floor is poured-in-place concrete covered with indoor/outdoor carpeting. The ceiling is wood frame sheathed with gypsum board. The door into the storage room is a wood flush hollow core door. The entry door into the dining room has a prefinished outer aluminum storm door. The inner door is a hollow-core mahogany laminate door with three vision panels.

Storage Room. The storage room west of the entry was padlocked at the time of the survey and was not accessible.

Dining Room. The floor is multiple layers of sheet linoleum over wood decking. The north, east, and south walls are plaster sheathed with wood veneer paneling (see Photos F-21 and F-22). The west wall includes a wide opening to the north bedroom and is plaster covered with wallpaper. The ceiling is gypsum board nailed to wood ceiling joists. The interior doors into the storage space under the stairs and to the second floor stairs are hollow-core wood doors. The dining room windows are double hung wood units.

North Bedroom. This bedroom is located on the first floor in the north half of the original stone structure. The floor is vinyl sheathing covered with carpeting. The north, west, and east walls are white painted plaster over masonry. The construction of the south wall, the
partition between this room and the south bedroom, could not be determined, but it appears to be plaster or gypsum board over wood framing.

South Bedroom. This bedroom is located on the first floor in the south half of the original stone structure. The floor is vinyl sheathing over wood framing, and is covered with carpeting. The walls are similar to those in the north bedroom but are painted pale green. The ceiling is wood paneling covered with wallpaper and newspaper. The door into the bathroom is a hollow-core wood door. The door into the southwest bedroom (Photo F-26) is a wood stile and rail door that had fallen off its hinges.

Bathroom. The floor is vinyl over wood. The walls are gypsum board paint white and some wallpaper. The ceiling is painted wood paneling.

Storage Space Under Stairs. The floor is wood covered by carpeting. The walls and ceiling are gypsum board painted blue.

Kitchen. The floor is sheet vinyl over wood decking. The east wall is plaster covered by wallpaper. The south wall is yellow painted plaster. The west and north walls are yellow painted gypsum board. The ceiling is also gypsum board. The kitchen is fitted with wood cabinets, painted white. The door to the back porch is a solid wood rail and stile door with a glass vision panel.

Pantry. The floor is vinyl sheathing over wood. The walls and ceiling are gypsum board. The wood frame at the door opening into the kitchen is covered with a transparent finish.

Back Porch. The floor is wood covered by vinyl, which is in turn covered by carpet. The north wall is stucco. The east, west, and south walls are wood veneer paneled with mineral wool insulation. The ceiling is exposed wood framing and plywood. The ceiling framing, installed during the 1998 roof reconstruction, is notched into older framing, as shown in Photo F-28. The door to the exterior is a flush hollow-core door with a vision panel. The door to the southwest bedroom is a wood stile and rail door with inset wood panels.

Southwest Bedroom. This bedroom is located at the southwest corner of the first floor. The floor is Masonite over wood framing and is covered by carpeting. The north wall is plaster over masonry. The east, south, and west walls are wood veneer paneling over gypsum over wood framing. The ceiling is gypsum board covered with wallpaper.

Interior, Second Floor

East Bedroom. This bedroom is located at the east end of the second floor (see Photo F-29). The floor is wood decking covered with carpet. The walls are gypsum board over wood framing. The gypsum board is covered with pink wallpaper. The ceiling is also gypsum board over wood framing, covered with wallpaper.

North Bedroom. This bedroom is located at the north end of the second floor of the original building. The floor is vinyl over wood sheathing. The east, west, and south walls are painted plaster over masonry. The north wall is gypsum board over wood framing.
The gypsum board is covered with wallpaper. The sloped ceiling is gypsum board covered with wallpaper.

South Bedroom. This bedroom is located at the south end of the second floor of the original building. Finishes in this bedroom are similar to those in the north bedroom on the second floor.
NICODEMUS SCHOOL DISTRICT NO. 1 BUILDING

The Nicodemus School District No. 1 Building (Photos S-1 through S-28) is a one-story wood frame structure. The building is essentially square in plan, with a hipped roof. A porch with a hipped roof extends across the east facade. The interior is divided into a single main classroom space, and smaller kitchen, closet, vestibule, and cloakroom spaces.

Structural Systems and Exterior

The Nicodemus School District No. 1 Building has a concrete cast-in-place foundation. The concrete foundation extends approximately two feet above grade. The floor joists run north-south and are supported by the concrete foundation and two intermediate concrete grade beams running east-west, located at the third points of the plan. The floor framing is 2 x 8 members spaced at about 17 inches on center. The floor decking is laid diagonally.

The walls are wood stud framing of 2 x 4 members spaced at 16 inches on center. On the exterior, the walls are clad with beveled wood clapboard siding and wood trim.

The entrance is a single door near the center of the east facade with four glazed lights (see Photo S-13). There is a double-hung window to either side. The south facade has a pair of four-over four, double-hung wood windows near the west end (see Photo S-17). The north facade has six two-over-two metal frame double-hung windows with horizontal mullions (see Photo S-12).

The hip roof of the school is constructed of 2 x 4 wood rafters at 32 inches on center. The rafters support 1 x 4 roof sheathing, to which the wood shingles are nailed. The sheathing boards are laid with a space between each board. (See Photo S-28). The ceiling joists run north to south at 16 inches on center. The ceiling joists span half the width of the classroom and are lapped at the center of the room. At the center point of the classroom, 2 x 4 hangers extend upward, to suspend the ceiling joists from the roof structure. However, because of the hipped roof layout, all of the hangers attach to a single rafter at the center of the west face of the hipped roof. Additionally, the ceiling joists are braced near the north and south walls by 2 x 4 kickers that extend from the roof rafters.

On the east side of the roof is a single dormer. The window openings of the dormer have been covered with roof shingles. A flagpole, probably metal, rises from the roof of the dormer. Behind the dormer on the east face of the roof is a brick chimney, covered with stucco. Inside the attic, the brick chimney was constructed obliquely (leaning toward the west), in order to accommodate the desired location in the classroom while still exiting the roof structure at a convenient location behind the dormer window (see Photo S-27). There are no gutters at the perimeter of the roof.

The front porch is situated across the east facade of the school. The porch has a concrete block foundation and concrete slab floor and steps. The area below the porch was not accessible for further inspection during this study. There is no handrail on the porch, but the location where the original railing attached to the east wall of the building is still visible (see Photo S-15). The porch roof is supported by four 2-3/4 inch diameter steel pipe columns along the east edge. The porch roof is wood framed and is covered with wood shingles. The porch ceiling is also wood.
Also on the school site is a one-story gable-roofed shed with deteriorated wood shingle roof. Reportedly, this shed was used for coal storage. Salvaged limestone is stored next to the shed. Between the school building and the shed, there is an underground concrete vault containing a well pump, with a wood cover.

At the east edge of the site is an interpretive sign which reads:

District No. 1 Nicodemus School – the first school established in Graham County, is a one-story wood-sided structure with a hipped roof. It was built in 1918 on the same site of the original school, (built around 1887) which burned. The school closed in the late fifties and children in Nicodemus now commute to Bogue.

Interior

The interior walls and ceiling are finished with plaster on wood lath. The door and window surrounds and interior doors are painted wood. The floor is generally stained and varnished tongue and groove wood flooring.

Entry Hall. (Photos S-23 and S-25) The entry hall floor is 2-1/4 inch by 11-1/2 inch tongue and groove flooring with a stained finish. The wood base trim is 1 inch by 6 inch with a blue painted finish. The walls are plaster with a sand finish and have three to four layers of paint in a variety of colors. The ceiling is also plaster with a sand finish. The door to the exterior is a wood stile and rail door with four lights and three inset panels, dimension lumber trim with a blue painted finish, and a decorative cornice molding at the door head. The door into the kitchen is a wood stile and rail door with five inset panels. The door has a blue painted finish and is fitted with a glass and wood storm door. On the west wall is a small wood-framed opening which provides a view into the classroom.

Coat Room. The floor is 2-1/4 inch by 11-1/2 inch tongue and groove flooring with a stained finish. The walls have plaster impressed with an 8 inch by 16 inch pattern to resemble concrete masonry units. The walls are covered with multiple layers of paint. The door into the classroom is a wood stile and rail door with five inset panels and a painted finish. The door hinges have been moved from their original locations, as indicated by the presence of old screw holes. An access hatch to the attic is located in the ceiling. There is a brick chimney at the northwest corner of the coat room.

Storage Room. The floor is 1 inch thick by 3-1/4 inch wide tongue and groove pine flooring in random lengths. The wood floor is unfinished. The 1 inch by 6 inch wood base is also unfinished. There is an access hatch in the floor that is covered with plywood. The walls are plaster over lath. The plaster appears to be a brown coat layer only and is unpainted. On the east and north walls, unpainted wood 1x planking has been nailed over the plaster. The door to the classroom is a wood stile and rail door with two inset panels. The door is missing hardware, and the existing hinges are smaller than the original.

Classroom. (Photos S-21 and S-22) The floor is 2-1/4 inch by 11-1/2 inch tongue and groove flooring with a stained finish. The walls have plaster impressed with an 8 inch by 16 inch pattern to resemble masonry units. Chalkboards that were formerly located on the west wall have been removed and the wall patched with a sand finish plaster, but chalkboards remain on the east wall.

Historic Structures Report
Nicodemus, Kansas

3-12

Physical Assessment
25 October 2002
Kitchen. The floor is covered with two layers of linoleum over tongue and groove wood boards. The walls have a plaster finish. The ceiling is plaster over lath. The kitchen has a white painted wood built-in cupboard, shown in Photo S-26.
TOWNSHIP HALL

The Nicodemus Township Hall (Photos T-1 through T-26) is a one-story building measuring approximately 90 feet deep by 40 feet wide, and 30 feet high to the peak of the gable roof. It is the largest building on the Nicodemus townsite. A gabled vestibule projects from the south (front) facade of the building. The vestibule includes a small closet and a ticket booth. The main mass of the building contains an assembly hall measuring approximately 37 feet wide by 57 feet deep. At the back (north) end is a stage area, with side rooms to the east and west. The east side room contains an exit door, stairs to the stage, and the women’s restroom. The west side room contains an exit door, stairs to the stage, the men’s restroom, and stairs to the basement. The building includes a partial basement under the stage area. Refer to the plans provided in Appendix A.

Structural Systems and Exterior

The foundation of the Township Hall is limestone to at least three feet below grade. The foundation below this level could not be observed during this survey. A concrete sidewalk on grade is located against the east and west walls of the building.

The building has a basement under the stage area. The basement floor is a concrete slab on grade. The basement walls are stone masonry. The stage floor above the basement is supported by a poured-in-place concrete slab with integral 5½ inch by 10½ inch joists spaced at 24 inches on center that span from north to south.

The floor of the main hall is wood tongue-in-groove finish flooring. This floor is supported on a composite structural deck consisting of an upper layer of wood decking, an intermediated concrete slab, and a bottom layer of structural wood decking. This composite deck rests directly on 12 inch high concrete grade beams at about 26 inches on center that run north-south the full length of the assembly hall.

The exterior walls of the Township Hall are constructed of load-bearing rock-faced limestone, in random sizes but uniform courses. The color of the stone varies from ivory to rust (see Photo T-8). The stone walls are generally 18 inches thick, built of two 6 inch thick outer wythes and a mortar and rubble infill. The are four stone buttresses on each of the east and west facades, centered between the windows of the assembly hall. There are steel lintels above all the window openings in the masonry wall. The bottom surfaces of the lintels are visible from the exterior. The window sills are concrete.

The main entrance to the vestibule contains non-original aluminum frame doors. The doors on the east and west facades from the side rooms are solid wood doors.

The windows are multi-light industrial-style steel frame, painted red. These are the original windows. The window openings have concrete sills and steel lintels. The south (front) facade has a six-light steel frame window located to either side of the main entry doors. The east and west facades have five larger windows into the hall, each with 25 lights, six of which are an operable pivot sash. At the north end of each side facade is a secondary wood door and a six-light steel frame window. The west side has an additional four-light window into the basement. The north facade has two windows at the basement level and a door into the basement from a sunken area well.
Above the entry doors on the south facade are smooth faced carved limestone units centered reading “NICODEMUS TWP. HALL.-1939.”

The roof has a steel scissors truss structure with wood purlins, wood decking, and asphalt shingles. A scissors truss is a truss in which both the top and bottom chords are sloped up to the center point. Thus, the top chord of the truss defines the exterior slope of the gable roof, and the bottom chord defines the interior slope of the ceiling. The exposed wood rafter ends on the east and west facades are decorative elements that are not part of the actual roof structural system. The wood ceiling joists of the main hall are supported from the bottom chord of the truss. The roof above the assembly is constructed with wood 2 x 8 purlins spaced at 28 inches on center running north-south. The wood deck above the purlins runs east-west up the slope of the roof. The purlins are supported by four built-up steel scissors trusses located above and between the windows, in line with stone buttresses on the east and west facades. The individual members in the trusses are made up of double angles connected to gusset plates. (See Photo T-24) The roof above the stage is supported by 2 x 12 wood purlins at 24 inches on center, which are in turn supported by the north exterior masonry wall and the intermediate stone masonry wall located at the front of the stage. The lintel at the opening at the front of the stage is a built-up member consisting of two 3 x 12 wood members. The roof structure of the vestibule was not available for inspection. All areas of the roof are covered with reddish brown asphalt shingles; there are no gutters.

In front of the building is a wood sign which reads: “Nicodemus National Historic Site - Visitor Center.” There is a wide concrete walk to the main entry doors from the street. Other site features include two wood and steel benches and a garbage container along the west side of the sidewalk; a flagpole and a pole light on the east side of the sidewalk; picnic benches in west half of the front yard; seating in the east half of the front yard; and a few large trees and shrubs along the front (south) facade. Also on the site, there is a bronze plaque which reads “Nicodemus Twp. Board, Alex Alexander, Trustee; Pearl Bates, Clerk; Ace Williams, Treasurer.”

Interior

Vestibule. The ceiling is painted plaster with a sand finish. Suspended acoustical tile has been installed below the ceiling. The walls are wood veneer paneling over plaster. The floor is painted concrete. The exterior entry doors are paired clear anodized aluminum doors with full size, single-pane glazing.

Ticket Booth. The finishes are similar to those in the vestibule. The door to the vestibule is a dutch door. There is also a painted wood ticket counter.

Closet in Vestibule. The walls and ceiling are white painted plaster with a sand finish. The floor is unpainted concrete. The door to the vestibule is a solid wood stile and rail door with a painted finish.

Assembly Hall. (Photo T-26) The floor is oak strips, approximately 2-1/4 by 14-1/2 inches, with a light stain and transparent finish. The side walls are white painted plaster with a sand finish. The end walls are wood veneer paneling over plaster. The ceiling is suspended acoustical tiles (15 inch by 32 inch Celotex). The tile is suspended approximately 11 inches below the original ceiling and follows the original profile of the plaster ceiling.
East Side Room and East Stairs. The south, east, and west walls are white painted plaster with a sand finish. The north wall is a partition that creates the restroom; it consists of wood veneer paneling over wood framing. The floor is painted cast-in-place concrete. The ceiling is suspended acoustical tile over plaster. The door to the hall is a solid wood interior door. The exit door to the exterior is a flush-mounted, solid-core door with panic hardware.

Women’s Restroom. The floor is painted concrete. The east and west walls are white painted plaster with a sand finish. The north wall is wood veneer paneling over plaster. The south wall is wood veneer paneling over wood framing. The ceiling is suspended acoustical tile, with a plaster ceiling above.

Stage. The floor is the structural concrete floor slab. The walls are plaster covered with wood veneer paneling. The plaster is exposed at the frame of the stage opening. The ceiling is suspended acoustical tile below the original plaster. At the door openings to the side rooms, the doors have been removed. The door openings have painted dimension lumber trim.

West Side Room and West Stairs. The floor is poured-in-place concrete. The east, west, and south walls have white painted plaster with a sand finish. The north wall is wood veneer paneling over wood framing; this wall is a later partition to create the restroom. The ceiling is white painted plaster with a sand finish. The door to the hall is a solid wood interior door. The exit door to the exterior is a flush-mounted, solid-core door with panic hardware. The door to the men’s restroom is a hollow-core door set flush into a wood frame with flat trim.

Men’s Restroom. The floor is painted poured-in-place concrete. The north, east, and west walls are white painted plaster with a sand finish. The south wall is wood veneer paneling over wood framing. The ceiling is suspended acoustical panels over plaster with a sand finish.

Basement. The floor is unpainted poured-in-place concrete. Most of the north wall is exposed stone with a white painted finish, as shown in Photo T-21. Part of the north wall and all of west wall is smooth plaster over stone. The ceiling is the exposed structure of the stage floor, poured in place concrete beams with a white painted finish. The exterior door is a steel door in wood frame with a residential-type lockset, trim, and frame.
CONDITION ASSESSMENT

A.M.E. CHURCH

Exterior Condition Survey

Roof

1. The main roof is wood cedar shingles. These were installed by the National Park Service in 2001. The fascias and soffit are new as well, and are painted white.

2. The east vestibule roof is corrugated sheet metal. All of the paint has weathered off the exposed rafter ends and fascia.

East Facade

1. There are large vertical and diagonal cracks, up to 1/2 inch wide, extending from the top of the door opening. There are also large diagonal cracks on either side of the main east wall gable. These cracks are shown in Photo A-19.

2. The wood of the double front door is deteriorated, with no paint. The glass in the doors is broken.

3. Eroded stone is visible below the weathered wood sill at the entrance.

4. The stucco surface coat has fallen away at the base of the wall north of the entrance.

5. On the north side of the main wall, the stucco has fallen away and the stone is exposed.

6. The exposed stone is generally intact, but the mortar joints are generally open and deteriorated. Some partial stones are missing or cracked in the upper half of the wall, adjacent to the north wall.

7. There is an open vertical joint where the wall of the entrance vestibule meets the wall of the main building.

South Facade

1. The stucco along the south facade has fallen off in an irregular line from the ground to approximately one-sixth to one-half of the height of the wall. The stone is exposed at this location, as shown in Photo A-18.

2. The stucco is approximately one inch thick and was applied directly to the stone. Cracking in the stucco extends diagonally and vertically from the window heads and below the window sills.

3. The lowest three courses of stone are dirty and deteriorated. The stone in this area exhibits extensive erosion and spalling. (Refer to Photo A-20.)
4. Most of the stones above the deteriorated base courses are intact, although a few stones are cracked.

5. The stone sills are exposed where stucco has fallen away. At these locations the stone sills are rough. The outer face of the sills may have been cut off when the stucco was applied. See Photo A-21.

6. Approximately half of the mortar joints in the exposed stonework are open. The mortar is a grayish buff color and has a sandy texture.

7. The four windows on the south facade are boarded over. Each boarded window contains a vent.

8. The wood window trim has little paint remaining. The wood is checked and split.

9. At the return near the east end of the south facade, a concrete projection over the stone has spalled off.

West Facade

1. Most of the stucco is missing from the two lowest stone courses and at the north end of the west wall. The face of the stucco covering is spalling at the bottom edge of the stucco. This condition is shown in Photo A-22.

2. There are diagonal cracks on either side of the gable and near the south side of the west facade. A large crack at the lower south corner is open approximately 1/2 inch.

3. Most of the exposed stones are intact except for some face spalls in the lowest stone courses. The lowest stone courses are cleaner than on the other facades, and do not exhibit signs of rising damp.

4. The mortar joints are open at the lower stone courses.

5. Mortar joints at the north end of the west facade have been repointed with a light gray mortar.

6. The west gable end was apparently initially constructed shorter than the east gable end. There is approximately 6 to 8 inches of stone rubble above the ashlar stonework of the gable, in order to shim the stone up to the level of the wood roof structure.

North Facade

1. Most of the north facade is covered by wood board-ups that were installed as part of the National Park Service structural stabilization repairs in 2000. The boards contain vents.

2. At the east end of the north facade, and for a few feet at the west end, the stone wall is exposed. The joints between stone units are open except in areas that were pointed as part of the National Park Service repairs. This newer mortar is light gray in color.
3. Some localized stone units are cracked or damaged.

4. There are large gaps in the stone wall where the perpendicular wall of the northeast vestibule previously framed into the main wall.

5. The lower three courses of stone are dirty and eroded. The base course is the most significantly eroded, with dirt accumulation and rising damp.

Structural Systems

1. Portions of the stone are visible where the stucco has fallen away. Mortar joints are severely deteriorated and open, except in areas where repointing was performed as part of the National Park Service work.

2. Water-related deterioration was observed in the decking along the north wall and the north ends of the floor joists.

Interior Condition Survey

Entry Vestibule. The flooring exhibits some cupping and warping, and water damage at the southwest corner. The vestibule walls have a plaster finish over masonry. The wall plaster is cracked severely at the intersection with the side walls, and some water damage was observed near the intersection of the ceiling and walls. Some boards of the ceiling are warping due to water damage, and the paint is peeling. The wood entry doors have been severely damaged by water.

Sanctuary. The floor was partially disassembled at the side walls for the previous stabilization project. Where the flooring remains in place, it is cupped, warped, and contains loose boards. The vinyl sheathing is deteriorated and loose. The walls exhibit severe cracking and delamination of plaster and paint due to water damage.

The doors are presently inoperable because of rusted hinges. The paint on the doors is cracked and crazed.

In the chancel area, the wood flooring is warped and cupped due to water damage. Several pieces of wood trim are missing, including caps at the posts of the communion rail. Some floor boards were removed for the stabilization project.

Mechanical and Electrical Systems

Mechanical Systems. Very little exists of any mechanical systems in this building. High in the west wall at the head of the sanctuary, there is a 4-inch round flue opening, for a former connection to a brick chimney. There is no evidence of what type of heating equipment was once connected at that location. On the west wall, at the opening for the 4-inch flue, there is a recess in the wall, below which is a projection approximately 5-1/2 feet tall. This may have been the location of a gas-fired wall heater or wood-burning stove. It is assumed that some type of propane-fired heating appliance formerly served this building. There are no other signs of mechanical systems inside this building.

Mechanical Outside Utilities. There are vent louvers in the temporary north wall and in the boarded up window openings of the south wall.

Historic Structures Report

Nicodemus, Kansas

3-19

Physical Assessment

25 October 2002
Electrical Systems. The electrical panel that previously served the building is missing.

There is an exterior lantern-style light fixture mounted above the main entrance. There is a single lamp incandescent fixture in the middle of the entry vestibule.

The main worship space contains two junction boxes mounted to remnants of the ceiling. Exposed wiring is visible at these junction boxes. There is loose Romex connected to the junction boxes and porcelain socket fixtures hanging from rafters above the location of the raised altar. Loose, old electrical cable is visible in the rafter space.

One receptacle is located on the remaining portion of the north wall in the worship space. No other receptacles were observed. There is no evidence of telephone wiring within the building.

Electrical equipment is not original to the building.

Electrical Outside Utilities. Electrical service to this building has been disconnected. It appears that the service may have previously come from a power pole near the southwest corner of the building. This pole has a streetlight and a meter socket mounted on it. The point where the service connected to the building is unknown.

There is no telephone service.

Photo A-16. The A.M.E. Church, view from the northeast, summer 2001. Photo by Jim Creech, Midwest Regional Office, National Park Service, Omaha, Nebraska.

Photo A-18. The A.M.E. Church, view from the southwest, summer 2001. Photo by Jim Creech, Midwest Regional Office, National Park Service, Omaha, Nebraska.

Photo A-23. Interior view of the sanctuary of the A.M.E. church, facing west, February 2001. The posts and beams that were installed to support the roof load are visible at right; beyond is the wood stud wall that replaced the north stone masonry wall. Above the niche in the west wall is a round pipe, where a heating stove was connected to the brick chimney. Photo by Bahr Vermeer Haecker Architects, Lincoln, Nebraska.

Photo A-24. A view of the ceiling/attic of the A.M.E. Church, February 2001. The ceiling joists are suspended from the peak of the gable roof with the vertical 1x6 boards shown here. The brick chimney integrated into the stone west gable is visible beyond. Photo by Bahr Vermeer Haecker Architects, Lincoln, Nebraska.

Photo A-27. The door between the sanctuary and east anteroom of the A.M.E. church, February 2001. The stone arch and keystone were originally visible on the exterior, when this doorway was the main entrance to the church. When the east anteroom addition was constructed, this doorway was lowered to accommodate the lower ceiling of the east anteroom (extreme foreground). Photo by Bahr Vermeer Haecker Architects, Lincoln, Nebraska.
OLD FIRST BAPTIST CHURCH

Exterior Condition Survey

Roof

1. The main roof has two layers of wood shingles. The ridge trim is rusted and missing.

2. The roof of the foyer is a steeply sloped mansard, truncated from the original bell tower, with variegated wood shingles. There are many missing, cupped, and displaced shingles. This area is shown in Photo B-15.

3. There is galvanized trim or edge flashing at the roof edge. The corner and ridge trim at the roof is rusted or missing. Flashing is missing at some areas of the roof valleys. There are gaps at the trim at the bottom edge of the roof. The roof rafters and birds' nests are visible.

4. The roof of the northwest addition is lapped asphalt shingles with mastic at adjacent walls.

5. The small roof return at the east end of the north facade has an asphalt shingle covering.

6. There is a brick chimney near the center of the addition roof, at the ridge. This chimney is plastered on the interior; the brick is exposed in the attic; and the brick is exposed on the exterior with remnants of past stucco parging.

West Facade

1. On the south wall at the entry, stucco has fallen away at the projecting base of the wall, and the stone behind is cracked and spalled.

2. There is a vertical crack in the stucco where the original stone masonry wall meets the northwest concrete unit masonry addition.

3. Stucco cracking has occurred at the windows near the center of the gable bay.

4. The entry portico at the south end of the west facade has a deteriorated wood door and fixed panel, and an infilled transom with stuccoed arch above. The stucco above the arch is cracked.

5. The wood gable trim is missing paint and has open joints.

6. There is a large horizontal crack near the base of the wall on this facade in the area of the kitchen.

7. The one-story shed roof addition at the northwest corner of the building is constructed of concrete block with some mortar parging.

8. The addition has a partially boarded over wood window with typical deterioration and broken glass. Mortar fill at the window perimeter has fallen out.
North Facade

1. The stucco exhibits major cracks and previous repairs, as shown in Photo B-16. The bottom half of this wall is covered with a cementitious parging coat, which is also cracked. The stucco and parging have spalled off at the lower west corner. The limestone is exposed in this area. The stone units appear to be intact, but the mortar joints are open and deteriorated.

2. Some open mortar joints were observed in the concrete block.

3. The stucco of the sill that projects from the base of the wall has cracked. The paint coating is peeling at this area of the wall.

4. The soffit and fascia on the addition are deteriorated and rotted, especially at the east end.

5. The round window and wood trim in the main wall are missing paint and are deteriorated.

South Facade

1. There is horizontal cracking in the stucco at the line of the base course.

2. Fine to medium vertical cracks were observed in the stucco on this facade and near the west return. Cracks typically extend diagonally from the corners of windows. Some crack monitors remain in place at this location. Cracks in the stucco vary from hairline to 1/4 inch wide.

3. The two wood double hung windows on this facade have little paint left and the wood trim is deteriorated or missing. This area is shown in Photo B-17. Glazing putty is cracked and missing, and sealant at the window perimeters is cracked and missing. The windows are set on aluminum triple tracks.

4. The round window near the top of the wall is boarded up and conduit extends through the opening.

5. The wood gable trim and soffit have almost no paint remaining. There are some splits in the wood.

East Facade

1. Stucco cracking has occurred, especially above windows and through and below the sills on the south window.

2. The buttresses, shown in Photo B-18, are constructed of rubble concrete covered with stucco. The stucco has many fine and moderate cracks and some severe cracks, especially on the south side of the south buttress and along the south edge of the north buttress. The buttresses have separated out from the main building wall.
3. There are two double hung windows with obscure glass on this facade. The wood windows are missing paint and the wood is deteriorated.

4. Wood trim is missing paint and is deteriorated.

Structural Systems

1. The buttresses along the east facade have settled outward. Therefore, it is likely that they are not providing significant support for the upper half of the wall.

2. The unsupported east wall was observed to be significantly out of plane, as shown in Photo B-21.

3. Roof leaks on the west side of the sanctuary have allowed water damage to the decking and floor joists at localized areas.

4. There is a significant crack in the plaster wall at the northeast corner of the kitchen.

5. There is significant water-related deterioration in the wood framing throughout the foyer.

Interior Condition Survey

Foyer. The floor has severe water damage and is rotting. The plaster walls have water damage and are cracked, and the wood wainscot is rotted from severe water damage. The wood ceiling is warped and rotted from water penetrating from the tower above. The exterior entry doors are warped and delaminated due to water damage.

Sanctuary. The wood flooring has cupped and warped due to water infiltration at the southwest corner. The carpet at the stage/chancel floor is worn and deteriorated. The plaster walls are severely cracked, with mildew and water damage at the upper portions of the wall. The wainscot is in good condition. The pressed metal ceiling is generally in good condition. Water has flowed into the ceiling and sanctuary at the location of a mechanical unit in the southwest corner of the room, and the ceiling panels are rusting at this location. The door into the kitchen is warped and inoperable.

Kitchen. The carpet is worn and severely deteriorated, with water damage at the northwest corner. The plaster walls are severely cracked. The door into the foyer has cracked paint and missing door knobs.

Study. The study floor is severely water damaged. The ceiling also has severe water damage and mildew.

Toilet Room A. The floor exhibits water damage. The plaster walls are sound and uncracked. The wood paneled walls are severely water damaged. The ceiling has severe water damage and mildew.

Toilet Room B. There is a hole in the floor caused by water damage and rotted wood. There are cracks in the plaster of the east wall.
Mechanical and Electrical Systems

Mechanical Systems. The mechanical system of the First Baptist Church consists of a large, propane-fired unit heater located in a back corner of the main sanctuary space. The heater is suspended from the structure above by a threaded rod. This unit heater is an "Air Control" unit manufactured by Hastings Air Conditioning Company, model number B-200, input heating capacity of 200,000 Btu/h and output of 160,000 Btu/h. Twin centrifugal blowers are driven by a single 1/4 HP motor. A rusty 6-inch flue extends from the top of the unit out through the ceiling and roof. A 1-inch propane line serves the unit. This unit heater was likely installed in the 1950s, after electricity was made available to the building. It does not appear to be functional and is well past its useful life.

The kitchen of the First Baptist Church has a single-compartment sink mounted in a floor-set kitchen cabinet. A PVC waste line runs out of the building above the floor through the west wall. Half-inch cold water and hot water pipes serve the sink. A warming appliance, apparently used for warming of food as well as heating the kitchen space, is located on the south wall of the kitchen. Its flue rises above the appliance against the wall and runs diagonally across the corner of the room to a masonry flue above the serving counter opening into the sanctuary. The bottom of the brick chimney is located approximately 7 feet 6 inches above the floor, above which the flue ties in to the chimney. There are two stoves in the kitchen, each with four burners and one oven. The cooking equipment, as well as the heater, are propane-fired.

In the back study is a wall-mounted heater manufactured by Heil Quaker, model ORS5356-2. This wall heater is surface mounted and is in extremely poor condition. Its flue is in extreme disrepair. The capacity of this heater is 3500 Btu/h input and 2625 Btu/h output.

The toilet rooms off the study have similar plumbing, including a wall-hung lavatory. There is a floor-set water tank-type toilet in the north toilet room; the toilet is missing in the south toilet room. A six-gallon water heater on a stand is located inside the north toilet room. The heater is not functional and is past its useful service life. An old three-inch flue previously connected this water-heater appliance to a penetration through the roof.

Mechanical Outside Utilities. A spherical propane tank is located at the east side of the property. This tank is disconnected. It is 30 inches in diameter. Flexible copper tubing extends out of the round window high on the south wall and extends underground directly below this window. The tubing is loose and is not connected to the wall.

A deteriorated flue extends out of the northwest addition. There is a well spigot north of this addition.

Electrical Systems. Electrical power is provided by a six-circuit load center located in the building foyer. One fuse pull-out in the load center is missing.

Wiring from the load center to lights and receptacles within the building is exposed Romex. The Romex is often routed along the top of wainscoting, which is approximately four feet above the floor.
Lighting in the sanctuary consists of incandescent lamps that are pendant-mounted on cords. No light switches were observed during the survey. Other areas of the building are lighted with similar pendant-mounted incandescent fixtures. Porcelain sockets are also used. Exterior lighting consists of two porcelain sockets mounted on building eaves.

There is no evidence of telephone wiring within the building.

Electrical equipment is not original to the building.

Electrical Outside Utilities. Electrical service for the First Baptist Church comes from a pole located southeast of the building. Three single conductors run from the pole to the eave of the building, where they are anchored with porcelain insulators. Conductors run from the insulators, through conduit, to a load center. There is no telephone service.

Photo B-20. The First Baptist Church, interior of the sanctuary facing north, February 2001. Photo by Bahr Vermeer Haecker Architects, Lincoln, Nebraska.

Historic Structures Report
Nicodemus, Kansas.

Photo B-22. The First Baptist Church, the center of the pressed metal sanctuary ceiling, February 2001. Photo by Bahr Vermeer Haecker Architects, Lincoln, Nebraska.
Photo B-23. The First Baptist Church, door from the vestibule to the sanctuary, February 2001. This door is typical of the six-panel doors throughout the church. Photo by Bahr Vermeer Haecker Architects, Lincoln, Nebraska.

Photo B-24. The First Baptist Church, chimney in kitchen, February 2001. The chimney is suspended above the serving counter between the sanctuary and kitchen. Photo by Wiss, Janney, Elstner Associates, Northbrook, Illinois.
ST. FRANCIS HOTEL/FLETCHER-SWITZER RESIDENCE

Exterior Condition Survey

Roof

1. The existing asphalt shingles on the main gable roof and the north shed roof are in good condition. This roof was newly installed in 1998. The HABS photographs show a wood shingle roof on the gable roof and the north shed roof.

2. The south shed roof with roll asphalt roofing is in good condition. The south shed roof was originally composed of two structurally separate roofs with slightly different slopes, reflecting the fact that the southwest bedroom and the back porch were constructed at different times. Both of these shed roofs had roll asphalt roofing at the time of the 1983 HABS project. This roof was rebuilt in 1998 and now exists as one continuous shed roof over both rooms with roll asphalt roofing.

North Facade

1. The stucco at the second story has large cracks extending from the head of the window and large, open vertical cracks on either side of the wall bay.

2. The concrete foundation is covered with stucco parging that has large horizontal and diagonal cracks.

3. The first floor cladding is lapped siding with a thin whitewash coat. A few splits have occurred in the wood cladding. The corner trim is missing or displaced at some locations.

4. The front porch is roughly constructed of wood frame and screen, as shown in Photo F-13. The wood is not painted.

5. The wood soffit at the first floor rests on projecting joists, below which are gaps. Some of these gaps are open.

6. The windows have operable aluminum storms and screens. Some windows have broken glass. The sealant at the window perimeters is aging or missing.

7. The window west of the porch is a double unit that is out of plane. The window trim is deteriorated and missing.

East Facade

1. The stucco on this facade has large cracks extending from the door to the south window. The cracks are typically open 1/4 inch. The crack contains failed sealant from a previous repair.
2. At the second floor level, the stucco has fallen off, revealing expanded metal lath, a base
co, and horizontal wood sheathing in some areas. This condition is shown in Photos F-
14 and F-15.

3. Two woods windows in the main bay of the first floor are very deteriorated. The north
window is partly boarded over. The second floor window is also covered over.

4. The wood door has no paint remaining and is very deteriorated, as shown in Photo F-16.
The wood facing below the door is rotted.

5. The eight pane wood window is deteriorated, is missing trim, and has broken glass.

6. The concrete foundation is in poor condition in some areas. There is a large hole in the
concrete near the center of the facade.

South Facade

1. The stucco has cracks, especially below the windows. Failed previous patches were
observed in the stucco. Cracked stucco is shown in Photo F-17.

2. At the second floor, the stucco has cracks extending from the head of the west window.
This condition is shown in Photo F-18.

3. Stone is visible along the base of the wall. The stone units are generally intact, but the
mortar joints are deteriorated or open.

4. The wood windows have almost no paint remaining. The wood window trim is
deteriorated or missing. Some of the windows on this facade are partially or completely
boarded over.

5. There are projecting joist ends below the roof edge, as on the north facade. One joist
end is missing near the west end of the south facade, and the last five joist ends are
missing at the west end.

6. An old doorway has been boarded over and covered with stucco. There are gaps at the
top of the former opening.

7. At the east end of the second floor, there is a gabled wood dormer with one window
opening. The walls of the dormer are finished with unpainted horizontal wood
sheathing; there are small gaps between the boards. The window opening is covered
with plastic sheeting.

West Facade

1. The stucco on this facade exhibits severe open cracks, more than 1/2 inch wide, above
and below windows, as shown in Photo F-19. The stucco is also cracked where the
addition meets the original part of the house. The stucco is cracked, delaminated, and
bowed out.
2. The stucco-parged concrete step-out at the base of the wall is cracked and coming apart, as shown in Photo F-20.

3. There are three wood windows with aluminum storm units on this facade. The wood windows have almost no paint left and are deteriorated. The sealant at the window perimeters is typically aged and failing.

4. On the north-facing gable, the trim is missing along the roof edge and the ends of roof framing boards are exposed. There are also gaps between the roof framing boards.

Structural Systems

1. One of the stone lintels at the first floor on the south facade of the original structure is cracked at the center, as shown in Photo F-23. This lintel now forms the doorway between the south and southwest bedrooms.

2. The concrete foundation has several spalls and cracks.

3. The second floor framing deflected under walking loads.

4. There is significant water damage near the center of the house at the first floor, at the location of the water heater. This area is shown in Photo F-24. The floor joists exhibit water damage at this location. Further investigation is required to determine whether this water leakage has resulted in further damage to structural elements.

5. At the east wall of the rear porch, the bottom 6 inches of the wood studs are deteriorated due to water infiltration.

6. The wall between southwest bedroom and the back porch has no attachment to the rebuilt roof structure in this area. The wall is loose and can be moved by hand.

Interior Condition Survey

First Floor

Front Porch. The framing at the north and east walls is weathered. The stucco of the south and west walls is cracked. The concrete floor has cracks and spalls.

Entry. The paneling on the north, west, and east walls is mismatched, water damaged, and warped. The stucco of the south wall exhibits small hairline cracks. The indoor/outdoor carpeting is worn and loose. The gypsum board ceiling has extensive water damage and some pieces of board are missing. The door into the storage room is rotted and has a delaminated veneer.

Dining Room. The linoleum floor is worn and curled, with large pieces missing. The wall paneling is warped. Some cracking has occurred in the ceiling at the joints of the gypsum board. The door into the storage space under the stairs is water damaged. The door to the second floor stairway does not close. The lower portions of this door are rotted, with delaminated veneer.
North Bedroom. The carpeting is worn. There are cracks at the north and west walls and some minor paint loss. The door into the south bedroom is missing, and the finish on the wood door frame is deteriorated.

South Bedroom. The carpeting is worn. The west and south walls exhibit severe cracking, as shown in Photo F-26. There is severe cracking at joints in the ceiling. The door into the bathroom has some water damage at the bottom. The stone lintel above the door into southwest bedroom has cracked, and the wood door is off its hinges.

Bathroom. The flooring is cracked and warped with severe water damage, as shown in Photo F-24. Extensive dripping and running water were observed around the water heater. The north wall has severe water damage. The wood ceiling has some cracking at the edges.

Storage Space Under Stairs. The carpeting is worn and water damaged. The gypsum board walls are cracked at the edges.

Kitchen. The sheet vinyl flooring is cracked, torn, and delaminated. The wallpaper on the east wall is peeling. The painted plaster on the south wall is deteriorating. The kitchen cabinets are warped and water damaged. The door to the back porch is discolored.

Pantry. The vinyl flooring is warped, deteriorated, and rotted to the point that the crawl space below can be seen through openings in the floor. The gypsum board is cracked and water damaged at the west wall. The ceiling is heavily water damaged at the center of the room. The door frame at the opening into the kitchen is water damaged.

Back Porch. The carpet is loose and torn, and the vinyl is cracked. The stucco of the north wall has minor cracking. Some of the wood paneling on the other walls is missing or warped and water damaged. The door to the exterior is warped and water damaged. There is a large gap open to the exterior above the top of the east wall below the roof rafters. This presumably resulted when the roof structure was rebuilt at a steeper angle without any changes being made to the walls.

Southwest Bedroom. The carpeting is worn, torn, and warped. The plaster of the north wall is cracked and deteriorated. The wood paneling on the other walls is warped and water damaged. The ceiling finishes are warped, peeling, and water damaged.

Second Floor

East Bedroom. The carpet is worn and loose. The wallpaper on the walls and ceiling is severely cracked and delaminated.

North Bedroom. The floor is vinyl over wood sheathing. The east, west, and south walls are painted plaster over masonry. The plaster exhibits severe cracking and spalling, as shown in Photo F-27. The north wall is gypsum board over wood framing. The gypsum board is covered with wallpaper. The wall finishes are severely deteriorated. The sloped ceiling is gypsum board covered with wallpaper. The ceiling materials are severely water damaged and cracked.

South Bedroom. Finishes in this bedroom are in slightly worse condition than those in the second floor north bedroom.
Mechanical and Electrical Systems

Mechanical Systems. The dining room of the Fletcher-Switzer site has a console, appliance-style gas heater that is manufactured by Ashley. The flue, which formerly exited the top corner of the first floor east window, is missing. This floor-set appliance-style heater is not original to the building.

Built into the interior wall of the dining room, backing up to the stairway, is a wall heater manufactured by Panelray DLN. This propane gas-fired wall heater is inoperable and is beyond its useful life. The nameplate is missing and its heating capacity is unknown.

In the kitchen there is a single-compartment sink that is served by 2-inch waste piping and 1/2 inch hot and cold water piping. All of the plumbing extends below the floor immediately below the sink. The pantry adjacent to the kitchen has 1/2 inch hose bib connections for hot and cold water on its south wall. There is no washer or dryer installed in the pantry at this time. A propane fuel oven and stove, which appear to be in poor condition, are also located in the kitchen.

The first floor bathroom contains a propane-fired water heater manufactured by Thrift-O-Matic, which has an inaccessible nameplate. This unit appears to have been a residential style floor-set water heater with a 3-inch flue and approximately 50-gallon capacity. At the time of the survey, the water heater tank was found to have a constant slow leak and needed to be isolated and drained.

A wall-mounted gas-fired space heater is semi-recessed into the bathroom wall between the lavatory and the water heater. It appears to be nonfunctional and past its useful life.

The bathroom has a floor-set tub, floor set tank-style toilet, and a wall-hung lavatory. All water and waste piping extends directly down into the floor or into the wall.

There are no mechanical systems observable in any of the first floor bedrooms, back porch, front porch, entry, or storage areas.

The second floor of the building contains the 3-inch flue from the bathroom’s water and space heaters that connects to a flue from the wall heater of the dining room into a 4-inch transit pipe. This flue exits the roof of the building from the bedroom at the top of the stairs. The north bedroom was entirely filled with beds, furniture, and boxes, and was not accessible during the survey. Based on the observations of the other two bedrooms, it can reasonably be assumed that there are no mechanical systems at this level, except for the aforementioned flue pipe and a 4-inch plumbing vent through the roof.

Mechanical Outside Utilities. There is a cast iron pipe toward the rear of the building on the east side, just north of the door of the back porch. This pipe appears to be a vent pipe extending out of the crawl space. It terminates about 15 inches below the pitched roof. On the west side of the house, copper propane tubing enters the building just north of the back bedroom west window. This piping runs along the exterior of the house to the back and disappears into the stucco. On the south end of the house, copper tubing reappears out of the stucco at the corner and extends around the corner to the east side of the house. The copper tubing disappears into the stucco again, with a branch coming off that rises about three feet high and penetrates the east wall of the back porch near the south end of the...
building. The propane tank for the building is located on the east side and is hidden in some bushes. There is a 4 inch diameter flue with a weather cap at the high point of the gable.

Electrical Systems. The electrical service enters the east side of the building in the dining room. A panel located on the east wall contains three 20-amp fuses and one 15-amp fuse. There are two pull-out main switches contained in the panel.

Lighting in each first floor room, except for the bathroom, is ceiling-mounted, single lamp, incandescent fixtures. Simple wall switches control the lighting. The bathroom has a wall-mounted fixture controlled by a pull cord. Lights are working and electrical service is active to this building. The dining room contains three wall receptacles mounted above the baseboard. Electrical outlets also exist above counter height in the kitchen on either side of the sink and in the pantry.

The north bedroom has electrical outlets on three of the walls. Each bedroom has a light fixture controlled by a pull string. The fixture in the north bedroom has a glass globe covering the lamp. The back porch has Romex wiring attached loosely to the structure and walls. There are loose J-boxes on the outside of the original kitchen wall. There is a porcelain socket light fixture hanging loose on the wall. Some of the porcelain sockets in the rooms are just exposed light bulbs; others have bases to hold glass covers, all of which are missing.

On the second floor, the bedroom at the top of the stairs has exposed Romex powering a single outlet. There is a porcelain socket single lamp light fixture in the middle of each bedroom and a light fixture over the stairs. There are no receptacles. A single line telephone cord extends to the top step, where a telephone jack is located.

Electrical equipment is not original to the building.

Electrical Outside Utilities. The power pole for the building is served from the main utility line along the street. A meter socket is mounted on the pole. A conduit from the meter socket appears to serve adjacent trailer homes. Disconnects are located beneath the meter socket.

NICODEMUS SCHOOL DISTRICT NO. 1 BUILDING

Exterior Condition Survey

Roof

1. The main building wood shingle roof is in good condition. The ridge trim appears to be galvanized metal. The roofing is similar on the porch roof. This roofing was installed by staff from National Park Service (Fort Larned Historic Site - FOLS) in summer 1998.

2. A brick chimney is located on the front slope of the roof, south of the gable. The brick is covered with mortar parging that is delaminating.

East Facade

1. The wood siding and trim are painted. The wood is intact except for some splits.

2. The corner trim is a metal cap. Some pieces of the trim are displaced or missing.

3. The building foundation is concrete covered with a mortar parging coat. There are vertical cracks in the foundation at the midpoint south of the porch. The foundation is also cracked through the south corner.

4. The two window openings in the dormer have been filled in with wood framing and unpainted shingle sheathing. There is a vent in the wall above the windows. From observations in the attic, it appears that at least one of the windows had been previously replaced with a wood louver, sometime after the 1983 HABS documentation.

5. The front porch is concrete block with a partial covering of mortar parging, some of which is spalling. Some of the joints between units are cracked.

6. The porch slab is cracked through on the center line, as shown in Photo S-13. This crack is open to 3/8 inch in width.

7. There are four concrete steps leading up to the porch. Some spalling has occurred at the edges of the steps, and the joints at the back of the steps are open.

8. Four steel columns support the front soffit. There is some corrosion at the column base plates.

9. Some open joints and displaced boards were observed in the fascia.

10. Backup cladding boards are visible at the original location of the porch side walls or rails, indicating the location of an original wood porch. This detail is shown in Photo 67.

11. The wood is open at the joints at the southeast corner of the porch.
South Facade

1. The wood cladding is painted, but the paint is checked and peeling at some locations. Some split boards were observed. An example is shown in Photo S-16.

2. The concrete foundation exhibits some honeycombing and large vertical cracks at approximately four feet on center.

3. The corner trim and cladding are in similar condition to those on the east location.

4. The soffit appears to be replacement construction, with wood fascia and trim board.

5. A pair of four-over-four double hung windows is located near the west end of the south facade. The wood is painted but the paint is checked and split. The glazing putty has failed; some muntins are missing; and one upper sash is displaced. These windows are shown in Photo S-17.

West Facade

1. The walls are in similar condition to the east and south facades.

2. There are splits in the board siding and the soffit, especially at board ends.

3. The concrete foundation is in similar condition to the east and south facades.

North Facade

1. The wood cladding and trim are in similar condition to those on the other facades.

2. Some cladding has fallen off at the lower west end of the wall. The exposed interior of the wall contains loose fiberglass insulation. This area is shown in Photo S-18.

3. The foundation has a very large diagonal vertical crack at the east end, as shown in Photo S-19. This crack is open more than two inches in width. There are several vertical cracks in the rest of the foundation.

4. The wood door to the basement/cellar extends the height of the foundation near the east end of this facade. The door, shown in Photo S-20, is set in a rough wood frame. The wood is rotted at the base.

5. The rough concrete stoop on this facade is deteriorated.

6. There are six windows toward the west half of this facade, as shown in Photo S-12. The wood window frames have some splits and checking, especially at the base of the windows. Set in these frames are a series of double hung metal window and screen units. There is rust on the screen frames. The window putty between the metal elements has fallen out.

7. The wood trim is displaced and falling off above the west end of the windows.
Structural Systems

1. The west hip of the roof was observed to have a sway or depression. This sway appears to be related to the weight of the plaster ceiling, which is being transferred through the center wood hangers.

2. There is a large crack at the southeast corner of the ceiling, at the intersection of the ceiling and wall, as shown in Photo S-24. This crack is primarily visible in the entry hall and coat room.

3. Below the windows on the north facade, water related deterioration was observed at the bottom of the cripples (the wood studs that extend from the floor to the window sill).

4. Water related damage was observed in the roof framing members adjacent to the chimney.

5. The chimney is out of plumb, as shown in Photo S-27; however, it appears that the chimney was constructed in this way and that movement has not occurred.

6. There is significant cracking and settlement of the concrete foundation at the northeast corner of the structure.

7. There is a large east-west crack along the center line of the front porch slab.

Interior Condition Survey

Entry Hall. The flooring is cupped and warped, and the finish is worn. There is severe cracking of the plaster at the corners of the walls, and the paint has cracked and delaminated due to moisture. The finish of the wood trim is chipped and worn, and has a build up of multiple coats of paint. The ceiling is severely water damaged over the south entry door area. The wood of the door to the exterior is cracked and damaged.

Coat Room. The floor is in good condition except for accumulation of dirt and debris. There are large cracks in the east wall. The ceiling is painted plaster. The painted wood base trim has worn and chipped paint. The painted finish of the door into the classroom is severely cracked, crazed, and worn. There is also damage at the edges and top of the door.

Storage Room. There is severe cracking and large areas of delamination in the plaster at the south, east, and north walls due to water infiltration.

Classroom. The flooring exhibits some warping and cupping. Past water leakage near the chimney and clean-out on the east wall has damaged the floor, wall, and ceiling. The plaster is severely cracked, and a portion of the ceiling has fallen. Under the windows on the north wall, a portion of the plaster has delaminated from the lath, exposing the wood framing and the loose insulation in the wall cavity.

Kitchen. The flooring has severe cracking and curling at the edges. Severe cracking has occurred at the east wall, and stepped cracks have occurred on the north and east walls.
There is a large crack running the entire length of the east wall at the juncture of the wall and ceiling.

Mechanical and Electrical Systems

Mechanical Systems. The heating system for the school building is an appliance-type, propane-fired heater located in the main classroom of the building. The heater is set against the classroom’s interior wall, adjacent to and just north of the masonry stack, and is a floor-set console style heater with the heat coming off the top of the unit. The unit was manufactured by the Conlon Division of the Moore Corporation in Joliet, Illinois, Model No. 1385-1, 85 mbh input, 68 mbh output. The heater appears to be at the end of its useful service life and does not appear to be original to the building. The 6-inch flue off the heater is offset from and ties into the masonry chimney. A 1-inch propane line enters the classroom just above floor level in the southeast corner. Gas piping rises over the doorways and is routed on the wall, exposed, down to the heater. A 3/4-inch takeoff extending from the wall-mounted piping in the classroom is routed to the northeast, to the kitchen. This line is loose in the kitchen and appears to have been connected to a now-absent stove.

Operable windows in the classroom provide ventilation. There appears to be no other means of ventilation in the building.

There are no toilet facilities in the building. Outhouses are assumed to have served the restroom requirements of the school. Plumbing is limited to a drinking fountain in the entry hall and a single compartment sink in kitchen. There appears to be no hot water supply to the kitchen. It is possible that pans of water were set on the classroom heater to be heated for kitchen use. The drinking fountain in the entry hall has 3/4-inch cold water galvanized piping and a 1-1/2-inch chrome plated waste trap leading to rubber tubing that extends into the wall. The drinking fountain appears original to the building, though the rubber tube waste piping serving it does not. The water and waste piping serving the kitchen sink extend below the floor.

Mechanical Outside Utilities. There is a propane tank on grade at the south side of the school. A one-inch propane service line runs underground from the tank to the south wall of the school, comes out above ground, and penetrates the building wall just above floor height. The propane tank is approximately 3 feet in diameter by 10 feet long. The nameplate on the tank identified the year built as 1952 and the capacity as 499 gallons.

Near the northwest corner of the school is a well pump and pressure tank in a sunken concrete vault with a wood cover. Off the south side of the school, near the east corner, a 3/4-inch water pipe comes out of the ground. This pipe has a hose connection.

Electrical Systems. The service entrance feeds a wall-mounted panel located in the kitchen. The panel is rated 60 amps, 125/250 volt. The service equipment is General Switch Corporation Catalog Number 6214 with four, 15-amp screw-type fuses. There is a loose electrical receptacle on the wall separating the kitchen from the classroom. This receptacle is scorched and blackened, as if an electrical failure occurred, although the cause of this blackening is unknown.
Lighting in the classroom consists of four 4-foot, 4-lamp fluorescent fixtures hung on twin pendants. The kitchen, entry hall, and coat room each contain a single incandescent fixture with a glass cover. Simple wall switching exists in each room. The coatroom has a single telephone line to a wall-mounted telephone that is missing its handset. No further receptacles were observed on the walls of the building.

Electrical equipment is not original to the building.

Electrical Outside Utilities. Electrical service to the building is disconnected. A power pole northeast of the building appears to have previously provided power to the building. There is a streetlight mounted on the pole. Disconnected wiring is wrapped around the pole. A meter socket and a disconnect are mounted on the pole.

Photo 5-21. The District No. 1 School, interior view to the southwest, February 2001. Photo by Bahr Vermeer Haecker Architects, Lincoln, Nebraska.

Photo 5-22. The District No. 1 School, classroom interior, view to northeast, February 2001. Photo by Bahr Vermeer Haecker Architects, Lincoln, Nebraska.
Photo S-23. The District No. 1 School, the entry hall, February 2001. The rectangular opening in the wall gives a view into the classroom. Photo by Bahr Vermeer Haecker Architects, Lincoln, Nebraska.

Photo S-25. The District No. 1 School, interior of the entry hall showing failing paint, cracked plaster, and the door to the kitchen, February 2001. Photo by Bahr Vermeer Haecker Architects, Lincoln, Nebraska.

Photo S-28. The District No. 1 School, attic framing near the dormer, February 2001. Photo by Bahr Vermeer Haecker Architects, Lincoln, Nebraska.
TOWNSHIP HALL

Exterior Condition Survey

Roof

1. The existing asphalt shingle roof is in good condition. The exposed false rafters and fascias have failed paint, particularly near the rafter ends. See Photo T-14.

2. A brick chimney is located toward the north end of the east facade. There is some weathering of the brick. The chimney has a galvanized metal base flashing with a mortar wash at the top. Mortar joints are open or eroded near the top.

3. The building has no gutters. Rainwater runs off the roof to the sidewalk, which slopes to drain against the wall. This condition leads to deterioration of the stone at the base of the wall.

South Facade

1. The exterior walls have wide mortar joints with a buff/gray sandy mortar that appears to be hard. At some locations near the base of the wall (see east facade), localized stone has failed and the mortar remains very hard and intact. The mortar in the joints is generally hard and intact, with no visible spalling or cracking. An example of the mortar is shown in Photo T-23.

2. The stone units are typically intact. One fine crack was observed in a base unit adjacent to the door sill.

3. A few spalls and cracks were noted in the base course near the east end of the south facade.

4. One spalled stone was noted on the south facade, just west of the entrance portico return.

5. There is localized dirt accumulation on stones in the base course.

6. Some mortar joints are cracked or open in a step crack pattern at the east end of the wall. The cracking extends through a few individual stones. A similar step crack pattern exists on the west side of the south facade; however, on that side the cracking is finer and less severe. This condition is shown in Photo T-13.

7. The wood fascia and soffit, shown in Photo T-14, have exposed false rafter ends and face trim. The wood is intact except for some splits in the soffit boards. The paint is weathered.

8. The front door is a pair of glazed aluminum doors with a keyed dead bolt. The doors are in good condition. The weather stripping at the base is bent and the wood frame has peeling paint and failing perimeter sealant. The door has a concrete sill.
9. The windows are steel, four-light fixed units above two-light outward-opening awning units. The exterior paint is generally intact, with some localized corrosion. Surface corrosion has occurred on the interior of the window frames. The window perimeter sealant is aged and failing.

10. The windowsills are smooth concrete with a fine aggregate. The concrete exhibits some old hairline cracks. The sills are painted, and paint is typically missing from the top surface of the sills.

West Facade

1. Localized dirt and organic growth were observed on the stone piers, especially at the base course and the wall level below the sills. An example is shown in Photo T-12.

2. The stone exhibits more black and green organic growth toward the north end of the west facade.

3. The northernmost stone pier has a fractured base unit, as shown in Photo T-16. The unit above the base is missing. This damage appears to be old.

4. Some stone units at the base of the wall, from north of the door to the north end of the wall, are broken. The face of individual units is eroded or missing. The adjacent mortar is intact.

5. Fine cracks extend from the corners of the window heads, as shown in Photo T-17. The steel at these locations appears to be intact, with very little corrosion. Therefore, it seems likely that this cracking is related to thermal movement of the entire masonry wall. The thermally-induced stresses in masonry are typically concentrated around window and door openings, producing cracks at these locations.

6. The foundation below the base course has concrete parging which exhibits some cracks and spalls.

7. The wood door and its frame near the north end of this facade are missing paint and exhibit some wood deterioration. This area is shown in Photo T-18.

8. The west facade has five 25-light steel windows, with a six-light outward-opening awning unit in the center of each window. The windows are in similar condition to those on the south facade.

North Facade

1. The stone on this facade exhibits dirt and especially organic growth across the entire wall, except just below the overhang of the roof. Refer to Photo T-11.

2. Concrete stairs lead to the basement entrance. This entrance is a metal door in a wood frame that is in fair condition.

3. The window at the east side of the north facade has been infilled with glass block. Air conditioning pipes run through this opening.
East Facade

1. Stone units at the base course have spalls or eroded faces, especially toward the north end and just south of the door. There is a clean fracture on the stone unit at the base of the northernmost pier. The units at the base of all of the piers exhibit spalls. Mortar is generally intact at these locations, even where the stone is eroded.

2. A concrete sidewalk extends along the facade. The joint between the sidewalk and the base of the wall is open.

3. There is localized dirt and organic growth along the base of the wall, on the stone piers, and at the north end of the wall.

4. The wood door on the east facade has extensive rot, especially at the base.

Structural Systems

1. Cracks were typically observed in the interior wall plaster on both sides of the window lintel. This condition is shown in Photo T-19.

2. Cracks were also observed from the exterior at the upper corners of the window jambs, directly adjacent to the bottom edge of the window lintel, as shown in Photo T-20.

3. Step cracking was observed in the south facade of the main building, on either side of the vestibule. Refer to Photo T-13.

Interior Condition Survey

Vestibule. The plaster ceiling has minor cracking. The concrete floor has minor shrinkage cracks. The exterior entry doors are in good condition.

Ticket Booth. The paint on the wood ticket counter is chipped.

Closet in Vestibule. There is minor cracking in the plaster walls and a large crack at the window lintel. The ceiling plaster has minor hairline cracks. The paint on the closet door is chipped and scratched, but otherwise the door is in good condition.

Assembly Hall. The finish on the wood floor is worn and scratched in traffic areas, with some stains near the stage area. There is considerable cracking in the plaster walls, especially at the window lintels. The ceiling is in good condition with no visible signs of water leakage.

East Side Room and East Stairs. The plaster walls have minor cracking and water damage. The concrete floor has minor shrinkage cracks, and paint is worn at stair and traffic areas. Evidence of water damage was observed in the ceiling at the south side of the space. The paint finish of the door to the hall has minor scratches. The exit door has a delaminating veneer at the sill due to water infiltration.
Women's Restroom. The painted concrete floor is worn in traffic areas. There is minor cracking in the plaster at the east and west walls. The suspended acoustical tile ceiling exhibits water damage, with some warped and deformed tiles.

Stage. The painted concrete floor is worn at traffic areas. There is some warping in the wood wall paneling. Some water damage has occurred to the suspended ceiling panels, which are warped and deformed.

West Side Room and West Stairs. The floor exhibits minor shrinkage cracks and worn paint in traffic areas. There is cracking in the plaster wall at the intersection of the stage floor and the basement wall. There is minor cracking and water damage at the southwest corner of the ceiling.

Men's Restroom. The paint finish on the concrete floor is worn. Hairline cracking has occurred in the plaster walls and in the original plaster ceiling above the suspended acoustical tile.

Basement. The basement finishes are generally in good condition. No cracking in the plaster or concrete was observed. The painted finish of the stone walls has failed. See Photo T-25.

Mechanical and Electrical Systems

Mechanical Systems. The Township Hall is heated, cooled, and ventilated by two gas-fired heating, electric cooling furnaces. These vertical upflow-configured furnaces are housed in a wood frame, screened-in furnace room against the south wall of the basement. The furnaces sit on a common elevated structural base. The two furnaces draw off a common return duct system. The return duct system has two removable floor grilles, one each at the north and south ends of the main hall, off center, nearer the east wall. The space between the structural concrete grade beams below the floor deck of the main hall is used as a return air plenum from the south floor grille. The floor of the plenum is earth. The return air shaft from the north floor grille is constructed of stone similar to the stone of the exterior building walls. The north return air shaft is more than 6 feet deep and has an approximate dimension of 25 inches by 25 inches. The horizontal plenum and the north shaft join in a single return air path back to the basement pedestal below the floor-set furnaces. The return air feeds into the bottom of each furnace.

The furnaces are identical and were manufactured by Lennox Company, model number G12Q5-165-3, and utilize propane fuel as a gas source. Cooling is provided by an R22 cooling coil set at the discharge of each unit. Each coil is served by an air-cooled condensing unit set on grade on the north side of the building, just east of the exterior basement exit stairs. Nameplate data was not available from the air-cooled condensing units, as they are completely faded from outdoor exposure. The liquid and gas refrigerant piping is routed to the units across the basement ceiling and through a portion of an original window. Power follows a similar path. Each furnace has an independent 6-inch flue extending from the unit, offset to the north, and tying into an original building masonry chimney.

The supply ductwork for these units is routed across the ceiling of the basement with some duct-mounted outlets in the basement area to provide conditioning for this level. The
supply ducts extend underneath the stage through the basement structural wall, and terminate flush in the face of the stage. The grilles and supply diffusers are in poor condition. The furnaces are estimated to have 5 to 10 years, or approximately half of their useful service life, remaining. The filters for the furnaces appear to have been maintained and are contained in the lowest compartment of the furnace at the return air introduction cavity. One supply duct branches off at the ceiling of the basement and becomes a duct riser on the east side of the stage, providing supply air outlets to the stage and the corridor area east of the stage. Air is not distributed to the toilet rooms, the west stair corridor, or the south entry vestibule. The west furnace supply ductwork is routed immediately south to serve the east supply diffuser on the face of the stage. The east furnace supply duct is routed across the ceiling of the basement to serve the west supply diffuser on the face of the stage. A section of the basement ductwork appears to have a section of older vintage than the other ductwork observed in the basement. The old section of ductwork seems to be from the original forced air heating system. There is no outdoor ventilation supplied to these furnaces. The building appears to have significant infiltration through its single pane windows and uninsulated walls; thus, air quality is not believed to be a concern, nor have any problems been reported or noted.

No humidification system is provided as part of the furnace system. Control of the furnaces is provided by two thermostats mounted side-by-side just inside the main hall south entry. The control wiring is routed down the wall in Wiremold and follows inside of the return air pathway tunnel back to the furnaces.

The plumbing systems in the Township Hall are very limited. Plumbing is located at the north end of the building where there are two restrooms, one on either side of the stage. The waste line is primarily PVC piping material and appears to have been modified more than once since its installation. Water supplies are copper piping with copper tubing being provided at the runouts to the fixture. No hot water is provided in this building. Propane piping in the basement is common to both furnaces and is 2-inch steel piping with 3/4-inch runouts to each furnace.

Mechanical Outside Utilities. The propane tank is located outside and northeast of the building. The propane tank was manufactured by Consumer Co-Operative Association, Kansas City, Missouri, and is an above ground model CCA500, manufacturer serial number is C84051, O.S. surface area 99 SF, year 1963, water capacity 500 gallons, tank diameter 37 inches, shell thickness 0.293, head thickness 0.2107, length 10 feet. The tank label identifies it as National RD, H.S.B. & C.B. 4051, UL listed, ASME stamped U. Propane gas piping enters the basement through the east wall, running underground from the storage tank to just outside the building wall east of the stage. This piping extends out of the ground with a valve and enters the basement.

The two air-cooled condensing units sit on 2 inch by 4 inch wood members on top of concrete pads at the north end of the building. The units are approximately 3 feet tall with condenser coils wrapping around three sides. The vertical air discharge condenser fan is approximately 18 inches in diameter. Power comes to units in a single rigid conduit, through a junction box to two metal flexible conduits. Two pairs of refrigeration lines exist, with an insulated larger gas line and an uninsulated smaller suction line.

Electrical Systems. Electrical power is provided by a load center. The load center is Square-D type QO. Most of the circuits are unlabeled.
Exposed telephone cable runs along walls within the building to telephone outlets. There are two telephone outlets located in the main room on first floor.

Lighting within the building is provided using porcelain sockets and 2 by 4 lay-in fluorescent fixtures. The lay-in fixtures are used in the main hall and stage area. Porcelain sockets are used in other areas. In some cases, lighting fixtures have been removed, leaving only junction boxes in the fixture locations.

Three receptacles are located on the east and west walls of the main hall. One receptacle is located in the stage area. Two receptacles are located beneath the load center in the basement. There is also exposed Romex wiring in the basement.

Electrical equipment is not original to the building.

Electrical Outside Utilities. Electrical service for the Township Hall comes from a pole located northwest of the building. A conduit runs down the side of the building and enters the back of a load center located in the basement.

The pole serving the building also has metering equipment, circuit breakers and receptacles mounted on it. There is also a streetlight mounted on the pole.

Telephone service to the building enters through a window along the west side of the building. Loose cables are run into the building from a plastic junction box located on the building exterior.

NOTES
1 Mortar analysis by David Arbogast, architectural conservator, Iowa City, Iowa, 14 August 2000. Since the 2000 work program was a structural stabilization rather than a full restoration, the color of the mortar was not matched to the original. In future repointing work, sand could be selected to match the color of the original mortar.
ASSESSMENT OF SIGNIFICANCE AND INTEGRITY

EVALUATION OF CULTURAL SIGNIFICANCE

The 1974 study that was prepared in support of the nomination of the townsite to the National Register of Historic Places stated that

Nicodemus, Kansas, is of national historical significance because it is the only remaining town established by blacks of the "Exoduster" movement which was organized mainly through the efforts of Benjamin "Pap" Singleton. . . . Nicodemus is also symbolic of the pioneer spirit of blacks who dared to leave the only region they had been familiar with, in a search for personal freedom and the opportunity to develop their talents and capabilities.1

The National Park Service has further described the significance of the site as follows:

Nicodemus National Historic Site is significant because Nicodemus, Kansas, is the oldest continuously occupied black town in the West. Nicodemus also derives significance from its establishment as a planned black community at the end of Reconstruction in response to extreme, racially motivated social and economic injustices of the South, and in order to seek the personal freedom commonly experienced by others during western expansion.

Nicodemus represents the five pillars of many African-American communities, both during the 19th and 20th centuries. These include home, church, school, business, traditions of mutual assistance, and local government.

The re-establishment of home and family life was critical to millions of former slaves. Many newly freed African-Americans criss-crossed the Atlantic States trying to locate loved ones separated by sale, slavery, or war. Tied to the importance of the home is the actual building of the home and related structures. This symbolized not only the ability and the willingness to work, but also permanence and an attachment to family as well as place.

After re-establishing the family, the next priority for most 19th Century African-Americans was participation in organized religious activities. One of the distinctive elements of African-American culture in the postwar 19th Century was the desire to create and maintain churches that provided some semblance of comfort and mutual assistance in ways that participation in white churches had not. Prior to emancipation, slaves were encouraged to participate in religious services, either in the rear of white churches or in separate services held in the slave quarters. These services were supposed to teach the slave that slavery was a proper institution and that he or she was to accept slavery and the dictates of the master. Finding this an unacceptable pattern of beliefs, black ministers began to form congregations both before and after emancipation. Churches became one of the centers of black social life, fulfilling many different roles.

After religious, education was the next priority for most African-Americans. . . . Some wished to have a better life for themselves and their children through education. Others simply wanted to be able to read the Bible before they died. . . . Still others saw it as a way to achieve the equality that seemed to be at arms' length based on temporary civil rights laws signed in the decade after the end of the Civil War.

The need to make a living and be as self sufficient as possible was also important to African-Americans after the Civil War. Thrilled by their ability to finally earn and save money, they were also beset in the south with problems caused by feelings of resentfulness and competition by neighboring whites.

There were many proponents of African-Americans going into business and the residents of Nicodemus heard the call. Reverend John Samuels made and repaired shoes for the residents of Nicodemus. Z.T. Fletcher opened a grocery store in the fall of 1877. By 1879, the town boasted a general store, two livery stables, a real estate office, a drug store, and a hotel.
An undeniable attraction of a town such as Nicodemus for black ex-southerners was the opportunity to participate in local government and get out from under the often brutal and capricious domain of white police officers and court officials. In fact, the founding of Nicodemus took place three years before the official establishment of Graham County.

In Nicodemus, residents became heavily involved in politics and were elected to offices in the township as well as being an important power in county politics. In 1879, a township election results in three African-Americans being elected to hold the offices of Justice of the Peace, Township Clerk, and Roads Overseer. County elections in 1880 results in black men being elected as Court Clerk, County Attorney, and two of the County Commissioners.

As the only remaining western town established by black Americans at the end of Reconstruction, Nicodemus represents a largely untold version of the story of western expansion and the settlement of the Great Plains.

As a symbol of black pioneer spirit, Nicodemus represents a rejection of rampant racism and the overcoming of social, economic, and natural obstacles. Nicodemus remains a lasting legacy that can be seen in the buildings that survive, that can be felt in the determination to succeed in business and agriculture, and in the proud memories that live in the hearts of residents and descendants.²

The Cultural Landscape Report identifies the following historical contexts as relevant to the significance evaluation of Nicodemus Townsite. Two broad periods of significance are identified in the Cultural Landscape Report: the initial settlement and subsequent growth, 1877–1888, and the continuity of the living community, 1877–present.

National Contexts
- Post-Emancipation migration by African Americans out of the South and Upland South into the Midwest and West, circa 1877–1900; (Nicodemus community establishment and development)
- The commemoration of ethnic heritage events by post-Emancipation African Americans, circa 1877–2000. (Emancipation Celebration/Homecoming)

State and Local Contexts
- Peopling places—the post-Reconstruction African-American settlements of Kansas, circa 1875–1880; [Fletcher-Switzer residence]
- Speculative development within the Midwest and West during the second half of the nineteenth century, circa 1850–1900
- Historical archeological resources spanning the period 1877–1930
- Post-bellum railroad development and the commercial expansion and bust of small, Midwestern towns, 1865-1900; (Nicodemus as a rare example of a community surviving being by-passed by the railroad, but typical of regional boom and bust cycles)
- The establishment of post-emancipation African-American education in rural Kansas, circa 1877–1900; (1918 District No. 7 Schoolhouse as perpetuation of educational opportunities first afforded in the 1879 sod school and the 1887 wood frame school erected on Fourth Street)
- The establishment of post-emancipation African-American religious institutions in rural Kansas, circa 1877–1900; (A.M.E. Church; 1906 First Baptist Church as perpetuation of congregation established 1880)
- Subsistence and agricultural history during the early settlement of the Great Plains, circa 1877-1890
- The WPA era and municipal construction projects; (Township Hall, 1939, provides site suitable for perpetuation of community participation in local government)
- Subsistence and agricultural history in the dustbowl Great Plains during the great American Depression, circa 1930–1945.

The Cultural Landscape Report prepared at the same writing as this Historic Structures Report has identified an appropriate period of national significance for the community to be 1877–1888: the "boom" years of Nicodemus. This period relates primarily to National Register Criterion A and the community's association with broad patterns of American history (post-Emancipation migration of formerly enslaved persons from the south to free communities in the Midwest). Two of the five National Historic Site structures—the AME Church and the St. Francis Hotel/Fletcher-Switzer residence—survive from this period. (The Cultural Landscape Report notes that other features of the setting such as road corridors also survive from the 1877–1888 period, although with diminished integrity.)

The Cultural Landscape Report also notes that the community as a living entity remains significant to this day, and that all community landscape features contribute to this significance. Of the five subject buildings of this study, three—the Schoolhouse, First Baptist Church, and Township Hall—postdate the period of national significance. The significance of the Schoolhouse and the First Baptist Church is associated with the themes of education and participation in organized religion, and with their presence as later iterations of townsite and community features established during the 1877–1888 period. The significance of the Township Hall is associated with its role in the context of local government participation as well as its presence as an example of WPA-era municipal works. Specific significant attributes of all five subject buildings are discussed below.

The five subject buildings that constitute the Nicodemus National Historic Site all represent functions that are of primary importance to the community and have been important throughout its history. The five buildings represent prominent themes of African-American communities during the nineteenth and twentieth centuries: home, church, school, business, traditions of mutual assistance, and local government, as discussed further with respect to each of the buildings below.

Participation in organized religious activities and the importance of the church to the community is represented by both the A.M.E. Church and the Old First Baptist Church. The A.M.E. Church congregation organized in 1879, and the First Baptist Church congregation in 1880, epitomize the importance of the church to the community from the first years of the townsite.

The A.M.E. Church was one of two significant early stone church structures in Nicodemus, the other being the original First Baptist Church building, which no longer exists. It is an example of a vernacular religious building. The A.M.E. Church is constructed of local stone and, like several other buildings of this group, was covered with stucco around 1950.

The Old First Baptist Church illustrates the evolution of structures within the town from a dugout, to a sod building, to a first limestone structure, to a second larger limestone building, all on the same site. This original limestone structure had a simple rectilinear plan. Later additions, including the kitchen and foyer/bell tower, created a more complex structure, which appears to be patterned after a "side steeple" vernacular church form.³

Historic Structures Report
Nicodemus, Kansas

4-3 Assessment of Significance and Integrity
25 October 2002
Detailing such as the original triangular shaped lintels and diamond topped two-over-two windows, roof pitch, and interior decoration reference the Gothic Revival Style.¹

The theme of re-establishment of home and family life for African-Americans during Reconstruction is represented by the St. Francis Hotel/Fletcher-Switzer Residence. This structure served as the residence of the family of Z.T. Fletcher, a leader of Nicodemus during the establishment and early years of the community, and after a brief hiatus returned to the ownership of Fletcher's descendants. The core of the building was constructed in 1880, and thus represents the boom years of Nicodemus. The alterations made to the structure in the 1920s through 1950s are representative of changes made in response to decline, rebirth, and continuity of the community.

The vernacular housing style of this structure is illustrated in the original stone construction and relocated wood frame structure that comprises the first addition. Although this structure has been altered over time, it does demonstrate characteristics attributed to this vernacular type.

The importance of education to the community is represented by Nicodemus District No. 1 School Building. Schooling in Nicodemus is also associated with Z.T. Fletcher and his wife, who provided the first schooling at Nicodemus as early as 1879 at their sod hotel. Nicodemus was the first community in Graham County to establish a school, thus the designation as District No. 1. The importance of education to the community, and the significance of the school to the town, is illustrated by the fact that private owners of lots sold them to the school district so that the structure could be erected.

This schoolhouse form may have come from a type popular in the larger regional culture at the time. This one room structure appears to have become common in the west due in part to the popularity of the craftsman/bungalow residential style of the time. An article entitled “A Type Found Popular in the West” in American Builder magazine discussed the bungalow style.² A photograph picturing a 1916 one-room schoolhouse in Gallatin County, Montana,³ demonstrates a similarity in form to the Nicodemus school. The window on the side facade is evident in the District No. 1 Schoolhouse as a previous window now filled in with clapboard. The porch is consistent with earlier photographs of the District No. 1 school showing a porch with a low enclosed railing and foursquare posts along the front of the porch.

The role of business and the need to make a living and be self sufficient are represented by the St. Francis Hotel/Fletcher-Switzer Residence. The St. Francis Hotel is historically significant as an example of one of the businesses in the town of Nicodemus during its era of greatest prosperity. It is also of interest for its association with Z.T. Fletcher and his wife, who were prominent individuals among the early settlers in Nicodemus, and with their descendants.

Participation in local government as well as community activities is illustrated by the Township Hall. Since its construction, the Township Hall has been an important community center for the Nicodemus townsit and township. It has served as the site of meetings, ballot casting, and community gatherings such as dances and continues to be a center for activities throughout the year as well as for larger groups during Homecoming weekend.
The Township Hall is significant because of its role in local activities, and is also of interest historically and architecturally as a product of the Works Progress Administration. Another WPA Township Hall structure of similar construction type, style, and size was identified in Topeka, Kansas. The 1936 Douglass Township Community Building at 206 South Forest, Douglass, Butler County, Kansas, was also constructed of local limestone and employed local workers during construction. This building was listed on the National Register of Historic Places 27 April 1995.
EVALUATION OF ARCHITECTURAL CHARACTER

The five buildings in this study are also of interest as examples of vernacular architecture using local building materials. The Secretary of the Interior’s Standards provide for the preservation of historic materials and the preservation of a building’s distinguishing character. The building’s character is embodied in its historic features: the physical elements of an historic building or structure that are in themselves important or that contribute to the historical and architectural character of the property. The elements of a historic building that contribute to its character include its massing and shape, roof and related features, openings, projections, exterior materials, and setting, as well as its interior principal spaces, related spaces, materials, and structural systems.

The function of the A.M.E. Church is recognizable in its massing: a simple rectangular, one story structure with gable roof that suggests a meeting space within. The principal entry through a vestibule also suggests the formal character of the building. The carved stone sign “A.M.E. Church – 1885” reveals the function of the building. The sign also shows the pride of the congregation in its building, as this sign was added to the 1930s east addition. The existing building is a characteristic simple church form. The stone facades are characteristic of local building materials and the stucco covering is characteristic of the evolution of stone buildings in the Nicodemus townsite. The regular row of windows along the south facade of the building also suggests the single meeting space within. The use of wood shingles for the roof is typical of buildings on the Nicodemus townsite. There is some evidence that the roof of the A.M.E. Church was painted green; further research is needed to determine if this was a feature unique to this building, or if other structures on the townsite ever included painted wood shingle roofs.

The architectural character of the St. Francis Hotel/Fletcher-Switzer Residence is recognizable as a vernacular residential structure. Perhaps its strongest visual characteristic is its additive quality—a simple building altered over time by the construction of multiple additions to meet the changing needs of its occupants. The multiple roof lines, dormer, irregularly placed windows, and varying construction, which includes stone, stucco, and wood framing and cladding, all suggest the evolving character of the building over time.

The massing of the Old First Baptist Church clearly conveys its function as a church, and would have done so even more strongly when the bell tower was intact. The building is distinguishable among its neighbors as a church. Its exterior massing also suggests that the building changed over time to meet the needs of its users, with various additions of different construction. The use of wood shingles is also typical of buildings in Nicodemus, as is the structural system combining stone bearing walls with wood roof rafters.

The architectural character of the Nicodemus District No. 1 School suggests its function. The simple massing of the square building, with its front porch and hipped roof with dormer and flagpole, indicates the principal schoolroom within. The building is distinctive in its setting, surrounding by open land and slightly apart from the other buildings of the community. The wood clapboard facades differentiate the school from other remaining public use buildings in the townsite, which are of stone construction. The single principal entrance at the front facade emphasizes the centralized spaces within. The fenestration also reflects the schoolroom use, with single windows at the entrance rooms adjacent to the front door, and few windows into the schoolroom except for the continuous row of windows along the north facade.
The Township Hall building is distinctive in its large scale (relative to adjacent buildings) and formal appearance. Its setting at a street corner, near one of the primary entrances to the townsite, also emphasizes the importance of the building. The simple rectangular massing and gabled roof of the Township Hall, like that of the A.M.E. Church but on a larger scale, suggests the meeting function of the building. The primary front entrance through a projecting vestibule also to the formal character of the building. The entrance vestibule also features the carved stone and concrete sign reading, “Nicodemus Township Hall – 1939” commemorating the building function and date of construction. The regular placement of rows of windows along the long facades further suggests the single, large meeting room within. The stone facades of the building, which were never covered by stucco, emphasize its formal character. Detailing such as the projecting rafter ends contribute to the architectural character of the facades.

The building is also of interest for its association with Works Progress Administration design and construction. The Township Hall, as a somewhat later addition to the townsite, shows evidence of a conscious design effort to relate the new building to the earlier vernacular structures. The use of locally quarried stone, the inclusion of structurally false exposed wood rafter ends along the eaves of the roof that disguise the true steel roof structure, and the division of the massing into a main portion and a smaller projecting mass containing a vestibule are all details that suggest a desire to base the design of the Township Hall on the pre-existing architectural character of the townsite.
EVALUATION OF INTEGRITY

Another consideration to be evaluated in assessing the historic and architectural significance of these properties is their integrity. When a property is considered for listing on the National Register of Historic Places, integrity is evaluated according to seven criteria: integrity of location, design, setting, materials, workmanship, feeling, and association. For a property to retain integrity, the essential physical features that represent the property's significance need to be present, intact, and visible, and the property needs to retain the identity for which it is significant. Although all of the buildings have changed over time, and some of their materials and features have deteriorated, each building retains enough integrity to illustrate its historic character.

Location and Setting

All of the buildings retain their original location as part of the town of Nicodemus. The issue of setting is substantially the same for all five buildings. Although the population of the townsite has dwindled from its late nineteenth century peak, the overall landscape setting has remained unaltered. The townsite is an isolated group of structures set in an open, nearly treeless landscape. Views to the surrounding agricultural land are unobstructed. There has been little modern development, and the scale of the few modern buildings is sympathetic to the small size of the historic buildings. Therefore, all of these buildings retain a substantial degree of integrity of setting.

Design

All of the buildings reflect their original design. The two buildings that have been intentionally changed over time—the St. Francis Hotel/Fletcher-Switzer House and the Old First Baptist Church—illustrate through additions and alterations the way in which the design of these buildings changed over time to meet the needs of their occupants and users.

Materials and Workmanship

Four of the five buildings in this study are examples of construction using local limestone. Although portions of these buildings have been covered with stucco, the limestone generally remains intact. Quarrying of local limestone played a role in Nicodemus in the early years of the town. In 1888, a substantial stone quarry was opened east of Nicodemus. The quarries not only provided a convenient, natural and abundant building material, but also provided labor for many Nicodemus men who participated in sawing, preparing, and dressing the blocks, and transporting them into town. The stone of this region was relatively free and could be fractured easily; it could be quarried on a relatively small-scale basis, with a small work force and a modest capital investment in tools and equipment. The stone was harder to tool and erect than the sod that settlers had used for their first houses. However, the stone had "advantages of durability, permanence, and architectural sophistication. Structural grade limestone was cut from nearby quarries in the sides of bluffs less than two miles from town. Black laborers sawed building blocks at theses quarries and transported them to the building sites by team-drawn sledges and wagons. The buildings were constructed with a double wythe wall with lime mortar joints. Interior finish trim, joists, and rafters were milled from lumber from lumberyards in Webster, Stockton, and Hill City. These original building materials remain in the five historic buildings of the National Historic
Site. In addition, the buildings continue to represent the workmanship of local laborers who participated in their construction.

Feeling and Association

Perhaps most important, the five buildings of the National Historic Site retain integrity of feeling and association. The buildings are clearly recognized as part of the history and development of the town and community, as they have been throughout their history. The five extant buildings of the National Historic Site are remnants of a much larger collection of buildings, many of which have been lost over time. The five extant buildings represent many of the key aspects of life in Nicodemus and serve to symbolize the townsit for today's observer.

NOTES
1 National Register of Historic Places Inventory - Nomination Form, item 8, page 3.
2 Excerpted from the National Park Service General Management Plan. (The General Management Plan is in progress at this writing; this excerpt is from the draft available at the time of this report.)
5 American Builder, “A Type Found Popular in the West,” June 1917.
7 Lee H. Nelson, FAIA, Preservation Brief 17, Architectural Character: Identifying the Visual Aspects of Historic Buildings as an Aid to Preserving Their Character
9 Graham County Lever, 12 December 1879; Nicodemus Western Cyclone, 24 June 1887.
11 Ibid.
TREATMENT AND USE

PRESERVATION OBJECTIVES

The purpose of this study is to identify a recommended scope of repairs to address existing deterioration and future maintenance needs of the five buildings included in the Historic Structures Report study. The 1996 legislation that established Nicodemus National Historic Site defined as the goal of the site:

1. to preserve, protect, and interpret for the benefit and enjoyment of present and future generations, the remaining structures and locations that represent the history (including settlement and growth) of the town of Nicodemus, Kansas; and

2. to interpret the historical role of the town of Nicodemus in the Reconstruction period in the context of the experience of westward expansion in the United States.¹

The goal of the recommendations provided for repair of the five buildings in this study is to ensure preservation of these significant resources in accordance with the philosophy of the historic site legislation. Section 110 of the National Historic Preservation Act (16 U.S.C. 470) sets out the historic preservation responsibilities of Federal agencies. Under Section 110, historic preservation is fully integrated into the ongoing programs of all agencies, which are required to ensure that adequate measures are undertaken to minimize harm to historic properties that may be directly and adversely affected by their proposed actions.

The National Park Service is presently developing a General Management Plan (GMP) for Nicodemus National Historic Site that is intended to guide the management and care of the property over a ten to fifteen year period. This Historic Structures Report has been developed with consideration to the present draft of the GMP. The recommendations presented in this report are based on the analysis of integrity and treatment performed for this study, and may need to be slightly modified when the preferred alternative is selected, based upon the public review and input process for the completed GMP.

All recommendations provided in this report have been developed in accordance with the Secretary of the Interior's Standards, as described in the Secretary of the Interior's Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring & Reconstructing Historic Buildings.² The Secretary of the Interior's Standards are precepts published by the U.S. National Park Service that provide guidelines for work on historic structures. The National Park Service has identified four treatments for historic properties, and there are separate standards for each of these treatments: preservation, rehabilitation, restoration, and reconstruction. The four treatments are defined as follows:

- **Preservation.** The process of applying measures to sustain the existing form, integrity, and material of a building or structure; nothing is added or subtracted to the object's form.

- **Rehabilitation.** The process of returning a building or structure to a useful state through repairs or alterations while retaining significant historic features.

- **Restoration.** The process of accurately recovering the form and details of a property as it appeared originally or at a time of historic significance.
- **Reconstruction.** The process of accurately depicting, by new construction, the appearance of a non-surviving historic property at a period of significance.

The selection of a treatment depends on a number of factors, including the relative importance of the property in history, the physical condition of the property, the proposed use, and code requirements. The buildings at Nicodemus are a part of nationally significant historic resource. The physical condition of the buildings varies from deteriorated and stabilized (e.g., the A.M.E. Church), to deteriorated through deferred maintenance (e.g., Fletcher/Seitzer House, Old First Baptist Church), to well-maintained and in good condition (e.g., Township Hall). The integrity of the buildings also varies, in that some of the buildings have survived in nearly original form (e.g., Township Hall), while others have changed significantly over time (e.g., the Fletcher/Seitzer House and Old First Baptist Church). Although the alterations made to these buildings may not be in themselves architecturally significant, changes to the buildings over time represent the evolution of the Nicodemus townsite.

In terms of proposed use, one of the buildings (Township Hall) is still in use, while the others are not presently used but could be returned to use with varying degrees of repair. The possible reuse of the buildings has not been defined at this time; therefore, it is not possible to identify specific alterations required for a continuing or new use. However, modifications to accommodate any proposed use should not jeopardize the historic character of the buildings. Similarly, modifications may be required to meet code requirements. Applicable code requirements may range from structural load capacities to abatement of lead paint and the need to meet accessibility requirements. Any alterations made to meet code also need to minimize material loss and visual changes to historic character as much as possible.

At this time the treatment preservation (the act or process of applying measures necessary to sustain the existing form, integrity, and materials of an historic property) appears to be the most relevant of the four treatments (preservation, rehabilitation, restoration, and reconstruction) identified by the National Park Service for historic structures. Preservation work, including preliminary measures to protect and stabilize the property, generally focuses upon the ongoing maintenance and repair of historic materials and features, rather than extensive replacement and new construction. New exterior additions are not within the scope of this treatment; however, the limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other code-required work to make properties functional is appropriate within a preservation project.³

The Secretary of the Interior's Standards identifies preservation as an appropriate treatment:
- when the property's distinctive materials, features, and spaces are essentially intact and thus convey the historic significance without extensive repair or replacement
- when depiction at a particular period of time is not appropriate
- and when a continuing or new use does not require additions or extensive alterations.

These criteria can be applied to the five subject buildings in the Nicodemus townsite. With respect to the first criterion, although four of the five buildings are in varying states of disrepair and deterioration, all of the buildings still convey their historic character and significance. The two buildings constructed during the period of national historic significance (1877-1888), the A.M.E. Church and the Fletcher/Seitzer House, retain general historic characteristics associated with that time. With respect to the second criterion, all of the buildings are of ongoing importance to the community of Nicodemus.
With respect to the third criterion, no continuing or new use has been identified for the four buildings that are not currently in use, and no additions or alterations are presently proposed. The Township Hall, which continues in use, does not require additions or alterations to maintain its current function.

The *Standards for Preservation* are as follows:

1. A property will be used as it was historically, or be given a new use that maximizes the retention of distinctive materials, features, spaces, and spatial relationships. Where a treatment and use have not been identified, a property will be protected and, if necessary, stabilized until additional work may be undertaken.

2. The historic character of a property will be retained and preserved. The replacement of intact or repairable historic materials or alteration of features, spaces, and spatial relationships that characterize a property will be avoided.

3. Each property will be recognized as a physical record of its time, place, and use. Work needed to stabilize, consolidate, and conserve existing historic materials and features will be physically and visually compatible, identifiable upon close inspection, and properly documented for future research.

4. Changes to a property that have acquired historic significance in their own right will be retained and preserved.

5. Distinctive materials, features, finishes, and construction techniques or examples of craftsmanship that characterize a property will be preserved.

6. The existing condition of historic features will be evaluated to determine the appropriate level of intervention needed. Where the severity of deterioration requires repair or limited replacement of a distinctive feature, the new material will match the old in composition, design, color, and texture.

7. Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.

8. Archeological resources will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.

These standards are used as the basis for the development of treatment recommendations that follow.
REQUIREMENTS FOR TREATMENT

Although the five structures addressed in this study vary in construction materials and existing conditions, all have the same principal requirements for treatment. These basic requirements are listed below. Within the preservation treatment, a range of stabilization, repair, and maintenance tasks are required for short-term and long-term protection of the building fabric.

With regard to prioritization of recommended repairs, the basic requirements outlined below are in general order of descending importance. If any of the four deteriorated buildings were to be made accessible to visitors, then issues of safety would need to take first priority. As long as access to these buildings is restricted, safety issues must be addressed but do not require immediate action. (It should be noted that recent National Park Service stabilization work on the A.M.E. Church has addressed immediate safety concerns at that property.)

It is extremely important that all projects, no matter how minor, be adequately documented through written notes, photographs, measured drawings, and/or sketches. Such documentation should reflect conditions before, during, and immediately after the work. The record-keeping process should be incorporated into the day-to-day management of the site, and the records should be permanently archived for future reference. This documentation program is a necessary component of the preservation treatment for several reasons. Thorough documentation assists site personnel in maintaining the buildings, provides a basis for future decision making about additional repairs, provides assessment of the effectiveness of repair methods over time, and allows future observers to identify which materials are historic.

1. **Structural Stabilization.** Address structural deficiencies. Implement structural stabilization repairs as needed to address conditions that have the potential to create a safety hazard and conditions that may lead to loss of historic fabric. This requirement is appropriate for all five buildings.

2. **Weatherproofing.** Perform exterior repairs and continuing maintenance to prevent water infiltration and deterioration of building envelope materials. These types of repairs include closure of openings in walls (such as broken windows) and roofs, repairs to roofing and flashings, foundation repairs, masonry wall repairs and repointing, wood cladding repairs and repainting, and window and door repairs. This requirement is appropriate for all five buildings.

3. **Safety and Protection of Building Fabric.** Perform repairs and modifications to the mechanical, electrical, and plumbing systems as required for safety and to protect the building fabric. Repairs and upgrading to meet code are not anticipated at this time for the unoccupied buildings. This requirement is appropriate for all five buildings.

4. **Interior Repairs.** Perform interior repairs and maintenance. Examples of this type of repair include repairs to cracked plaster on the first floor walls and ceilings, which would necessitate removal and replacement of wallpaper in some areas, window repairs and repainting, maintenance of interior woodwork and trim, etc. This requirement is appropriate for buildings that are in use or are occasionally occupied.
5. **Cyclical Inspection and Maintenance.** In addition to the specific repairs recommended, all five buildings need to be regularly inspected to identify urgent maintenance needs. Patching roof leaks, repairing broken windows or doors, touching up paint on wood elements, and pointing open mortar joints in stonework are some of the ongoing maintenance tasks that must be continually implemented to avoid damage to the historic building fabric and to reduce the need for large-scale repair projects. This requirement is appropriate for all five buildings; inspection on a regular basis is particularly important for those structures that are not actively used.

The conditions represented by the five buildings in the study are widely varied, and range from the A.M.E. Church, which is in a deteriorated condition but has recently received structural stabilization and roofing replacement, to the Township Hall, which is in good condition and is well maintained. Although each of the five buildings is different from the others in some materials uses, architectural features, and structural systems, all have many materials and conditions in common.

One key treatment issue that relates to three of the five subject buildings (the A.M.E. Church, Old First Baptist Church, and the St. Francis Hotel/Fletcher-Switzer Residence) is the presence of the stucco covering applied to the stone masonry exterior walls around 1950, as discussed in the Developmental History chapter. Two approaches can be considered for these facades: the stucco cladding can be repaired and maintained, or the stucco can be removed and the historic stone facades repaired and preserved. Research to date has not indicated that the stucco is in itself historically significant. However, it is of interest in that several buildings in the community received this covering at about the same time. According to oral history reports, the stucco was reportedly installed to improve the appearance of the buildings.⁴ It is possible that the stucco was installed to cover stone walls that had not been maintained through proper repointing of mortar joints as a cyclical maintenance effort. If the joints were not kept watertight, it is possible that water leakage and air infiltration may have occurred through the exposed stonework.

In areas where the original limestone is exposed on these buildings, it appears to be in fair to good condition except in localized areas such as base courses of stone exposed to ground moisture. Further research and the laboratory materials studies may reveal additional information about the quality and condition of the stone that will provide guidance in making long-term decisions about whether the stucco should be removed and the stone exposed and preserved. The Township Hall, which is constructed of the same stone as the other buildings but was never covered with stucco, remains in good condition. (Long term preservation of the stone is dependent on proper maintenance of mortar joints, and building roof and drainage systems, rather than on covering of the stone surface.) If poorly maintained, the stucco coating becomes cracked and delaminated. This deteriorated covering may contribute to trapping water against the stone rather than protecting the stone surface from water infiltration and weathering.

The question of whether removal of the stucco is appropriate is slightly different for the A.M.E. Church than for the Old First Baptist Church and the St. Francis Hotel/Fletcher-Switzer Residence. The A.M.E. Church remained essentially unchanged architecturally after application of the exterior stucco wall covering to the entire building. Removal of the stucco from the existing facades would partially return the building to its historic appearance; however, reconstruction of the north wall, including the north gable and northeast vestibule, would be required to completely restore the appearance of the historic
stone building envelope. With the understanding that if the missing north portions of the building are reconstructed in the future, they will not be covered with stucco, then a logical preservation approach for the existing portions of the building is: to leave intact stucco in place; to repair cracked stucco; to remove but not replace severely deteriorated stucco; and to not replace stucco on areas where it has previously fallen from the stone surface. It may be necessary to protect the exposed edges of the stucco from water infiltration into the stone behind. Further design development is required to refine this repair approach.

For the Old First Baptist Church and particularly for the St. Francis Hotel/Fletcher-Switzer Residence, removal of the stucco would be more problematic, as the buildings have changed by construction of several additions both before and after the application of a stucco wall covering. These buildings never appeared as the composite stone and frame buildings they have become without the unifying element of the stucco covering. This issue is particularly problematic for the St. Francis Hotel/Fletcher-Switzer Residence, for which no historic photographs have been found which clearly indicate the appearance of the facades in the years immediately prior to the stucco application. Physical evidence suggests that if the exterior sheathing on the addition originally consisted of wood clapboards, then the clapboards were removed prior to installation of the stucco.

In addition, removal of the stucco from the Old First Baptist Church and St. Francis Hotel/Fletcher-Switzer Residence would suggest that the buildings are being restored, i.e., returned to their appearance at a period of significance (the period of 1877–1888, the “boom” years of Nicodemus). However, this would in turn suggest that additions that do not date from a designated period of significance should be removed, along with the stucco. It is not difficult to argue that the stucco is of lesser significance than the original stone masonry, given that the masonry is locally quarried, represents the work of local laborers, and is part of the original design of these structures. However, it is more difficult to confirm that the various additions should be removed. For each building, these additions represent modifications in response to changing community needs and economic context. In addition, some of the additions, such as the bell tower on the Old First Baptist Church, have achieved their own presence, if not significance, as part of the historical and architectural development of the structure, and have in turn changed over time. In the context of the treatment preservation (“to sustain”), removal of the stucco does not seem to be appropriate at this time for these two buildings.

Consideration could also be given to removing the stucco from one property, such as the A.M.E. Church, and not from the other structures, which have experienced more architectural changes over time. However, removing the stucco from the A.M.E. Church (i.e., “restoration” rather than “preservation”) would result in one of the five buildings being interpreted to a specific period of significance, that is, prior to 1949, while the other buildings retain their appearance as they have changed in the past half-century, rather than as they appeared in a certain period of time other than the present. Thus, this approach would detract from the consistent presentation of history that presently exists at the National Historic Site, with all of the buildings having aged and changed in response to the same contextual conditions over time.

Based on studies completed to date, the application of stucco may not be required to protect the stonework. The stonework of the Township Hall, for example, has never been covered by stucco and remains largely intact—although the Township Hall building is of significantly more recent construction than the other stone buildings of this study. The
condition of the other stone buildings immediately prior to the stucco application is not clearly documented to provide evidence of whether stone deterioration had occurred by that time. The stone is relatively soft and therefore proper maintenance such as pointing is essential to protect the stone. Further protection could be provided by a lime stucco or lime wash application. Applications such as high portland cement-content stucco that is stronger than the substrate stone should not be used as these applications would potentially result in deterioration of the stonework.

Materials

Wood

Wood species identification or wood pathology studies were not performed as part of this report project; but can be performed as a supplement to the Historic Structures Report.

Stone

The stone used in construction of the Nicodemus townsite buildings is a locally quarried limestone. The limestone is buff white and very finely crystalline micritic limestone. (“Micritic” limestone is a descriptive geologic term for very finely textured stone that is essentially carbonate mud.) Micritic limestone is almost a pure limestone and contains almost no clay.

The rock is soft and can be scratched with a fingernail. Since calcite, the primary component of limestone, has a Moh's hardness of 3 and a fingernail has an approximate hardness of about 2.5, this indicates that the calcite crystals are poorly interlocked. A few individual crystals of calcite that probably formed due to recrystallization of finer sized micrite mud were also detected. A qualitative test for magnesium was negative, indicating that the rock is composed primarily of calcium carbonate. The rock also contains a few biogenic fragments (i.e., fragments of organic origin such as fossils).

A trace of red-brown material (probably iron oxide) was detected but only became visible on acid-etched surfaces. This trace became visible because it was left behind when the calcium carbonate dissolved in the dilute acid.

The stone samples examined from the four buildings at Nicodemus are consistent in character. Because on its softness and porosity, this type of stone would be expected to be vulnerable to deterioration if saturated and then exposed to cyclic freezing and thawing. If the stone remains dry, it can survive without much deterioration. These conditions are exhibited in the buildings of this study, where the majority of stone units in the field of the wall are intact. In contrast, stone units at the ground, or at isolated locations where exposed to moisture accumulation, are eroded or spalled. A good example of this condition is at the base of the buttresses on Township Hall, where isolated individual stones are severely eroded or spalled when exposed to water or snow accumulation against the building.
Mortar

A mortar sample from the A.M.E. Church south wall bed joint contained a relatively coarse siliceous sand. The mortar is gray-buff in color. The mortar was moderately soft and could be broken by hand pressure. Numerous sand particles that were not encased in cementitious matrix were detected on the bonding surface of the bed joint. Sand particles that were in surface to surface contact were frequent in the body of the mortar. The mortar was not air entrained, but contained an estimated 7 to 9 percent relatively large entrapped air voids. Rounded lumps of unhydrated portland cement were detected as well as several soft white lumps of hydrated lime (now carbonated).

A mortar sample from the Township Hall east wall head joint contained a relatively coarse siliceous sand (more coarse than the sand from the A.M.E. Church mortar sample described above). Granitic rock fragments were detected in the sand. The mortar was firm and compact, and freshly fractured surfaces had to be prepared using a hammer. The matrix to sand bond was very firm. The mortar was medium gray and unhydrated cement particles were visible, but no obvious lumps of hydrated lime were detected. The mortar was not air entrained. Air was present in irregularly shaped voids (entrapped air). The volume of entrapped air was lower (estimated at 5 to 7 percent) than that of the A.M.E. Church mortar sample. Textural features indicated that the mortar to stone bond was incomplete because sand particles in the mortar are not well encased in the cementitious matrix.

Stucco

A stucco sample from the Old First Baptist Church, southeast corner, was examined and had a total thickness of 0.07 inches. The stucco consisted of three layers. Although the scratch and brown coats both contained siliceous sand aggregate that was judged to be from the same source, the sand contained in the brown coat had a distinctly coarser gradation. The scratch coat had a nominal thickness of 0.25 inch. The texture of the bottom bonding surface was smooth and indicated that the substrate (micritic limestone) had not been roughened or otherwise prepared prior to application of the stucco. A small fragment of micritic limestone adhered to a portion of the bottom surface of the sample. Very few irregularly shaped voids were detected on the bottom of the scratch coat. The cementitious matrix of the stucco within about 0.02 to 0.05 inch of the bottom bonding surface was buff to light gray and had a higher water to cement ratio than the overlying 0.2 inch of the scratch coat. Since the micritic limestone that served as the stucco substrate is highly porous, this buff to light gray layer may indicate that the limestone had been saturated with water prior to application of the stucco. The scratch coat was air entrained. Air was present as very small spherical voids and had an estimated volume of about 4 to 6 percent. The overlying brown coat was about 0.4 inch thick. The portion of the brown coat within about 0.2 inch of the interface with the scratch coat had a considerably higher water to cement ratio than the overlying 0.2 inch of the brown coat. This indicated that the brown coat had been applied in two lifts. Although the brown coat was also air entrained, it contained a significantly greater volume of larger entrapped air voids than were present in the scratch coat. The estimated total volume of air in the brown coat was 7 to 9 percent. The finish coat had a maximum thickness of 0.05 inch. The fine aggregate contained in the finish coat was a rounded quartz sand. Sand particles were in surface to surface contact. This indicated that the finish coat had a low volume of cementitious matrix. The top surface was irregular and numerous rounded quartz sand particles were exposed on it. Remnants of plant life were present on the exposed surface. Microscope sized lumps of hydrated lime (now
carbonated] were detected in the cementitious matrix. Portland cement was not positively detected in the matrix. The cementitious matrix was porous and readily absorbed water applied to the surface. Erosion of the finish coat was judged to be due to a combination of its friable nature and dissolution due to the presence of microbiological growth on and within the stucco surface.

Future Research

The following areas of study are recommended for further research:

1. **Structural analysis.** All of the buildings show signs of potential structural flaws that may be the root cause of the distress observed in the building fabric, including problems with foundations and wood floor and roof framing. As outlined in the specific recommendations below, structural analysis of particular construction details is necessary before the cosmetic damage to building finish materials, such as plaster or stucco, is repaired.

2. **ADA compliance.** Compliance with the Americans with Disabilities Act (ADA) is dependent upon the use of the structure. Until an ultimate determination is made regarding the intended use of the buildings, the degree of non-compliance and the need for architectural modifications to achieve compliance cannot be assessed. Prior to making architectural modifications to the buildings, consideration should also be given to off-site interpretation of the history and significance of the buildings in lieu of making the buildings themselves fully accessible.

3. **Code compliance.** Compliance with building codes is also dependent on the use of the structure. Until an ultimate determination is made regarding the intended use of the buildings, the need for code-related modifications cannot be assessed. In working with historic buildings, a creative approach that provides life safety while maintaining significant building fabric is most appropriate. If drastic changes to the historic building fabric would be required to achieve code compliance for a particular use, the appropriateness of that use for that building should be reconsidered.

4. **Termite inspection.** All of the buildings contain substantial amounts of wood structural and finish elements. Although there is no obvious sign of termite damage at present, ongoing inspection and monitoring to avoid future damage is appropriate.

5. **Archaeological investigation.** Several of the specific recommendations below involve disruptions to subsoil conditions, including the installation of perimeter drainage or foundation repair. It is important when any excavation is made for any reason on the townsite that a proper archaeological investigation is coordinated with the work. It would not be surprising to find lost or discarded items that would reveal the patterns of past daily life, particularly considering the prevalence of dugout and sod construction in the early history of the townsite.
ALTENATIVES AND RECOMMENDATIONS FOR TREATMENT

The purpose of the repairs outlined below is to provide for structural stabilization and weatherproofing of the exterior envelope of each building to prevent further deterioration and water infiltration. As appropriate for each building, repair recommendations also address safety and protection of the building fabric. The repairs recommended for the A.M.E. Church are intended to provide continued stability and weatherproofing. The repairs recommended for the Old First Baptist Church, St. Francis Hotel/Fletcher-Switzer Residence, and Nicodemus School District No. 1 Building, are intended to provide weatherproofing to protect the existing materials and prevent further damage. The repairs recommended for Township Hall are essentially continued maintenance measures. Interior repairs and maintenance are addressed only as these relate to require structural and weatherproofing repairs. In the case of the Township Hall, which is the only one of the five buildings currently in use and which is currently well maintained, stabilization and weatherproofing are generally not required; therefore, recommendations are made for ongoing maintenance-type repairs.

The repairs outlined below do not address improvements to restore missing historic features. Although specific recommendations for the treatment of the interior spaces are not included, any interior work that does occur should not remove or damage existing features and materials and should be thoroughly documented. In addition, development of recommendations for repairs to bring the building structures and systems into compliance with codes, or to meet needs of potential new uses such as housing interpretive exhibits about the townsite, are outside the scope of this study.

General Recommendations

The following general recommendations are applicable to all five buildings in the study.

1. Provide improved foundation drainage at the buildings' perimeters. For the four older buildings in the study, this task would include excavation at the base of the building walls and installation of drain tile or other perimeter drainage measures. When this work is carried out, re-grade the topsoil near the buildings' perimeters to provide positive slope away from the wall. For the Township Hall, consideration could be given to removing the sidewalk along the east and west sides of the building and installing gravel or other material to facilitate drainage of water away from the building. If it is desirable to maintain a sidewalk along the building, then the existing walk should be replaced to provide a proper slope to drain away from the building. Any excavation and drainage measures for the five buildings, as well as any other site work adjacent to these properties, should be implemented following or in conjunction with a program for archaeological investigations by trained archaeologist.

2. Clean stonework in the specific locations described below using water, mild detergents, and biocides. The goal of the cleaning process is not to restore the buildings to a pristine, like-new appearance, but rather to remove the potentially harmful build-up in limited locations. The gentlest effective means should be used, such as mild cleaners with low (less than 100 psi) water pressures. No strong acids should be used on any of these buildings.
3. At the specific locations indicated below, repair deteriorated wood elements. Epoxy consolidants are appropriate for those elements that have minor deterioration or that have an unusual or decorative profile. Wood dutchman repairs are recommended for elements that have more substantial deterioration. For wood structural members, the repair should consist of either installing new wood sister elements adjacent to the historic elements, or replacing with a like species of lumber if the deterioration severely affects the entire member.

4. At the specific locations indicated below, repair isolated cracks and spalls in stone masonry units. Typically cracks less than 0.01 inch may be ignored; cracks in excess of 0.01 inch should be routed to 1/8" width and filled with sand grout. Larger continuous cracks across multiple masonry courses, cracks between separate building elements, and other cracks where thermal movement is expected should be routed and sealed with sealant and backer rod to accommodate movement. Large spalls should be cut square and patched with new dutchmen units of compatible limestone set in mortar and anchored to the adjacent stone with stainless steel pins.

5. Deteriorated mortar joints and open joints require repointing. The new pointing mortar should be softer than the adjacent stone. Limited mortar studies performed to date suggest that ASTM C 270 Type O or a traditional lime mortar may be appropriate. A mix design for new pointing mortar should be developed to match original mortar color and texture as closely as possible.

6. For the four buildings that are not presently occupied, consideration can be given to providing a minimum level of heat inside the buildings during the winter months. A minimum of 50 degrees Fahrenheit is recommended to help protect building materials. This could be accomplished by the installation of small electric heaters: for the Nicodemus District No. 1 School, one heater would need to be located near the center of the classroom; for the other three buildings, two heaters would be needed at selected locations on the first floor. Repairs to electrical service and wiring would need to be implemented prior to the installation of heaters. Electric heaters are a safer and less expensive alternative than gas-fired heaters; they can safely be used in unoccupied buildings.

7. Consideration should be given to installing smoke detectors in all of the buildings. However, smoke detectors do not function in unheated spaces, so this would require that a minimum level of heat be maintained, as described under no. 6 above. Alternately, heat detectors could be installed. Heat detectors do not require a heated interior to function, but they would need to be connected to a fire alarm panel and monitoring station in a normally occupied building. Therefore, heat detectors require that electrical and telephone service be repaired and reconnected to the buildings.

8. Propane tanks are located at the A.M.E. Church, St. Francis Hotel/Fletcher-Switzer Residence, Old First Baptist Church, and Nicodemus District No. 1 School Building. The propane tanks should be emptied and the propane pipes disconnected at each tank.
A.M.E. Church

The A.M.E. Church is in a deteriorated condition but has been stabilized by the National Park Service in a clean-up program performed in 1996 and in structural repair and roofing projects performed in 2000–2001, as previously described under Assessment of Existing Conditions. The repairs recommended below address weatherproofing of the building beyond that provided by the National Park Service projects. Additional repairs required to make the building suitable for visitor occupancy or use are not included in these recommended repairs.

1. Prepare, prime, and paint the exposed rafter ends and fascia adjacent to the metal vestibule roof. Although the existing corrugated metal currently provides sufficient protection to the east vestibule portion of the building, it is a temporary patch, and this roof should be re-shingled in the same manner as the main roof. The intersection of the vestibule roof and the east wall of the sanctuary needs to be properly flashed and detailed.

2. Remove delaminated stucco prior to repair of stonework. Repair cracks in stucco with grout. Do not install new stucco at exposed areas of stonework.

3. Repair localized eroded or missing portions of stone units, such as below the weathered wood sill at the front entrance, localized eroded stone at base courses, and missing or cracked stones at the upper north end of the east facade.

4. Repair cracks in localized stones units, as described under General Recommendations, above.

5. Point mortar joints in exposed stone masonry.

6. Install sealant in the vertical joints where the walls of the east vestibule meet the east face of the main building.

7. Clean the courses of stonework closest to grade, as described under General Recommendations, above.

8. Repair, prime, and paint exposed exterior wood trim and the front doors.

9. Perform localized replacement of floor joists and decking to replace rotted and deteriorated wood.

10. Replace broken glass in front doors.

11. Install electric unit heaters. Provide a new load center with overhead electrical service to the adjacent power pole.

As a long term preservation measures, the north wall of the building should be reconstructed to match the original stone masonry, including the width of mortar joints and the coursing of the stone. This wall was stabilized and replaced with a wood stud wall as part of National Park Service repairs in 2000. The existing repairs are temporary in nature and should not be expected to perform over the long term. Either the existing repairs will need to be maintained and replaced over time, or the north wall will need to be reconstructed. The reconstruction of

Historic Structures Report
Nicodemus, Kansas

5-12

Treatment and Use
25 October 2002
the wall should incorporate the arched window, cross-gable and northeast vestibule as documented in historic photographs and drawings. Further research is required to establish the dimensions and details of the cross-gable and arched window. Reconstruction of the wall in locally quarried stone would provide a long term building enclosure in keeping with the historic building appearance. Note that salvaged stone is present at the National Historic Site and could be considered for reuse. Examination of individual stones would be required to confirm their suitability for use in the reconstruction.

If the north wall and related architectural features are reconstructed, providing a complete masonry building envelope, consideration could also be given to removing the boarding over the windows, repairing and painting wood window frame and sash, and replacing broken and missing glass. (Neither these potential repairs nor the reconstruction of the north wall are included in the cost estimate provided with this report.)
Old First Baptist Church

The repairs recommended below are intended to provide a stable, weatherproof building. Additional repairs required to make the building suitable for return to use are not included in these recommended repairs.

1. Install roofing repairs to the foyer mansard roof and adjacent portions of the main roof, including localized replacement of shingles, flashing, and roof deck. (For long-term continued use of the building, roof replacement is recommended, particularly for the foyer mansard roof.) As part of the roofing repairs, flashing should be installed in the valley between the foyer mansard roof and the main roof.

2. On all areas of the roof, replace isolated deteriorated or missing wood shingles. Replace the asphalt shingles on the roof return at the east end of the north facade with wood shingles.

3. Replace missing and rusting galvanized sheet metal corner and ridge trim and flashing with lead-coated copper flashing. Repair gaps at bottom edge of roof. Provide flashing where the roof of the northwest addition meets the original exterior walls.

4. Additional repairs are required to the east wall. Provide temporary wood shoring to support the east wall and the buttresses. Further investigation and structural analysis is needed, addressing the foundation, wall, buttresses, and roof structure, in order to develop specific repairs for this area of the building. The buttresses may be considered historic elements and should therefore remain in place. However, the buttresses themselves require repair and stabilization, and they are inadequate to support the east wall.

5. Structural repairs are required at the southwest corner roof and eaves so that the column presently supporting the eaves can be removed.

6. Repoint mortar joints in exposed areas of stonework and in the concrete block of the northwest addition.

7. Replace missing and severely cracked and delaminated areas of stucco, and repair cracks in stucco.

8. Repair cracks in the projecting sill at the base of the stone walls.

9. Repoint all mortar joints in the brick chimney.

10. Replace decking and floor joists at localized areas of rotted and deteriorated wood.

11. Repair deteriorated soffit and fascia on the northwest addition.

12. Replace the deteriorated paired entry doors with new weather tight, secure doors.

13. Repair wood window in northwest addition and replace broken glass.

14. Replace glazing putty and window perimeter sealant for all windows.
15. Repair, prime, and paint exterior wood trim, windows, and doors.

16. Disconnect unused mechanical equipment. Provide temporary shoring at the heating unit in the sanctuary. Investigate the structural support of this unit and provide appropriate additional hangers for the unit and reinforcement for the roof structure, if needed. Alternately, document and remove the heating unit.

17. Drain all water from piping and the water heaters.

18. Install electric unit heaters. Provide a new load center connected to the existing electrical service.
St. Francis Hotel/Fletcher-Switzer Residence

The repairs recommended below are intended to provide a stable, weatherproof building. The repairs recommended below are based on the assumption that this building will not be returned to occupancy in the near future. As an immediate measure before a detailed repair program can be developed, broken windows and large holes in the stucco of the east wall should be boarded up, to prevent the accumulation of vermin or debris in the interior.

1. Perform localized maintenance-type roof repairs. The existing asphalt shingle roof was installed in 1998 and therefore need not be replaced in the near future.

2. Replace missing roof trim and repair gaps between roof framing.

3. Board over window opening of dormer to prevent water infiltration.

4. Repair cracked stone lintel at first floor south facade (at the door location between bedrooms 2 and 3), on the original rear wall of the house, using stainless steel anchor rods.

5. Where stonework is exposed, repair cracks and point mortar joints.

6. On the stone portion of the building and the concrete foundation, replace missing and severely cracked and delaminated stucco parge. Repair cracks in stucco. On the frame portion of the building, remove and replace previous failed repairs, and patch holes in stucco. Where the expanded metal lath is exposed, secure lath to the wood framing if possible, or replace with new metal lath before patching stucco.

7. Repair cracks, spalls, and holes in concrete foundation.

8. Repair the concrete step-out at the base of the wall on the west facade.

9. Replace decking and floor joists at localized areas of rotted and deteriorated wood, such as water-damaged floor joists and flooring at location of water heater on first floor near center of house, and sister new studs adjacent to the water-damaged wood studs at the east wall of the rear porch.

11. Repair, prime, and paint exterior wood trim, windows, doors, the dormer wall siding, and front porch wood frame. The front porch wood frame should not be painted until it is confirmed that it was painted originally. Alternately, the frame could be coated with a clear penetrating wood sealer.

12. Repair missing joist ends on the south facade and gaps below projecting joists supporting first floor wood soffit. Repair gaps at the boarded over old doorway on the south facade.

13. Replace window putty and perimeter sealant for all windows.
14. Limit access to the second floor until structural analysis is performed to determine if modifications are required to provide improved load capacity. Move the furniture and other items stored in the north bedroom on the second floor down to the first floor.

15. Consider removing all furniture and objects stored in the building to a different storage location. All items should be documented and cataloged for possible future use in interpreting daily life in Nicodemus. Some items of furniture may in themselves be important to the historic character of this property.

16. The water utilities to the building should be isolated outside the building and all water drained in the piping and in the bathroom water heater tank. This tank has a constant slow leak and needs to be isolated and drained.

17. Exposed Romex wiring should be removed.

18. Install electric unit heaters. Provide a new load center connected to the existing electrical service.
Nicodemus School District No. 1 Building

The repairs recommended below are intended to provide a stable, weatherproof building. Additional repairs required to make the building suitable for return to use are not included in these recommended repairs.

1. The weight of the plaster ceiling in the main interior space appears to be causing the roof at this location to deflect downward. A structural evaluation of the sagging west roof hip should be performed and additional support for interior plaster ceiling be designed and implemented as required.

2. Repair isolated cracks in the concrete foundation. Further investigation is needed before the large cracks at the east end of north wall are repaired. These seem to indicate settlement of the east wall of the foundation.

3. The cause of the large crack at the wall and ceiling near the southeast corner of the building, which is visible in the entry hall and coat room, should be further investigated and structural analysis performed. It seems probable that foundation settlement is the cause of this distress; therefore, repairs to interior plaster should not be implemented until the foundation issue has been addressed.

4. Repair with sealant the cracked concrete front porch slab. Repair with grout the concrete block walls at the porch base. Repair the concrete steps with sealant. Seal the joints at the back of the steps.

5. Clean, prime, and paint the steel porch columns and base plates. The existing posts are contributing to distress at the porch roof; therefore, the bearing condition where the posts meet the historic box beam should be modified. In the future, consideration can be given to reconstructing the wood porch supports and railing to match the historic appearance of the porch as documented in archival photographs.

6. Replace decking and floor joists at localized areas of rotted and deteriorated wood. Repair wood studs at isolated locations of deterioration, such as below north facade windows and adjacent to the chimney.

7. Repair split wood siding and fascia members. Seal open joints in porch fascia.

8. Replace missing exterior cladding boards at lower west end of north wall.

9. Repair deteriorated wood trim, such as above the west end of the north facade windows.

10. Repair deteriorated wood frame at north basement/cellar door.

11. Replace missing muntins and rehang sash in the paired windows on the south façade.

12. Replace glazing putty and perimeter sealant at all windows and doors.
13. Clean, prime, and paint rusted screen frames in the north facade windows; replace rusted screen mesh. If this repair cannot be performed in the near future, remove the screens and store them in the building interior to limit future corrosion.

14. Repair, prime, and paint exterior wood trim, windows, and doors.

15. Repair or replace displaced and missing exterior cladding metal corner trim.

16. Repair or replace the concrete stoop at the small cellar door on the north facade.

17. Scrape, prime, and paint areas of exterior woodwork with deteriorated paint.

18. Repair mortar parging on brick chimney, or if substantial areas of the parging are delaminated, remove parging and repoint all mortar joints in the brickwork.

19. The gas piping in the kitchen should be secured to the wall. Currently it is loose and could pull off of its inadequate supports.

20. Install an electric unit heater. Provide a new load center with overhead service to the adjacent power pole.
Township Hall

The Township Hall is generally in good condition and well maintained. Localized repairs are recommended to sustain the building in good condition. Because the building is currently well maintained and in use, the approach recommended for repairs is slightly different than for the other four building in this study. Stabilization measures for weatherproofing and mothballing the building are not required. Instead, continuing localized repair and maintenance tasks are recommended, as outlined below.

1. Repair joints in step cracks at the south facade. First, install simple crack gauges and monitor the cracks for increasing width. If, as seems likely, the cracks grow and shrink due to temperature variations, a sealant repair will be appropriate. Following the crack locations as closely as possible, rout the mortar joints to a depth three times their width and install backer rod and sealant. If, however, the cracks are progressively growing wider regardless of temperature variations, further structural investigation to determine the cause of this cracking will be needed.

2. Perform localized repairs and install dutchman units at isolated locations of severely deteriorated, spalled, and missing portions of stone units.

3. Repair isolated cracks in stone units, as described under General Recommendations, above.

4. Repair the window jamb and lintel intersection. Stress concentrations can be reduced by completely removing mortar from the horizontal joint between the window jamb unit and the lintel at all window openings. Sealant and backer rod should be installed in place of the removed mortar. Where the limestone jamb is cracked or spalled it should be pinned through the face to the limestone backup.

5. Point open and cracked joints in the stone and brick facades and the brick chimney.

6. Repair concrete parging on the exposed foundation below the base course of stone.

7. Repair split soffit boards. Prime and paint exposed false rafters and fascias.

8. Prime and paint exterior metal windows and replace sealant at window perimeters.

9. Repair weather stripping at front door and repaint wood frame. Or, consideration can be given to reinstalling the original front doors. Doors observed to be stored in the basement during this survey may be original to the building. These doors should be examined to confirm that they are original and to determine the extent of modifications required to accommodate their reinstallation. It should be noted that the reinstallation of the doors, if original, would be consistent with restoration, not stabilization/preservation. Such restoration work would be dependent upon guidance provided in the GMP.

10. Repair, prime, and paint the wood door and frame near the north end of the west facade.

11. Prime and paint the wood door frame at the basement door on the north facade.

12. Repair the deteriorated wood door on the east facade.

Historic Structures Report
Nicodemus, Kansas

5-20

Treatment and Use
25 October 2002
13. Prime and paint concrete window sills.

14. Clean the lowest several courses of stone on the east and west facades and all stone work on the north façade, as described under General Recommendations, above.

15. Fill joint between sidewalk and base of wall along east façade. Consideration can be given over the long term to removing the sidewalk to provide better drainage along this side of the building.

For the building interior, the following maintenance repairs are recommended:

1. Repair cracked and water-damaged plaster.

2. Replace water-damaged ceiling tile in toilet rooms.

The following repairs are recommended for the mechanical, electrical, and plumbing systems:

1. The sinks in the two toilet rooms have no hot water available. A small electric water heater should be installed to provide hot water to the two toilet rooms for hand-washing purposes in compliance with normal health standards.

2. Exposed Romex wiring should be replaced with wiring and raceways suitable for an exposed installation.
OPINION OF PROBABLE COSTS

The following opinion of probable costs was prepared as part of the Historic Structures Report study to provide a preliminary estimate for use in budgeting and planning. The cost figures provided in the table should be considered preliminary and are based on information gathered through the visual inspection of the buildings and site, and on the project team’s familiarity with similar projects. This opinion of probable costs is classified as a Class C cost estimate. These figures must be revised and a more accurate assessment of costs developed as specific stabilization and repair recommendations are carried through into a design development and construction documents phase.

The following assumptions were made in preparing the attached opinion of costs:

1. Construction costs are provided for use in budgeting and planning purposes and shall not be used as an actual bid.

2. Estimates are based on visible conditions and do not include repairs to conditions not visible at the time of inspection.

3. No sales tax is included in the cost figures, following the assumption that the facility is tax exempt.

4. Projects for work on the property will be competitively bid.

5. Construction will be during normal working hours.

6. Construction cost totals are rounded to the nearest ten dollars.

7. No architect/engineer or special consultant fees are included.

8. Costs include a 20 percent design and construction contingency and are based upon a 2001 construction season.

9. The estimates are based upon the recommendations contained in this chapter for the stabilization of four structures — the A.M.E. Church, the Old First Baptist Church, the Fletcher-Switzer Residence, and the District No. 1 School — and for the performance-related maintenance repair of the Township Hall. No costs for future restoration work or for repairs needed to return the buildings to active use were included. Costs for recommended additional study and investigation are not included.

The estimate was prepared using RS Means Repair and Remodeling Cost Data 2001 as a reference. See appendix for the detailed cost breakdown.

In the cost estimate, the heading General Recommendations - Foundation and Drainage refers to work for all five buildings. The other repair recommendations under General Recommendations in the text above are broken out into the cost estimate for each building.
Stabilization Budget Estimate Summary
21 August 2002

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Recommendations</td>
<td>$27,850</td>
</tr>
<tr>
<td>AME Church</td>
<td>$14,300</td>
</tr>
<tr>
<td>First Baptist Church</td>
<td>$33,990</td>
</tr>
<tr>
<td>St Francis Hotel/Fletcher-Switzer Residence</td>
<td>$19,740</td>
</tr>
<tr>
<td>School District No 1 Building</td>
<td>$22,900</td>
</tr>
<tr>
<td>Township Hall</td>
<td>$32,050</td>
</tr>
<tr>
<td>Total Stabilization Budget</td>
<td>$150,830</td>
</tr>
</tbody>
</table>

NOTES

3 Secretary of the Interior’s Standards.

4 Interviews with Clarence and Yvonne Sayers, 16 April 2001; Donald Moore, 18 April 2001; Bert Gansel, 23 April 2001; and Katherine Buckner, 10 May 2001; see Cultural Landscape Report, 2002.
BIBLIOGRAPHY

The following bibliography includes documents recommended by the CLR authors for review for this report, as well as other documents researched for the HSR.

Architecture of the Great American Desert. (Illustrated catalog)

Written to inform children about the history and settlement of Nicodemus, this book gives an overview of the settlement, development, and decline of the community. Special attention is given to the people, both past and present, who were associated with Nicodemus.

An in-depth history of the process of establishing post Civil War African-American communities in Kansas and surrounding areas. This work details the political, economic, social, and ideological factors that resulted in the establishment of various towns, including Nicodemus, Kansas, and Langston, Oklahoma.

Dobak, William A. “‘One of the Nastiest Rivers that I Know Of’: Municipal and Rural Sanitation in Nineteenth-Century Kansas.” Kansas History 19, no. 1 (Spring, 1996), 52–64.

A field guide for the annual Vernacular Architecture Forum meeting held in Lawrence, Kansas, in 1996.

This book is a comprehensive examination of the phenomenon of the one-room schoolhouse in the Midwestern United States. Attention is given to how school sites were selected, the design for the buildings themselves, training of teachers, and the effects that consolidation had on one-room schools.

An extensively illustrated glossary of architectural terms and building types.

A handy reference book for the different types of residential architecture across the United States. Organization by roof types makes it fairly easy to determine the architectural style of a particular structure.

A case study of an Eastern Kentucky community that was settled in 1881 and abandoned in 1960. The author has made a complete inventory of the surviving structures using sketches and other field notes to document the vernacular building techniques.

This book details the unique history of a special stratum of Kansas limestone that was used for a variety of building purposes including fencing and building stone. Information is provided on the techniques used to quarry the stone and transport it to the places where it was to be used.

An excellent resource on the history of Nicodemus and Graham County published shortly after the completion of the 1983 HABS documentation. Included are all of the HABS drawings, as well as discussion of the founding, settlement, boom, and eventual decline of Nicodemus. Numerous photographs of the town in the early 1980s are shown, along with descriptions of the annual Emancipation celebration.

An excellent analysis on the origins of balloon frame construction in the central United States and the impact it had on agricultural, residential, and utilitarian structures. Of special interest is a chapter focusing on the typical progression of dwellings that occurred on a piece of land after it was settled, beginning with some type of subsistence shelter.

This work focuses on identifying the various architectural styles and defining their characteristics. Buildings are organized by type of use (residential, ecclesiastical, civic and commercial, and utilitarian) and then further by the chronology of stylistic progression.

This collection includes letters composed by Howard Rude, who came to Kansas and settled near the town of Osborne in the Solomon River valley in the 1870s. The letters detail the weather and other hardships faced by Kansas homesteaders at the time Nicodemus was being established.

A guide book to significant architectural structures in Kansas, this work gives a brief description of the appearance, history, and location of each. Illustrated with many photographs and numerous regional maps showing the locations of the structures.

This article focuses primarily on the recruitment and colonization efforts that resulted in the initial settlement of Nicodemus.

Surveys of Regional Stone Buildings. Kansas State Preservation Department.

A study of how a piece of land undergoes the transformation into a town. Part One of this work deals with the phases of the transition while Part Two presents three different viewpoints on town development as seen from the eyes of its citizens.

This study attempts to trace the origins of African-American influenced vernacular landscapes. Attention is given to the roots of the "swept yard," which was a landscape element typical of climates with long dry seasons. Numerous photographs are provided of gardens and yards throughout the southern United States.

This work focuses on the layout and elements of southern United States plantations, drawing upon 1930s HABS documentation of the architectural remnants associated with slavery. The various structures that make up a typical plantation are analyzed, along with landscape and spatial features such as the yard. This book contains some information about typical house configurations with African-American origins.
APPENDICES

Appendix A – Measured Drawings

Appendix B – Detailed Cost Estimate

Appendix C – Historical Documentation

- Table of current property owners of the Nicodemus townsite, 2001
- Graham County, Kansas, deed records, various dates
- National Register nomination form, Nicodemus Historic District, 1974
- HABS / HAER inventory forms, 1983–84
- United States Public Law 104-333 sec. 512, Nicodemus National Historic Site, 1996
- Field Notes, A.M.E. Church re-roofing project, National Park Service, 2001

Appendix D – Previous Studies

- First Baptist Church, Condition Assessment Report, Restoration Associates, 1986–87

Appendix E – Consultant Reports

- Terracon Hazardous Materials report
- David Arbogast Finish Analysis report
- David Arbogast Mortar Analysis report
Appendix A – Measured Drawings
NICODEMUS, KANSAS
A NATIONAL HISTORIC LANDMARK BLACK SETTLEMENT

HISTORIC OVERVIEW:

PROJECT PARTICIPANTS:
THIS HISTORIC AMERICAN BUILDINGS SURVEY (HABS) PROJECT WAS CONDUCTED UNDER THE JOINT SPONSORSHIP OF THE NATIONAL PARK SERVICE, ROCKY MOUNTAIN REGIONAL OFFICE; THE KANSAS HISTORICAL SOCIETY; KANSAS STATE UNIVERSITY, COLLEGE OF ARCHITECTURE AND DESIGN; ENTourage, INC.; THE NATIONAL ENDOWMENT FOR THE ARTS; AND THE NATIONAL TRUST FOR HISTORIC PRESERVATION.

THE PROJECT COMMENCED DURING THE SUMMER OF 1983, AND CONCLUDED DURING THE FALL OF 1984, UNDER THE DIRECTION OF J.KETH EVERETT, AIA, NATIONAL PARK SERVICE, WITH ASSISTANCE FROM THE TOWNHISPAT OF NICODEMUS; RICHARD WAGNER, KANSAS STATE UNIVERSITY; ROBERT RICHMONDS, KANSAS HISTORICAL SOCIETY; AND STEEL PATTISON TILLER AND GREGORY KENDRICKS, NATIONAL PARK SERVICE.

PARTICIPANTS WERE EVERETT L. AND LAFARBARA WIGGINS, ENTourage, INC.; RUTH K. PARR, UNIVERSITY OF BRADFORD, ENGLAND; MARION L. PRUCHA, INTERIM LANDSCAPE ARCHITECT, UNIVERSITY OF OREGON; BETTINA C. VAN DYE, GRADUATE STUDENT LANDSCAPE ARCHITECT, KANSAS STATE UNIVERSITY; RICHARD M. MCNAMARA, STUDENT LANDSCAPE ARCHITECT, LOUISIANA STATE UNIVERSITY; CLAYTON FRASER, FRASER DESIGN; KENNETH M. HAMILTON, ASSISTANT PROFESSOR, OHIO STATE UNIVERSITY; AND JAMES A. AND MARY M. GAUFIELD, GAUFIELD-GAUFIELD.

TYPICAL BLOCK LAYOUT

MAP DERIVED FROM THE ORIGINAL TOWN PLAT SURVEYED AND DRAFTED BY E. N. WHITTEN MAY 1860. MAP SHOWS THE PLATTED LAYOUT OF NICODEMUS WITH FORTY-TWO FULL BLOCKS EACH HAVING TWENTY-FOUR LOTS, AND SEVENTEEN HALF BLOCKS OF TWELVE LOTS.

BLOCKS: 300' x 330'
LOTS: 35' x 110' except lot 1 & 24 in block 12, 22, 30, 40
STREETS: 50' wide except lot 1 & 24
ALLEYS: 20' wide

NOTE: "BLOCKS" ON ORIGINAL 1860 PLAT "WAFER" ON SUBSEQUENT MAPS

SCAL E: 1 in. = 100 ft.
NICODEMUS, KANSAS
TOWNSITE PLAN - CIRCA 1920

THE SOUTHERN BOUNDARY OF NICODEMUS IS APPROXIMATELY 1 MILE NORTH OF THE SOUTH FORK OF THE SOLOMON RIVER
THE FIRST BAPTIST CHURCH

HISTORIC OVERVIEW

The First Baptist Church Congregation was organized in 1878 in the All-Black Settlement of Nicodemus, Kansas. The Congregation first met in a dugout structure, and then in a sod house. By 1880, a small sanctuary was erected of native limestone and occupied on the site which still serves the congregation today.

By 1907, a larger native limestone structure was erected around the 1880 building. A new wing was added to the west circa 1920, along with a bell tower and cupola, the east wall of the older structure was buttressed and the windows of the north wall infilled to improve structural stability. Exterior walls were stuccoed circa 1950. A Pastor’s study and restrooms were added circa 1960.

The First Baptist Church is one of the three largest native limestone buildings, as well as one of the oldest structures, extant on the Nicodemus “town site.” It is the best remaining example of monumental vernacular architecture in Nicodemus Township. The Congregation is the only remaining religious body active on the “town site” or in the Township.
NORTH ELEVATION

MATERIALS
FOUNDATION: CONCRETE
WALLS: STUCCO OVER LIMESTONE; ADDITION, STUCCO OVER MASONRY BLOCK
BUTTRESSES: STUCCO OVER LIMESTONE
FRIEZE: WOOD
FASCIA: WOOD
ROOF: WOOD SHINGLES; ADDITION, ROLL ASPHALT
CHIMNEY: BRICK

SCALE

0 1 2 3 4 5 10
FEET 1/8"=1'-0"
0 1 2 3
METERS 1:48

DRAWN BY: EVERETT L. FLY

THE FIRST BAPTIST CHURCH
GRAHAM COUNTY

NICODEMUS PROJECT 1983
ROCKY MOUNTAIN REGIONAL OFFICE
NATIONAL PARK SERVICE
UNITED STATES DEPARTMENT OF THE INTERIOR

SURVEY NO: KS-49-K
HISTORIC AMERICAN BUILDINGS SURVEY
Sheet 4 of 9

IF REPRODUCED, PLEASE CREDIT: HISTORIC AMERICAN BUILDINGS SURVEY, NATIONAL PARK SERVICE, NAME OF DLLINATOR, DATE OF THE DRAWING
EAST ELEVATION

MATERIALS
FOUNDATION: CONCRETE
WALLS: STUCCO OVER LIMESTONE
BUTTRESSES: STUCCO OVER LIMESTONE
WINDOWS: WOOD WITH WIRE MESH SCREENS
FRIEZE: WOOD
FASCIA: WOOD
ROOF: ASPHALT SHINGLES
CHIMNEY: BRICK

SCALE
0 1 2 3 4 5 10
FEET 1/4" = 1'-0"
0 1 2 3
METERS 1:48
WEST ELEVATION

MATERIALS
FOUNDATION: CONCRETE
WALLS: STUCCO OVER LIMESTONE
WINDOWS: WOOD WITH WIRE MESH SCREENS
DOORS: WOOD
FRIEZE: WOOD
FASCIA: WOOD
ROOF: WOOD SHINGLES
CHIMNEY: BRICK

SCALE
0 1 2 3 4 5 6
FEET 1/4" = 1'-0"
0 1 2 3
METERS 1:48

GRAHAM COUNTY
KANSAS
SECTION A-A

MATERIALS

FOUNDATION: LIMESTONE
FLOOR: RANDOM OAK PLANKS
WALLS: STUCCO OVER LIMESTONE, EXTERIOR; PAINTED PLASTER OVER LIMESTONE WITH PAINTED BEADED WOOD WAINSCOT, INTERIOR
CEILING: PRESSED TIN
ROOF: WOOD SHINGLES OVER RANDOM BOARD DECK
THE FLETCHER-SWITZER SITE

PROJECT PARTICIPANTS

This project was implemented by the Historic American Buildings Survey Division (H.A.B.S.) of the National Park Service's Rocky Mountain Regional Office. The project was completed during the summer of 1983 under the direction of J. Keith Everett and De Teel Patterson Tiller (National Park Service) and in cooperation with: the Township of Nicodemus, Bernd Foerster and Richard Wagner, College of Architecture and Design, Kansas State University; Richard Pankratz, Kansas State Historical Society; Entourage, Inc.; The National Endowment for the Arts; The National Trust for Historic Preservation; and The Smithsonian Institution.

Participants were: Everett L. Fly andLo Barbara Wigfall Fly (Directors, Entourage, Inc., San Antonio, Texas); Consultant Historian, Kenneth M. Hamilton (Assistant Professor, The Ohio State University); Archeologist, Ruth K. Parr (University of Bradford, England); Intern Landscape Architect Marion L. Prucha (University of Oregon); Graduate Student Landscape Architect, Bettina C. Van Dyke (Kansas State University); Student Landscape Architect, Richard W. McNamara (Louisiana State University).
HISTORIC OVERVIEW

THE FLETCHER-SWITZER SITE WAS AN IMPORTANT FOCUS OF ACTIVITY ON THE NICODEMUS TOWN-SITE. THE EXISTING HOUSE AND OUTBUILDINGS ARE REMNANTS OF A COMPLEX WITH HISTORIC ORIGINS AND FUNCTIONS. THE HOUSE IS ONE OF THE FEW REMAINING EXAMPLES OF EARLY RESIDENTIAL ARCHITECTURE LEFT ON THE TOWN-SITE.

THE FIRST OWNER OF THE SITE WAS Z. T. FLETCHER WHO WAS SECRETARY OF THE COLONY WHICH ARRIVED IN NICODEMUS IN JULY 1877. HE AND HIS WIFE LIVED IN A DUGOUT ON THE NORTHWEST CORNER OF BLOCK 12, LOT 12. THERE HE OPENED A POST OFFICE AND SHE RAN A SCHOOL.

AFTER RAIL SERVICE FAILED TO MATERIALIZE, HE SOLD HIS TOWN LOTS TO THE ORIGINAL PROMOTER, W.R. HILL, BUT CONTINUED TO RUN THE BUSINESSES. THE SITE REVERTED TO GRAHAM COUNTY FOR A TIME BUT WAS BOUGHT BACK INTO THE FAMILY IN THE 1920’S BY FRED SWITZER, A GREAT NEPHEW RAISED BY THE FLETCHERS. WHEN SWITZER MARRIED ORA WELLINGTON IN 1921 THEY MADE THE HOTEL THEIR HOME. HE FARMED IN THE TOWNSHIP AND SHE RAN A RESTAURANT IN THE RESIDENCE AND LATER RENTED OUT THE BUNK HOUSE.
NORTH ELEVATION

MATERIALS

FOUNDATION: CONCRETE
WALLS: LAPPED COMPOSITION BOARD, FIRST STORY;
STUCCO, SECOND STORY FASCIA: WOOD
WINDOWS: ALUMINUM WITH ROOF: WOOD SHINGLES
WIRE MESH SCREEN, WOOD WITH STORM
SCREEN & GLAZING

SCALE

0 1 2 3 4 5 10
FEET 1/4" = 1'-0"
0 1 2 3
METERS 1:48

SOUTH ELEVATION

MATERIALS

WALLS: STUCCO
WINDOWS: WOOD; WOOD WITH ROOF: ROLL ASPHALT, FIRST STORY;
FASCIA: WOOD SHINGLE, SECOND STORY

SCALE

0 1 2 3 4 5 10
FEET 1/4" = 1'-0"
0 1 2 3
METERS 1:48

THE FLETCHER-SWITZER SITE

DRAWN BY: EVERETT L. FLY

NICodemus Project 1983
Rocky Mountain Regional Office
National Park Service
United States Department of the Interior

NICodemus
Graham County
Kansas

If reproduced, please credit: Historic American Buildings Survey, National Park Service, Name of delineator, Date of the Drawing
DISTRICT NO. 1 SCHOOLHOUSE

HISTORIC OVERVIEW

DISTRICT NO. 1 WAS THE FIRST SCHOOL DISTRICT ESTABLISHED IN GRAHAM COUNTY IN 1887. RESIDENTS OF THE ALL-BLACK COMMUNITY OF NICODEMUS, KANSAS TRANSFERRED LOTS TO THE SCHOOL DISTRICT TO COMPOSE THE 2.45 ACRE SITE.

A TWO STORY WOOD FRAME STRUCTURE WAS ERECTED AS THE ORIGINAL SCHOOL. THIS STRUCTURE WAS DESTROYED BY FIRE CIRCA 1916. CLASSES MET TEMPORARILY IN THE FIRST BAPTIST CHURCH. THE EXISTING BUILDING WAS ERECTED BY A LOCAL CONTRACTOR IN 1917.

CIRCA 1941, THE FAIRVIEW SCHOOLHOUSE WAS MOVED FROM THE SOUTHEAST QUARTER OF NICODEMUS TOWNSHIP SECTION 23 TO THE NORTH SIDE OF THE PRESENT STRUCTURE. THE FAIRVIEW BUILDING WAS USED AS AN ANNEX SERVING GRADES 1-4. THE DISTRICT NO. 1 SCHOOLHOUSE WAS USED BY GRADES 4-8. THE FAIRVIEW SCHOOL WAS MOVED TO ANOTHER LOCATION IN NICODEMUS CIRCA 1950. BY 1955 THE DISTRICT NO. 1 SCHOOL WAS CLOSED, AND NICODEMUS STUDENTS SENT TO NEARBY BOGIE FOR CLASSES.

THE DISTRICT NO. 1 SCHOOLHOUSE AND SITE ARE AMONG THE OLDEST EXISTING PROPERTIES IN THE NICODEMUS "TOWN SITE."

PROJECT PARTICIPANTS

THIS PROJECT WAS IMPLEMENTED BY THE HISTORIC AMERICAN BUILDINGS SURVEY DIVISION (HABS) OF THE NATIONAL PARK SERVICE'S ROCKY MOUNTAIN REGIONAL OFFICE. THE PROJECT WAS COMPLETED DURING THE SUMMER OF 1983 UNDER THE DIRECTION OF J. KEITH EVERETT AND MYRTLE TILLER (NATIONAL PARK SERVICE) AND IN COOPERATION WITH THE TOWNSHIP OF NICODEMUS, RENAO FERRESTER AND RICHARD WAGNER, COLLEGE OF ARCHITECTURE AND DESIGN, KANSAS STATE UNIVERSITY, RICHARD PANKRAZ, KANSAS STATE HISTORICAL SOCIETY, AND THE NATIONAL ENDOWMENT FOR THE ARTS; THE NATIONAL TRUST FOR HISTORIC PRESERVATION; AND THE SMITHSONIAN INSTITUTION.

PARTICIPANTS WERE: EVERETT L. FLY AND BARBARA WIGFALL FLY (DIRECTORS, ENFORCE INC., SAN ANTONIO, TEXAS); CONSULTANT HISTORIAN, KENNETH M. HAMILTON (ASSISTANT PROFESSOR, THE OHIO STATE UNIVERSITY); ARCHAEOLOGIST, MARION L. PRUCHA (UNIVERSITY OF OREGON); GRADUATE STUDENT LANDSCAPE ARCHITECT, BETTINA C. VAN DYKE (KANSAS STATE UNIVERSITY); STUDENT LANDSCAPE ARCHITECT, RICHARD W. McNAMARA (LOUISIANA STATE UNIVERSITY).
Appendix B – Detailed Cost Estimate
<table>
<thead>
<tr>
<th>Building</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Recommendations-Foundation and Drainage</td>
<td>$27,849.00</td>
</tr>
<tr>
<td>A.M.E. Church-Stabilization and Weatherproofing Repairs</td>
<td>$14,298.24</td>
</tr>
<tr>
<td>First Baptist Church-Stabilization and Weatherproofing Repairs</td>
<td>$33,990.00</td>
</tr>
<tr>
<td>St. Francis Hotel/Fletcher-Switzer Residence</td>
<td>$19,740.60</td>
</tr>
<tr>
<td>School District No. 1 Building-Stabilization and Weatherproofing Repairs</td>
<td>$22,899.69</td>
</tr>
<tr>
<td>Township Hall-Maintenance Repairs</td>
<td>$32,052.90</td>
</tr>
<tr>
<td>Total Stabilization Budget</td>
<td>$150,830.43</td>
</tr>
</tbody>
</table>
NPS Nicodemus HSR Stabilization Budget Estimates

11/2/2001

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
<th>Units</th>
<th>Material/Labor Per Unit</th>
<th>Total Material/Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Foundation Drainage System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Demolition/Excavation</td>
<td>340 CY</td>
<td>$</td>
<td>10.00</td>
<td>3,400.00</td>
</tr>
<tr>
<td>2</td>
<td>Install Drainage Tile</td>
<td>1020 LF</td>
<td>$</td>
<td>5.00</td>
<td>5,100.00</td>
</tr>
<tr>
<td>3</td>
<td>Backfill and Fine Grading</td>
<td>340 CY</td>
<td>$</td>
<td>15.00</td>
<td>5,100.00</td>
</tr>
<tr>
<td>4</td>
<td>Seed/Sod</td>
<td>10000 SF</td>
<td>$</td>
<td>0.75</td>
<td>7,500.00</td>
</tr>
<tr>
<td>5</td>
<td>Subtotal</td>
<td></td>
<td>$</td>
<td></td>
<td>21,100.00</td>
</tr>
<tr>
<td></td>
<td>Contingency</td>
<td>20%</td>
<td>$</td>
<td></td>
<td>4,220.00</td>
</tr>
<tr>
<td></td>
<td>OH/Profit</td>
<td>12%</td>
<td>$</td>
<td></td>
<td>2,532.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>$</td>
<td></td>
<td>27,850.00</td>
</tr>
<tr>
<td>2.</td>
<td>Other Work Items</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>none</td>
<td></td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contingency</td>
<td>20%</td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OH/Profit</td>
<td>12%</td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total General Recommendations $27,850.00
NPS Nicodemus HSR Stabilization Budget Estimates

11/2/2001

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
<th>Units</th>
<th>Material/Labor Per Unit</th>
<th>Total Material/Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Roof Repairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition</td>
<td>1 LS</td>
<td>$</td>
<td>500.00</td>
<td>600.00</td>
</tr>
<tr>
<td>Repair, prime, paint rafters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 and fascia</td>
<td>60 LF</td>
<td>$</td>
<td>1.00</td>
<td>60.00</td>
</tr>
<tr>
<td>Flashing repairs at vestibule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 and east wall</td>
<td>48 LF</td>
<td>$</td>
<td>2.00</td>
<td>96.00</td>
</tr>
<tr>
<td>4</td>
<td>$</td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>5</td>
<td>$</td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$</td>
<td>656.00</td>
</tr>
<tr>
<td>Contingency</td>
<td>20%</td>
<td></td>
<td>$</td>
<td>131.20</td>
</tr>
<tr>
<td>OH/Profit</td>
<td>12%</td>
<td></td>
<td>$</td>
<td>78.72</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$</td>
<td>865.92</td>
</tr>
<tr>
<td>2. Stone/Stucco Wall Repairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition/Removal of loose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 stucco</td>
<td>100 SF</td>
<td>$</td>
<td>0.35</td>
<td>35.00</td>
</tr>
<tr>
<td>Repair eroded or missing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 stones</td>
<td>30 EA</td>
<td>$</td>
<td>142.00</td>
<td>4,260.00</td>
</tr>
<tr>
<td>Repair cracks in stone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Repair cracks in stone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Point exposed mortar joints</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$</td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>6</td>
<td>$</td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$</td>
<td>6,045.00</td>
</tr>
<tr>
<td>Contingency</td>
<td>20%</td>
<td></td>
<td>$</td>
<td>1,209.00</td>
</tr>
<tr>
<td>OH/Profit</td>
<td>12%</td>
<td></td>
<td>$</td>
<td>725.40</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$</td>
<td>7,979.40</td>
</tr>
<tr>
<td>3. Exterior Wood/Doors/Trim/Windows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Repair, prime, paint wood trim</td>
<td>40 LF</td>
<td>$</td>
<td>1.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Repair, prime, paint wood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 doors</td>
<td>4 EA</td>
<td>$</td>
<td>40.00</td>
<td>160.00</td>
</tr>
<tr>
<td>Replace glass at front doors</td>
<td>4 SF</td>
<td></td>
<td>9.00</td>
<td>36.00</td>
</tr>
<tr>
<td>4</td>
<td>$</td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>5</td>
<td>$</td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$</td>
<td>236.00</td>
</tr>
<tr>
<td>Contingency</td>
<td>20%</td>
<td></td>
<td>$</td>
<td>47.20</td>
</tr>
<tr>
<td>OH/Profit</td>
<td>12%</td>
<td></td>
<td>$</td>
<td>28.32</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$</td>
<td>311.52</td>
</tr>
<tr>
<td>4. Interior Stabilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition</td>
<td>50 SF</td>
<td>$</td>
<td>1.00</td>
<td>50.00</td>
</tr>
<tr>
<td>Description</td>
<td>Quantity</td>
<td>Unit</td>
<td>Rate</td>
<td>Amount</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Localized floor joist/decking</td>
<td>2</td>
<td>50 SF</td>
<td>$8.50</td>
<td>$425.00</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$475.00</td>
<td></td>
</tr>
<tr>
<td>Contingency</td>
<td></td>
<td></td>
<td>20%</td>
<td>$95.00</td>
</tr>
<tr>
<td>OH/Profit</td>
<td></td>
<td></td>
<td>12%</td>
<td>$57.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$627.00</td>
<td></td>
</tr>
<tr>
<td>5. Mechanical</td>
<td>1</td>
<td>none</td>
<td>$</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>$</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>$</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>$</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>$</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>Contingency</td>
<td></td>
<td></td>
<td>20%</td>
<td>$</td>
</tr>
<tr>
<td>OH/Profit</td>
<td></td>
<td></td>
<td>12%</td>
<td>$</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>6. Electrical</td>
<td>1</td>
<td>Install new electric unit</td>
<td>LS</td>
<td>$3,420.00</td>
</tr>
<tr>
<td>Install new electric unit</td>
<td></td>
<td>heaters. Provide new load center connected to the existing electrical service.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>$</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>$</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>$</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>$</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$3,420.00</td>
<td></td>
</tr>
<tr>
<td>Contingency</td>
<td></td>
<td></td>
<td>20%</td>
<td>$684.00</td>
</tr>
<tr>
<td>OH/Profit</td>
<td></td>
<td></td>
<td>12%</td>
<td>$410.40</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$4,514.40</td>
<td></td>
</tr>
</tbody>
</table>

Total AME Church: $14,298.24
NPS Nicodemus HSR Stabilization Budget Estimates

11/2/2001

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
<th>Units</th>
<th>Material/Labor Per Unit</th>
<th>Total Material/Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Baptist Church-Stabilization and Weatherproofing Repairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Roofing Repairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Demolition/removal</td>
<td>1 LS</td>
<td></td>
<td>800.00</td>
<td>800.00</td>
<td></td>
</tr>
<tr>
<td>2 Repair Foyer Mansard Roof</td>
<td>440 SF</td>
<td></td>
<td>5.50</td>
<td>2,420.00</td>
<td></td>
</tr>
<tr>
<td>3 Repair Main Roof</td>
<td>100 SF</td>
<td></td>
<td>5.50</td>
<td>550.00</td>
<td></td>
</tr>
<tr>
<td>Replace deteriorated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Sheetmetal flashing</td>
<td>200 LF</td>
<td></td>
<td>2.00</td>
<td>400.00</td>
<td></td>
</tr>
<tr>
<td>5 Scaffold, misc rentals</td>
<td>1 LS</td>
<td></td>
<td>500.00</td>
<td>500.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subtotal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contingency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OH/Profit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>2. Wall/Masonry/Stucco Repairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Demolition/removals</td>
<td>200 SF</td>
<td></td>
<td>0.35</td>
<td>70.00</td>
<td></td>
</tr>
<tr>
<td>2 Tuckpoint expose stone</td>
<td>200 LF</td>
<td></td>
<td>2.00</td>
<td>400.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tuckpoint CMU of NW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Addition</td>
<td>300 LF</td>
<td></td>
<td>2.30</td>
<td>690.00</td>
<td></td>
</tr>
<tr>
<td>4 Repair cracks a projecting sill</td>
<td>1 LS</td>
<td></td>
<td>500.00</td>
<td>500.00</td>
<td></td>
</tr>
<tr>
<td>5 Tuckpoint Brick Chimney</td>
<td>50 SF</td>
<td></td>
<td>4.20</td>
<td>210.00</td>
<td></td>
</tr>
<tr>
<td>6 Scaffold, misc rentals</td>
<td>1 LS</td>
<td></td>
<td>500.00</td>
<td>500.00</td>
<td></td>
</tr>
<tr>
<td>7 Repair Cracks in stucco</td>
<td>1 LS</td>
<td></td>
<td>500.00</td>
<td>500.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remove delaminated stucco</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 and replace.</td>
<td>25 SY</td>
<td></td>
<td>40.00</td>
<td>1,000.00</td>
<td></td>
</tr>
<tr>
<td>9 Paint all exterior stucco</td>
<td>1000 SF</td>
<td></td>
<td>1.00</td>
<td>1,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subtotal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contingency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OH/Profit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>3. Exterior Wood/Doors/Trim/Windows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Demolition/removals</td>
<td>1 LS</td>
<td></td>
<td>200.00</td>
<td>200.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repair deteriorated soffit and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 fascia @ NW Addition</td>
<td>35 LF</td>
<td></td>
<td>6.00</td>
<td>210.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Replace deteriorated entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 doors</td>
<td>2 EA</td>
<td></td>
<td>350.00</td>
<td>700.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repair window @ NW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Addition</td>
<td>1 LS</td>
<td></td>
<td>300.00</td>
<td>300.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Replace glazing putty and broken glass.repair and paint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 all windows</td>
<td>8 EA</td>
<td></td>
<td>125.00</td>
<td>1,000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repair, prime, paint all exterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 wood trim</td>
<td>450 LF</td>
<td></td>
<td>2.00</td>
<td>900.00</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>$3,310.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency</td>
<td>20%</td>
<td>$662.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH/Profit</td>
<td>12%</td>
<td>$397.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$4,369.20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. **Interior Stabilization**

<table>
<thead>
<tr>
<th>Work</th>
<th>Quantity</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition/misc removals</td>
<td>1 LS</td>
<td>$500.00</td>
<td>$500.00</td>
</tr>
<tr>
<td>Localized replacement/repairs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to floor joists/decking</td>
<td>200 LS</td>
<td>$8.50</td>
<td>$1,700.00</td>
</tr>
<tr>
<td>Shoring at suspended</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mechanical unit</td>
<td>1 LS</td>
<td>$500.00</td>
<td>$500.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$2,700.00</td>
</tr>
<tr>
<td>Contingency</td>
<td>20%</td>
<td></td>
<td>$540.00</td>
</tr>
<tr>
<td>OH/Profit</td>
<td>12%</td>
<td></td>
<td>$324.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$3,564.00</td>
</tr>
</tbody>
</table>

5. **Structural Stabilization**

<table>
<thead>
<tr>
<th>Work</th>
<th>Quantity</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition/removals</td>
<td>1 LS</td>
<td>$500.00</td>
<td>$500.00</td>
</tr>
<tr>
<td>Shoring at East Wall and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buttresses</td>
<td>100 LF</td>
<td>$50.00</td>
<td>$5,000.00</td>
</tr>
<tr>
<td>Structural Repairs at SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corner</td>
<td>1 LS</td>
<td>$1,000.00</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>Scaffolding/misc rentals</td>
<td>1 LS</td>
<td>$500.00</td>
<td>$500.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$7,000.00</td>
</tr>
<tr>
<td>Contingency</td>
<td>20%</td>
<td></td>
<td>$1,400.00</td>
</tr>
<tr>
<td>OH/Profit</td>
<td>12%</td>
<td></td>
<td>$840.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$9,240.00</td>
</tr>
</tbody>
</table>

6. **Mechanical**

<table>
<thead>
<tr>
<th>Work</th>
<th>Quantity</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain all lines</td>
<td>1 LS</td>
<td>$200.00</td>
<td>$200.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$200.00</td>
</tr>
<tr>
<td>Contingency</td>
<td>20%</td>
<td></td>
<td>$40.00</td>
</tr>
<tr>
<td>OH/Profit</td>
<td>12%</td>
<td></td>
<td>$24.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$264.00</td>
</tr>
</tbody>
</table>

7. **Electrical**

<table>
<thead>
<tr>
<th>Work</th>
<th>Quantity</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install new electric unit heaters. Provide new load center connected to the existing electrical service.</td>
<td>1 LS</td>
<td>$3,000.00</td>
<td>$3,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$3,000.00</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$ 3,000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency</td>
<td>$ 600.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH/Profit</td>
<td>$ 360.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$ 3,960.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total First Baptist Church</td>
<td>$ 33,990.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NPS Nicodemus HSR Stabilization Budget Estimates

11/2/2001

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
<th>Units</th>
<th>Material/Labor Per Unit</th>
<th>Total Material/Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>St. Francis Hotel/Fletcher-Ofwitz Residence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Roofing Repairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Demolition/removals</td>
<td>1 LS</td>
<td></td>
<td>$250.00</td>
<td>$250.00</td>
</tr>
<tr>
<td>2</td>
<td>Repair existing roofing</td>
<td>150 SF</td>
<td></td>
<td>$5.50</td>
<td>$825.00</td>
</tr>
<tr>
<td></td>
<td>Replace missing trim/repair</td>
<td></td>
<td></td>
<td>$2.50</td>
<td>$250.00</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$1,325.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contingency</td>
<td>20%</td>
<td></td>
<td>$265.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OH/Profit</td>
<td>12%</td>
<td></td>
<td>$159.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>$1,749.00</td>
<td></td>
</tr>
<tr>
<td>2. Wall/Masonry/Stucco Repairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Demolition/removals</td>
<td>200 SF</td>
<td></td>
<td>$0.35</td>
<td>$70.00</td>
</tr>
<tr>
<td>2</td>
<td>Repair cracked stone lintel</td>
<td>1 EA</td>
<td></td>
<td>$200.00</td>
<td>$200.00</td>
</tr>
<tr>
<td></td>
<td>Repair cracked stone and</td>
<td></td>
<td></td>
<td>$5.25</td>
<td>$1,312.50</td>
</tr>
<tr>
<td></td>
<td>tie point exposed joints</td>
<td>250 LS</td>
<td></td>
<td>$40.00</td>
<td>$880.00</td>
</tr>
<tr>
<td>5</td>
<td>Paint stucco</td>
<td>1200 SF</td>
<td></td>
<td>$1.00</td>
<td>$1,200.00</td>
</tr>
<tr>
<td></td>
<td>Repair step-out at foundation</td>
<td></td>
<td></td>
<td>$6.00</td>
<td>$240.00</td>
</tr>
<tr>
<td>7</td>
<td>at base of west wall</td>
<td>40 LF</td>
<td></td>
<td>$5.00</td>
<td>$500.00</td>
</tr>
<tr>
<td></td>
<td>Repair holes, spalls, cracks in</td>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>foundation</td>
<td>100 SF</td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$4,402.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contingency</td>
<td>20%</td>
<td></td>
<td>$880.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OH/Profit</td>
<td>12%</td>
<td></td>
<td>$528.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>$5,811.30</td>
<td></td>
</tr>
<tr>
<td>3. Exterior Wood/Doors/Trim/Windows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Demolition/removals</td>
<td>1 LS</td>
<td></td>
<td>$250.00</td>
<td>$250.00</td>
</tr>
<tr>
<td>2</td>
<td>Board over dormer window</td>
<td>10 SF</td>
<td></td>
<td>$3.00</td>
<td>$30.00</td>
</tr>
<tr>
<td></td>
<td>Repair wood clapboard siding</td>
<td></td>
<td></td>
<td>$2.50</td>
<td>$250.00</td>
</tr>
<tr>
<td>3</td>
<td>at north elevation</td>
<td>100 SF</td>
<td></td>
<td>$2.50</td>
<td>$62.50</td>
</tr>
<tr>
<td>4</td>
<td>Replace missing corner trim</td>
<td>100 LF</td>
<td></td>
<td>$2.50</td>
<td>$250.00</td>
</tr>
<tr>
<td></td>
<td>Replace window putty and</td>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>new sealant at all windows</td>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>Repair, prime, paint all trim,</td>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>6</td>
<td>windows, doors, siding</td>
<td>600 SF</td>
<td></td>
<td>$2.00</td>
<td>$1,200.00</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$1,917.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contingency</td>
<td>20%</td>
<td></td>
<td>$383.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OH/Profit</td>
<td>12%</td>
<td></td>
<td>$230.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>$2,531.10</td>
<td></td>
</tr>
</tbody>
</table>
4. Interior Stabilization

<table>
<thead>
<tr>
<th>Task</th>
<th>Quantity</th>
<th>Unit</th>
<th>Cost</th>
<th>Labor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>1</td>
<td>LS</td>
<td>$500.00</td>
<td>$500.00</td>
<td></td>
</tr>
<tr>
<td>Repair/replace flooring & joists at 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repair/replace rotted areas at 2 at rotted areas</td>
<td>200</td>
<td>SF</td>
<td>$8.50</td>
<td>$1,700.00</td>
<td></td>
</tr>
<tr>
<td>Repair/replace rotted studs at 3 rear porch</td>
<td>60</td>
<td>LF</td>
<td>$2.50</td>
<td>$150.00</td>
<td></td>
</tr>
<tr>
<td>Repair missing joist ends at 4 south elevation</td>
<td>60</td>
<td>LF</td>
<td>$3.50</td>
<td>$210.00</td>
<td></td>
</tr>
<tr>
<td>Repair gaps at doorway on 5 south elevation</td>
<td>1</td>
<td>LS</td>
<td>$150.00</td>
<td>$150.00</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal			$2,710.00		
Contingency	20%		$542.00		
OH/Profit	12%		$325.20		
Total			$3,577.20		

5. Structural Stabilization

<table>
<thead>
<tr>
<th>Task</th>
<th>Quantity</th>
<th>Unit</th>
<th>Cost</th>
<th>Labor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>1</td>
<td>LS</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>Remove furniture/objects at 2</td>
<td>1</td>
<td>LS</td>
<td>$1,200.00</td>
<td>$1,200.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
</tbody>
</table>

Subtotal			$1,200.00		
Contingency	20%		$240.00		
OH/Profit	12%		$144.00		
Total			$1,584.00		

6. Mechanical

<table>
<thead>
<tr>
<th>Task</th>
<th>Quantity</th>
<th>Unit</th>
<th>Cost</th>
<th>Labor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disconnect water line/remove 1 WH/ drain all lines</td>
<td>1</td>
<td>LS</td>
<td>$400.00</td>
<td>$400.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
</tbody>
</table>

Subtotal			$400.00		
Contingency	20%		$80.00		
OH/Profit	12%		$48.00		
Total			$528.00		

7. Electrical

<table>
<thead>
<tr>
<th>Task</th>
<th>Quantity</th>
<th>Unit</th>
<th>Cost</th>
<th>Labor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install new electric unit heaters. Provide new load</td>
<td>1</td>
<td>LS</td>
<td>$3,000.00</td>
<td>$3,000.00</td>
<td></td>
</tr>
<tr>
<td>center connected to the existing electrical service.</td>
<td></td>
<td></td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$3,000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency 20%</td>
<td>$600.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH/Profit 12%</td>
<td>$360.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$3,960.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total St Francis Hotel</td>
<td>$19,740.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NPS Nicodemus HSR Stabilization Budget Estimates

11/2/2001

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
<th>Units</th>
<th>Material/Labor Per Unit</th>
<th>Total Material/Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td>School District No. 1 Building-Stabilization and Weatherproofing Repairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Roofing Repairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Allowance</td>
<td>1 LS</td>
<td></td>
<td>$</td>
<td>500.00</td>
<td>$ 500.00</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 500.00</td>
</tr>
<tr>
<td>Contingency</td>
<td></td>
<td></td>
<td></td>
<td>20%</td>
<td>$ 100.00</td>
</tr>
<tr>
<td>OH/Profit</td>
<td></td>
<td></td>
<td></td>
<td>12%</td>
<td>$ 60.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 660.00</td>
</tr>
<tr>
<td>2. Exterior Closure/Masonry/Clapboard Repairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Repair split wood siding and fascias</td>
<td>200 SF</td>
<td></td>
<td>$</td>
<td>2.70</td>
<td>$ 540.00</td>
</tr>
<tr>
<td>2 Replace missing clapboards</td>
<td>150 SF</td>
<td></td>
<td>$</td>
<td>4.00</td>
<td>$ 600.00</td>
</tr>
<tr>
<td>3 Scrape, prime & paint all clapboards</td>
<td>1950 SF</td>
<td></td>
<td>$</td>
<td>1.35</td>
<td>$ 2,632.50</td>
</tr>
<tr>
<td>4 Repair/replace missing corner trim</td>
<td>10 LF</td>
<td></td>
<td>$</td>
<td>2.50</td>
<td>$ 25.00</td>
</tr>
<tr>
<td>5 Reparage/Repoint brick chimney</td>
<td>40 SF</td>
<td></td>
<td>$</td>
<td>13.25</td>
<td>$ 530.00</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 4,327.50</td>
</tr>
<tr>
<td>Contingency</td>
<td></td>
<td></td>
<td></td>
<td>20%</td>
<td>$ 865.50</td>
</tr>
<tr>
<td>OH/Profit</td>
<td></td>
<td></td>
<td></td>
<td>12%</td>
<td>$ 519.30</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 5,712.30</td>
</tr>
<tr>
<td>3. Exterior Wood/Doors/Trim/Windows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repair det. Wood trim at North</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 elevation/windows</td>
<td>11 EA</td>
<td></td>
<td>$</td>
<td>50.00</td>
<td>$ 550.00</td>
</tr>
<tr>
<td>2 door</td>
<td>20 LF</td>
<td></td>
<td>$</td>
<td>3.00</td>
<td>$ 60.00</td>
</tr>
<tr>
<td>Repair muttins/rehang sashes of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 south windows</td>
<td>1 LS</td>
<td></td>
<td>$</td>
<td>400.00</td>
<td>$ 400.00</td>
</tr>
<tr>
<td>Replace glazing putty/sealant all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 windows</td>
<td>150 LF</td>
<td></td>
<td>$</td>
<td>2.50</td>
<td>$ 375.00</td>
</tr>
<tr>
<td>Replace screens. Prime & Paint all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 screen windows</td>
<td>150 SF</td>
<td></td>
<td>$</td>
<td>4.25</td>
<td>$ 637.50</td>
</tr>
<tr>
<td>Prime & paint all wood trim, windows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 and doors</td>
<td>450 LF</td>
<td></td>
<td>$</td>
<td>2.00</td>
<td>$ 900.00</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 2,922.50</td>
</tr>
<tr>
<td>Contingency</td>
<td></td>
<td></td>
<td></td>
<td>20%</td>
<td>$ 584.50</td>
</tr>
<tr>
<td>OH/Profit</td>
<td></td>
<td></td>
<td></td>
<td>12%</td>
<td>$ 350.70</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 3,857.70</td>
</tr>
</tbody>
</table>
4. Interior Stabilization

<table>
<thead>
<tr>
<th>Work Description</th>
<th>Quantity</th>
<th>Rate</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Demolition/removals</td>
<td>1 LS</td>
<td>$500.00</td>
<td>$500.00</td>
</tr>
<tr>
<td>2. Repair/replace flooring & joists at rotted areas</td>
<td>100 SF</td>
<td>$8.50</td>
<td>$850.00</td>
</tr>
<tr>
<td>3. Repair/replace rotted studs at north elevation</td>
<td>1 LS</td>
<td>$500.00</td>
<td>$500.00</td>
</tr>
</tbody>
</table>

Subtotal $1,850.00

Contingency: 20%

OH/Profit: 12%

Total $2,442.00

5. Structural Stabilization

<table>
<thead>
<tr>
<th>Work Description</th>
<th>Quantity</th>
<th>Rate</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Shore plaster ceiling at interior</td>
<td>30 LF</td>
<td>$15.00</td>
<td>$450.00</td>
</tr>
<tr>
<td>2. Repair foundations</td>
<td>100 LF</td>
<td>$22.00</td>
<td>$2,200.00</td>
</tr>
</tbody>
</table>

Subtotal $2,650.00

Contingency: 20%

OH/Profit: 12%

Total $3,498.00

6. Porch/Cellar Repairs

<table>
<thead>
<tr>
<th>Work Description</th>
<th>Quantity</th>
<th>Rate</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Demolition</td>
<td>1 LS</td>
<td>$250.00</td>
<td>$250.00</td>
</tr>
<tr>
<td>2. Repair crack porch slab w/sealant</td>
<td>10 LF</td>
<td>$22.00</td>
<td>$220.00</td>
</tr>
<tr>
<td>3. Repair/Grount CMU Foundations</td>
<td>205 LF</td>
<td>$8.75</td>
<td>$1,383.75</td>
</tr>
<tr>
<td>4. Seal joints at back of steps</td>
<td>10 LF</td>
<td>$1.25</td>
<td>$12.50</td>
</tr>
<tr>
<td>5. Clean, prime, paint columns</td>
<td>32 LF</td>
<td>$1.00</td>
<td>$32.00</td>
</tr>
<tr>
<td>6. Repair concrete stoop at cellar</td>
<td>10 SF</td>
<td>$15.00</td>
<td>$150.00</td>
</tr>
</tbody>
</table>

Subtotal $2,048.25

Contingency: 20%

OH/Profit: 12%

Total $2,703.69

7. Mechanical

<table>
<thead>
<tr>
<th>Work Description</th>
<th>Quantity</th>
<th>Rate</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Secure gas piping at Kitchen</td>
<td>1 LS</td>
<td>$200.00</td>
<td>$200.00</td>
</tr>
</tbody>
</table>

Subtotal $200.00

Contingency: 20%

OH/Profit: 12%

Total $264.00

8. Electrical
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Install new electric unit heaters.</td>
<td>1 LS</td>
<td>$2,850.00</td>
<td>$2,850.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>$</td>
<td>-</td>
<td>$ -</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>$</td>
<td>-</td>
<td>$ -</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>$</td>
<td>-</td>
<td>$ -</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>$</td>
<td>-</td>
<td>$ -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$2,850.00</td>
<td></td>
</tr>
<tr>
<td>Contingency</td>
<td></td>
<td>20%</td>
<td>$570.00</td>
<td></td>
</tr>
<tr>
<td>OH/Profit</td>
<td></td>
<td>12%</td>
<td>$342.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$3,762.00</td>
<td></td>
</tr>
<tr>
<td>Total School District No 1 Building</td>
<td></td>
<td></td>
<td>$22,899.69</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C – Historical Documentation

Table of current property owners of the Nicodemus townsite, 2001
Graham County, Kansas, deed records, various dates
National Register nomination form, Nicodemus Historic District, 1974
HABS / HAER Inventory forms, 1983–84
United States Public Law 104-333 sec. 512, Nicodemus National Historic Site, 1996
Field Notes, A.M.E. Church re-roofing project, National Park Service, 2001
<table>
<thead>
<tr>
<th>GRANTEE</th>
<th>Instrument</th>
<th>DESCRIPTION</th>
<th>Book</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicodemus Township</td>
<td>Sheriff's Deed</td>
<td>Lots 1 to 12, Lot 14, Lots 21 to 24</td>
<td>65</td>
<td>18</td>
</tr>
<tr>
<td>Trustees of the A.F. & A.M. Lodge</td>
<td>Q.C.D.</td>
<td>Lot 13</td>
<td>64</td>
<td>434</td>
</tr>
<tr>
<td>Dewayne Jones, Merle Jones, Chauncy Jones, Eugene Jones, Lorene Brown</td>
<td>Probate, Case No., 78 P 58</td>
<td>Lots 15 & 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicodemus Township</td>
<td>W.D.</td>
<td>Lot 17</td>
<td>95</td>
<td>19</td>
</tr>
<tr>
<td>Nicodemus Township</td>
<td>W.D.</td>
<td>Lot 18</td>
<td>95</td>
<td>20</td>
</tr>
<tr>
<td>Nicodemus Township</td>
<td>W.D.</td>
<td>Lot 19 & 20</td>
<td>95</td>
<td>21</td>
</tr>
</tbody>
</table>

Remarks
- According to the appraiser's office, the property belongs to Nicodemus Township but last deed of record shows A.F. & A.M. Lodge.
- Bernice Sayers Bk 71 Pg.347 (Deseased) Will in Probate Court.

Block Four

<table>
<thead>
<tr>
<th>GRANTEE</th>
<th>Instrument</th>
<th>DESCRIPTION</th>
<th>Book</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trustees of the Baptist Church</td>
<td>W.D.</td>
<td>Lots 11 to 14</td>
<td>7</td>
<td>82</td>
</tr>
<tr>
<td>Foster Williams</td>
<td>W.D.</td>
<td>Lot 15</td>
<td>2</td>
<td>521</td>
</tr>
<tr>
<td>First Baptist Church</td>
<td>Q.C.D.</td>
<td>Lot 16</td>
<td>76</td>
<td>161</td>
</tr>
</tbody>
</table>

Remarks
- According to the appraiser's, the property belongs to First Baptist Church but this is the only instrument recorded in the Courthouse. This was in October, 1886.
<table>
<thead>
<tr>
<th>GRANTEE</th>
<th>Instrument</th>
<th>DESCRIPTION</th>
<th>Book</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trustees of the Double AA B</td>
<td>W.D.</td>
<td>Lots 19 to 24</td>
<td>190</td>
<td>958</td>
</tr>
<tr>
<td>Living Trust</td>
<td>W.D.</td>
<td>S. 75 ft of Lots 21,22,23, & 24</td>
<td>190</td>
<td>967</td>
</tr>
<tr>
<td>United States of America</td>
<td>W.D.</td>
<td>S. 75 ft of Lots 21,22,23, & 24</td>
<td>190</td>
<td>967</td>
</tr>
<tr>
<td>Verryl Switzer</td>
<td>Q.C.D.</td>
<td>Lots 11 & 12</td>
<td>67</td>
<td>573</td>
</tr>
<tr>
<td>Verryl Switzer</td>
<td>W.D.</td>
<td>Lots 7,8,9, & 10</td>
<td>70</td>
<td>582</td>
</tr>
<tr>
<td>Nicodemus 4H Club</td>
<td>Q.C.D.</td>
<td>All of Block 24</td>
<td>38</td>
<td>91</td>
</tr>
</tbody>
</table>
WARRANTY DEED

The South 75 Feet (S.75') of Lots Twenty-one (21), Twenty-two (22), Twenty-three (23) and Twenty-four (24), in Block Eleven (11) of the City of Nicodemus, Graham County, Kansas

This property is being acquired by the United States of America for the National Park Service for the purpose of correcting, modifying or supplementing a deed previously recorded, and without additional consideration, EXCEPT AND SUBJECT TO easements, restrictions and mineral reservations of record. Pursuant to K.S.A. 79-1437, a real estate validation questionnaire is not required due to exception No.3.

Dated December 24, 1998

Theodore F. B. Bates
Ava Bates
Ada C. Bates
Terrie L. Bates
Willie Adams IV
Brad E. Bates
Kerry F. Bates

Entered for transfer in my office this 24th day of December 1998.

Register of deeds $10.00
WARRANTY DEED

The South 125 Feet (S.125') of Lots Nineteen (19), Twenty (20), Twenty-one (21), Twenty-two (22), Twenty-three (23) and Twenty-four (24), in Block Eleven (11) of the City of Nicodemus, Graham County, Kansas, and

The North 25 Feet (N.25') of Lots Nineteen to Twenty-four (19-24), inclusive, in Block Eleven (11) in the City of Nicodemus, Graham County, Kansas,

for the purpose of correcting, modifying or supplementing a deed previously recorded, and without additional consideration, EXCEPT AND SUBJECT TO easements, restrictions and mineral reservations of record. Pursuant to K.S.A. 79-1437, a real estate validation questionnaire is not required due to exception No.3.

Dated 12-15-1998

Ada C. Bates
G. Alvena Alexander
Theodore F. B. Bates
Ava Bates
Billie C. Brogden
Robert L. Brogden
Delano P. Bates
This Deed, Made this 17th day of October, in the year of our Lord one thousand eight hundred and forty-eight, between James E. Austin, and Milton Williams, of the first part, and

in the County of Leavenworth, and State of Kansas, of the second part:

WITNESSETH, That the said part of the first part, for and in consideration of the sum of

one thousand dollars, to be paid in hand by the said part of the second part, the receipt whereof is hereby acknowledged, do hereby sell, release, release, release, and forever convey unto the said part of the second part, and to her heirs and assigns forever, all of the following described tract, piece, and parcel of land, lying and situated in the County of Leavenworth, and State of Kansas, to wit:

Beginning at a stake on the line of the county line on the north side of the town of Lawrence, and running south five hundred yards along said line and then due west to the north line of the town of Lawrence, thence west along the north line forty feet, thence south forty feet to the center of the town of Lawrence, thence east forty feet along the center of the town of Lawrence, thence north along said center to the beginning.

Together with all and singular the hereditaments and appurtenances thereunto belonging or in anywise appertaining, TO HAVE AND TO HOLD THE SAME unto the said part of the second part, heri and assigns forever. And the said James E. Austin, and Milton Williams, for themselves, and for their heirs and assigns, do hereby covenant and agree, to and with the said part of the second part, heri and assigns, that he, the said Austin, and the said Williams, shall and will warrant and forever defend the same lands and appurtenances and every part and parcel thereof, unto the said part, heri and assigns against the said part of the first part, heri and assigns, and against all and every person or persons whatsoever lawfully claiming or to claim the same.

In Testimony Whereof, the said part of the first part hath hereunto set his hand, the day and year first above written.

[Signature]

STATE OF KANSAS, County of Leavenworth, SS.

BE IT REMEMBERED, That on this 17th day of October, A. D. 1848, before me, the undersigned, a

Notary Public, in and for the County and State aforesaid, came James E. Austin, and Milton Williams, who, being personally known to me to be the same persons, who executed the foregoing instrument of writing, and did acknowledge the execution of the same.

In Testimony Whereof, I have hereunto set my hand and seal, the day and year last above written.

[Signature]

STATE OF KANSAS, County of Leavenworth, SS.

This instrument was filed for record on the 17th day of October, A. D. 1848, at 12 o'clock, P.M.

[Signature]

Register of Deeds.

[Signature]
This Deed, made this 1st day of January, in the year of our Lord one thousand eight hundred and ______, in the County of ______, and State of ______, of the first part, and ______, and State of ______, of the second part, and ______, and State of ______, of the third part, WITNESSETH: That the said ______, of the first part, for and in consideration of the sum of ______ to have and to hold the said part ______ of the second part, the said ______, is hereby acknowledged, do, by these presents, grant, bargain, sell, release, and convey to the said ______, and to her assigns, forever, all of the said part, and parcel of land lying and situate in the County of ______, and State of ______, to wit:

Together with all and singular the appurtenances thereof, to have and to hold the same, unto the said ______, of the second part, and assigns, forever. And the said ______, do, by these presents, grant, bargain, sell, release, and convey to the said ______, and to her assigns, the said ______, and part of the same, forever.

And that the said ______ will WARRANT AND FOREVER DEFEND the said land and appurtenances and every part and parcel thereof, unto the said ______, of the second part, and assigns, against the said ______, of the first part, and his heirs, and against all and every person or persons, claiming to have any interest, right, or title, whether arising from any act done, or any use made, of the said land and appurtenances, forever.

IN TESTAMENT WHEREOF, the said ______, of the first part, be hereto set his hand the day and year first above written.

Executed and delivered in the presence of

__

State of Kansas, County of ______, on this 1st day of January, A.D. 18__, before me, the undersigned, a Justice of the Peace, in and for the County and State aforesaid, was personally known to me to be the same person who executed the foregoing instrument of writing, and did acknowledge the execution of the same.

IN TESTAMENT WHEREOF, I have hereunto set my hand and affixed my seal, the day and year last above written.

__

Deed recorded on the 2nd day of January, A.D. 18__, in the County of ______, and State of ______, and recorded in the Deed Book of ______, Page ______.
DEED RECORD No. 70 D.582
General Warranty Deed

FROM
ORA T. SWITZER, et al.

TO
VERYL A. SWITZER

STATE OF KANSAS
GRAHAM COUNTY

This instrument was filed for record on the

of Dec., 1910.

ELZIE PARKS
Register of Deeds

DEED—GENERAL WARRANTY

THIS INSTRUMENT, Made the 31st day of December, 1910, between

ORA SWITZER and FRED L. SWITZER, Husband and Wife,

of Graham County, in the State of Kansas, of the first part, and

VERYL A. SWITZER
of Graham County, in the State of Kansas, of the second part;

WITNESSETH, That AS and PART IE of the first part, in consideration of the sum of

Ten and other

and 100

Dollars, receipt whereof is hereby acknowledged, do, by these presents, GRANT, BARGAIN, SELL AND CONVEY unto AS and PART IE of the second part,

the residue whereof is hereby acknowledged, do, by these presents, GRANT, BARGAIN, SELL AND CONVEY unto AS and PART IE of the second part,

the following described REAL ESTATE situated in the County of Graham and State of Kansas:

Lots Seven, Eight, Nine and Ten, in Block Twelve, Nicodemus, Graham County, Kansas,

TO HAVE AND TO HOLD THE SAME, together with all and singular the tenements, hereditaments and appurtenances thereunto belonging or in any way appertaining, forever.

And said AS, for themselves, their heirs, executors, and administrators, by these presents, Grant, BARGAIN, SELL AND CONVEY unto AS and PART IE of the second part,

the said

the above mentioned

and all and every

heretofore or hereafter claimed, in fee simple, to the said

in fee simple, to the said

and all and every

in fee simple, to the said

and all and every

heritage and assignment, hereby acknowledging to be the same.

IN WITNESS WHEREOF, the said

the first above written

ORA T. SWITZER

FRED L. SWITZER

STATE OF KANSAS

County of Graham

BE IT REMEMBERED, That on the 31st day of December, 1910, before me, the undersigned, Notary Public, in and for the County and State aforesaid, there

ORA SWITZER and FRED L. SWITZER, husband and wife,

notarized the execution of the same.

WITNESS, AS and PART IE, that AS executed this instrument, and the said

ELZIE PARKS

Entered in Township Record in my office the 31st day of Dec., 1910.
THIS INDENTURE, Made this 14th day of August 1972
between Fred Switzer
of Graham County, in the State of Kansas of the first part,
and Varyl Switzer
of Graham County, in the State of Kansas of the second part:
WITNESSETH, That said part Y of the first part, in consideration of the sum of
One and no
DOLLARS
the receipt of which is hereby acknowledged, do es by these present, Remise, Release and Quitclaim unto
the said part Y of the second part, his heirs and assigns, all the estate, right, title, interest and
claim which said part Y of the first part in and to the following described real estate situated in
the County of Graham and State of Kansas, to wit:
Lots 11-12, Block 12, Nicodemus, Kansas

TO HAVE AND TO HOLD THE SAME, Together with all and singular the easements, hereditaments
and appurtenances thereunto belonging or in anywise appertaining, forever.
And said part Y of the first part covenants that at the date hereof, he has executed no
conveyance or other instrument of writing whatsoever affecting the said real estate, which does not now
appear of record in the office of the Register of Deeds of said County and State.
In Witness Whereof, the said part Y of the first part has hereunto set his hand, the
day and year first above written.

Fred Switzer
THIS INDENTURE, Made this 20th day of June 1966, between Nicodemus School District 1, of Graham County, in the State of Kansas, of the first part, and Nicodemus L-H Club of Graham County, in the State of Kansas, of the second part:

WITNESSETH, That said party of the first part, in consideration of the sum of Five and no------------- and \text{CO} \overline{100} DOLLARS, the receipt of which is hereby acknowledged, do remit unto the said party of the second part, and their heirs and assigns, all the estate, right, title, interest and claim which said party of the first part in and to the following described real estate situated in the County of Graham and State of Kansas, to-wit:

All of Block 2d, in the City of Nicodemus, Graham County, Kansas

TO HAVE AND TO HOLD THE SAME, Together with all and singular the tenements, hereditaments and appurtenances thereunto belonging or in anywise appertaining, forever.

And said party of the first part covenants that at the date hereof, they have executed no conveyance or other instrument of writing whatsoever affecting the said real estate, which does not now appear of record in the office of the Register of Deeds of said County and State.

In Witness Whereof, the said party of the first part have hereunto set their hand, the day and year first above written.

[Signatures]

Block 2d
STATE OF KANSAS, COUNTY, ss.

BE IT REMEMBERED, That on this day of A. D. 1966, before me, the undersigned, a Register of Deeds in and for the County and State aforesaid, came

who personally known to me to be the same person who executed the foregoing instrument of writing, and duly acknowledged the execution of the same.

IN TESTIMONY WHEREOF, I have hereunto set my hand and affixed seal on the day and year last above written.

My commission expires 19.

Notary Public.

STATE OF KANSAS, COUNTY, ss.

BE IT REMEMBERED, That on this day of A. D. 1966, before me, the undersigned, a Register of Deeds in and for the County and State aforesaid, came

who personally known to me to be the same person who executed the foregoing instrument of writing, and duly acknowledged the execution of the same.

IN TESTIMONY WHEREOF, I have hereunto set my hand and affixed seal on the day and year last above written.

My commission expires 19.

Notary Public.

STATE OF KANSAS, COUNTY, ss.

BE IT REMEMBERED, That on this day of A. D. 1966, before me, the undersigned, a Register of Deeds in and for the County and State aforesaid, came

who personally known to me to be the same person who executed the foregoing instrument of writing, and duly acknowledged the execution of the same.

IN TESTIMONY WHEREOF, I have hereunto set my hand and affixed seal on the day and year last above written.

My commission expires 19.

Notary Public.
Deed Record No. 65
(Tax Lien Foreclosure)

FROM
Lee M. Holmes
Sheriff of Graham County, Kansas.

TO
Nicodemus Township

STATE OF KANSAS, GRAHAM COUNTY, ss.
This instrument was filed for record on the 24 day of
March, 1944, at 11:00 o'clock A. M., by Helen Harren,
(SEAL)
Register of Records.

By,
Deputy,
Entered in transfer record in my office this 24th day of
March, 1944, A. J. Rutherford
County Clerk.

By,
Deputy

KNOW ALL MEN BY THESE PRESENTS, THAT, WHEREAS, on the
13th day of July, 1943, in the District Court in and for Graham County in the 34th Judicial District of the State of Kansas at the
term, 1943, of said Court, then being held in and for said county, in a certain action then pending in said Court numbered 5555
wherein the Board of County Commissioners of Graham County, Kansas, was plaintiff and
Nicodemus Township, as defendant, in the caption of the petition of the plaintiff filed therein, were defendants and the unknown heirs, executors, administrators, devisors, trustees, successors, guardians and assigns, of any of said individual defendants who may be dead, or be minors, or be incompetent or have been
succeeded by fiduciaries and the unknown officers, successors, trustees and assigns of such corporations or companies therein named as
defendants, as may have been dissolved and not in being existed, were defendants, a judgment was rendered by said Court foreclosing the lien of the
plaintiff for delinquent taxes, interest and costs in and upon the property described in the schedule attached hereto and made a part of
plaintiff's petition therein, except such tracts of land, lots and pieces of real estate as were redeemed prior to the date of the rendition of judg-
mnt or were excluded from said judgment by virtue of disallowance ordered by the Court therein and therefore not included in the judgment rendered therein as shown in the journal entry of judgment therein filed, and it was further ordered that said property be sold by the Sheriff of Graham
County, Kansas, for the payment of said judgment, interest and costs, and that after said sale the defendants and each of them, and all persons,
claiming by, through, or under them, or either of them, be forever barred, foreclosed, exalted and sold from any and all right, title, claim, in-
terest, estate, or equity of redemption in or to the hereinafter described real estate or any part thereof.

AND WHEREAS, afterward, there was issued by the Clerk of said Court an execution and order of sale, in pursuance of said judgment and in acc-
cordance with law, directed to the Sheriff of said County of Graham, commanding him to cause said property to be advertised and sold according to
law and from the proceeds thereof to pay first, the costs and expenses of such suit and sale; second, the judgment of the plaintiff against each
particular piece, parcel and tract; third, the balance, if any, to be paid into Court to abide its further orders; and that he make return of said
execution and order of sale in sixty (60) days from the date thereof with his proceedings indorsed thereon, which said execution and order of
sale were delivered to and received by said Sheriff on the 26th day of August, 1943, and said Sheriff, by
virtue thereof, advertised said property for sale by causing a notice that he would be
holding on the 6th day of October, 1943, at 10:00 o'clock A. M. of said day at the south front door of the court house in the City of Hill City, Kansas, in the County of Graham, offer said lands and tenements of public sale, and sell the same to the highest bidder for cash in hand at said sale, the said notice being published in an official paper of said Graham County, the Hill City Times, a newspaper of general circulation therein, which said newspaper has been continuously and uninterruptedly published in said county for the period of fifty-two (52) consecutive weeks immediately prior to the first publication of the notice of this sale, and which had prior to such publication been duly admitted to the U. S. mails in said county as second-class matter, and said notice being published for thirty (30) days immediately prior to the date of said sale.

AND WHEREAS, on the date so named in said notice and at the time and place designated therein the Sheriff did publicly offer for sale and sell the tracts and parcels of land described in the Sheriff's return of said sale; and said tracts and parcels of land the following described real
estate lying and sitting in the County of Graham, State of Kansas, was sold as aforesaid to Nicodemus Township at and for the price and sum as follows: to wit:

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>SALE PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot 1 to 8, Blk. 3, Nicodemus Graham County, Kansas.</td>
<td>$1.00</td>
</tr>
<tr>
<td>Lot 9, Blk. 3, Nicodemus Graham County, Kansas.</td>
<td>.25</td>
</tr>
<tr>
<td>Lot 10, Blk. 3, Nicodemus Graham County, Kansas.</td>
<td>.50</td>
</tr>
<tr>
<td>Lot 11, 12, 14, Blk. 3, Nicodemus, Graham County, Kansas.</td>
<td>.50</td>
</tr>
<tr>
<td>Lot 21, Blk. 3, Nicodemus Graham County, Kansas.</td>
<td>.25</td>
</tr>
<tr>
<td>Lot 22, 23, Blk. 3, Nicodemus Graham County, Kansas.</td>
<td>.25</td>
</tr>
</tbody>
</table>

AND WHEREAS, the said Sheriff duly returned said execution and order of sale to the said Court, with his proceedings thereunder indorsed
thereon, and thereupon, and on the 9th day of March, 1944, the said Court duly confirmed said sale as having
been made in all respects in conformity with law, and directed the Clerk of said Court to make an entry on the journal thereof that the said
Court was satisfied with the legality of said sale, and ordered and directed the said Sheriff to make said purchase a deed for said
lands and tenements so purchased as aforesaid, and such entry and order were thereupon then and there duly made and entered accordingly.

AND WHEREAS, the said Nicodemus Township
has paid the said purchase money in full and the same has been applied as directed by said judgment and order of sale, and there is presented
NOW, THEREFORE, I, Lee M. Holmes,
Sheriff of the said County of Graham, in consideration of the premises,
by virtue of the powers in me vested by law, do hereby give, grant, sell and convey unto the said
Nicodemus Township their
heirs, successors and assigns forever, the lands and tenements above described so sold as aforesaid, lying and situated in the County of Graham, and the State of Kansas.

TO HAVE AND TO HOLD the same unto the said
Nicodemus Township their
heirs, successors and assigns, forever.

IN TESTIMONY WHEREOF, I, the said
Lee M. Holmes,
Sheriff as aforesaid, have hereunto set my hand this
in the District Court in and for Graham County in the 34th Judicial District of the State of Kansas at the

term, 1943, of said Court, then being held in and for said County, in a certain action then pending in said Court numbered 6155

wherein the Board of County Commissioners of Graham County, Kansas, was plaintiff and

Nico demus et al., named as defendants.

in the caption of the petition of the plaintiff filed therein, were defendants, and the unknown heirs, executors, administrators, devisees, trustees, successors, guardians, and assignees, if any of said individual defendants who may be dead, or be minors, or be incompetent or have been

succeeded by fiduciaries and the unknown owners, successors, trustees and/or assignees of such corporations or companies therein named as de-

fendants as may have been dissolved and not in legal existence, were defendants, a judgment was rendered by said Court foreclosing the lien of the

plaintiff for delinquent taxes, interest and costs in and upon the property described in the schedule or exhibit attached to and made a part

of plaintiff’s petition therein, except such tracts of land, lots and pieces of real estate as were redeemed prior to the date of the rendition of judg-

ment or were excluded from said judgment by virtue of process ordered by the court therein and therefore not included in the judgment con-

cluded therein as shown in the journal entry of judgment therein filed, and it was further ordered that said property be sold by the Sheriff of Graham

County, Kansas, for the payment of said judgment, interest and costs, and that after said sale the defendants and each and all, and persons

claiming by, through, or under them, or either of them, be forever barred, forever released, and cut off from any and all right, title, claim, in-

terest, estate, or equity of redemption in or to the hereinbefore described real estate or any part thereof.

AND WHEREAS, afterward, there was issued by the Clerk of said Court an execution and order of sale, in pursuance of said judgment and in ac-

cordance with law, directed to the Sheriff of said County of Graham, commanding him to cause said property to be advertised and sold according to

law and from the proceeds thereof to pay first, the costs and expenses of said sale and second, the judgment of the plaintiff against each

particular piece, parcel and tract; third, the balance, if any, to be paid into court to abide its further orders; and that he make return of said

execution and order of sale in sixty (60) days from the date thereof with his proceedings induced thereon, which said execution and order of

sale were delivered in and received by said Sheriff on the 26th day of August, 1943, and the said Sheriff, by virtue thereon, then advertised said property for sale by causing a notice that he would beginning on the 6th day of October

1943, at 10:00 o'clock A.M., at said date at the south front door of the court house in the City of Hill City, Kansas, in the County of Graham, in

the Hill City Times, a newspaper of general circulation therein, which newspaper has been continuously and uninterruptedly published in said county for the period of fifty-two (52) consecutive weeks immediately prior to the first publication of the notice of said sale, and which has prior to such publication been duly admitted in the U.S. mails in said county as second-class matter, and said notice being published for thirty (30) days immediately prior to the date of said sale.

AND WHEREAS, on the date so named in said notice and at the time and place designated therein the Sheriff did publicly offer for sale and sell

the tracts and parcels of land described in the Sheriff’s return of said sale; and of said tracts and parcels of land the following described real

estate lying and situate in the County of Graham, State of Kansas, was sold as aforesaid in Nicodemus Township

at and for the price and sum as follows: to-wit:

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>SALE PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot 1, Blk. 3, Nicodemus Graham County, Kansas</td>
<td>$1.00</td>
</tr>
<tr>
<td>Lot 9, Blk. 3, Nicodemus Graham County, Kansas</td>
<td>.25</td>
</tr>
<tr>
<td>Lot 10, Blk. 3, Nicodemus Graham County, Kansas</td>
<td>.50</td>
</tr>
<tr>
<td>Lot 11, 12, 14, Blk. 3, Nicodemus Graham County, Kansas</td>
<td>.50</td>
</tr>
<tr>
<td>Lot 21, Blk. 3, Nicodemus Graham County, Kansas</td>
<td>.25</td>
</tr>
<tr>
<td>Lot 22, 23, Blk. 3, Nicodemus Graham County, Kansas</td>
<td>.25</td>
</tr>
</tbody>
</table>

AND WHEREAS, the said Sheriff duly returned said execution and order of sale to the said Court, with his proceedings thereunder induced

thereon, and therefrom, and on the 9th day of March, 1944, the said Court duly confirmed said sale as having been made in all respects in conformity with law, and directed the Clerk of said Court to make an entry on the journal thereof that the said

court was satisfied with the legality of said sale, and ordered and directed the said Sheriff to make said purchaser a deed for said lands and

tenements so purchased as aforesaid, and such entry and order were thereupon then and there duly made and entered accordingly.

AND WHEREAS, the said Nicodemus Township

has paid the said purchase money in full and the same has been applied as directed by said judgment and order of sale, and there is presented

to me the order of said Court confirming said sale and directing the issuance of a good and sufficient deed to said promised to said purchaser.

Lee M. Holmes, Sheriff of the said County of Graham, in consideration of the premises, and by virtue of the powers in me vested by law, do hereby give, grant, sell and convey unto the said

Nicodemus Township

their heirs, successors and assigns forever, the lands and tenements above described as aforesaid, lying and situated in the County of Graham, and the

State of Kansas.

TO HAVE AND TO HOLD the same unto the said

Nicodemus Township

their heirs, successors and assigns, forever.

IN TESTIMONY WHEREOF, I, the said

Lee M. Holmes,

Sheriff of Graham County, Kansas.

16th day of March, 1944

Lee M. Holmes

Sheriff of Graham County, Kansas.

STATE OF KANSAS, COUNTY OF GRAHAM, ss.

BE IT REMEMBERED, That on the 18th
day of March, 1944, before me, the undersigned,
Clerk of the District Court of Graham County, Kansas, in and for the County and State aforesaid, came

Lee M. Holmes, Sheriff of Graham County, State of Kansas, who is

personally known to me to be the same person who executed the within and foregoing instrument of writing as granter

and as such Sheriff, and such person duly acknowledged the execution of the same as his voluntary act and deed as Sheriff

of the County of Graham, State of Kansas, and such person also acknowledged that he duly executed the same for the

purposes therein expressed.

IN TESTIMONY WHEREOF, I have hereunto set my hand and affixed my official seal the day and year last above

written.

D.A. SUPPLEMENT

Clerk of the District Court of Graham County, Kansas.
GENERAL WARRANTY DEED

THIS INDENTURE, Made this 15th day of April, 1980, between The Priscilla Art Club of Nicodemus, Kansas, an Unincorporated Association, of Graham County, in the State of Kansas, of the first part, and The Township of Nicodemus of Graham County, in the State of Kansas of the second part:

WITNESSETH, That said party of the first part, in consideration of the sum of a donation, does by these presents, Grant, Bargain, Sell, and convey unto said party of the second part, its heirs and assigns, all the following described real estate situated in Graham County and State of Kansas, to-wit:

Lots 19 and 20 in Block 3, in the Town Site of Nicodemus, Kansas

TO HAVE AND TO HOLD THE SAME, together with all and singular the tenements, hereditaments and appurtenances thereunto belonging or in anywise appertaining, forever. And said first party for itself, its successors and assigns, does hereby covenant, promise and agree, to and with said party of the second part, that at the delivery of these presents it was lawfully seized in its own right of an absolute and indefeasible estate of inheritance, in fee simple, of and in all and singular the above granted and described premises, with the appurtenances; that the same are free, clear, discharged and unincumbered of and from all former and other grants, titles, charges, estates, judgments, taxes, assessments and incumbrances, of what nature or kind soever; None and that it will warrant and forever defend the same unto said party of the second part, its heirs and assigns, against said party of the first part, its heirs, and all and every person or persons whomsoever, lawfully claiming or to claim the same.

IN WITNESS WHEREOF, the said party of the first part has hereunto caused this Deed to be signed on its behalf by its President hereunto duly authorized so to do, the day and year first above written.

Juanita Redd, President
Ora Switzer, Secretary

STATE OF KANSAS, GRAHAM COUNTY, SS:

BE IT REMEMBERED, That on this _____ day of _____, 1980, before me, the undersigned, came Juanita Redd and Ora Switzer, President and Secretary, respectively, of the Priscilla Art Club of Nicodemus, Kansas, an Unincorporated Association, who are known to me to be such officers, and who are personally known to me to be the same persons who executed, as such officers, the within instrument of writing on behalf of said Association, and such persons duly acknowledged the execution of the same to be the act and deed of said Association.

IN TESTIMONY WHEREOF, I have hereunto set my hand and affixed my official seal on the day and year last above written.

Notary Public

Notation: The instrument expires: Jul 15, 1982
WARRANTY DEED (Kansas Statutory Form)

Alonso G. Alexander, II, and Lois Alexander, his wife; Bernice Bates; a widow; Sharyn Rose Bowdell, a.k.a. Sharon Rose Bowdell, and Frank Bowdell, her husband; and Alonso G. Alexander, III, a single man,
CONVEY _______ AND WARRANT _______ TO

The Township of Nicodemus, Graham County, Kansas,

all the following described REAL ESTATE in the County of
and the State of Kansas, to-wit:

Lot 17, in Block 3, in the Township of Nicodemus,
Kansas.

STATE OF KANSAS, Graham COUNTY, ss.

BE IT REMEMBERED, That on this _______ day of Oct,
1980, before me, the undersigned, a
Justice of the Peace for the County and State aforesaid, came
Alonso G. Alexander, II, and Lois Alexander, his wife; Bernice Bates, a widow; Sharyn Rose Bowdell, and Frank Bowdell, her husband; and Alonso G. Alexander, III, a single man.

Who are personally known to me to be the same persons who execute the within instrument of writing and such person(s) duly executed the execution of the same.

I WITNESS WHEREOF, I have hereunto set my hand and affixed my seal and the day and year last above written.

Notary Public.

__

Fees: $6.00

Register of Deeds.

Deputy.
NATIONAL REGISTER OF HISTORIC PLACES INVENTORY -- NOMINATION FORM

SEE INSTRUCTIONS IN HOW TO COMPLETE NATIONAL REGISTER FORMS
TYPE ALL ENTRIES -- COMPLETE APPLICABLE SECTIONS

1. **NAME**
 - **HISTORIC**
 - Nicodemus Historic District and Dugout House, two miles east
 - **AND/OR COMMON**
 - Nicodemus

2. **LOCATION**
 - **STREET & NUMBER**
 - NOT FOR PUBLICATION
 - **CITY, TOWN**
 - Nicodemus
 - **STATE**
 - Kansas
 - **VICINITY OF**
 - Graham
 - **CODE**
 - 065
 - **CONGRESSIONAL DISTRICT**
 - First
 - **COUNTY CODE**
 - 20

3. **CLASSIFICATION**
 - **CATEGORY**
 - DISTRICT
 - **OWNERSHIP**
 - PUBLIC
 - **STATUS**
 - OCCUPIED
 - **PRESENT USE**
 - AGRICULTURE
 - **X**
 - **STRUCTURE**
 - PRIVATE
 - **X**
 - **SITE**
 - BOTH
 - **PUBLIC ACQUISITION**
 - **ACCESSIBLE**
 - **YES: RESTRICTED**
 - **YES: UNRESTRICTED**
 - **NO**
 - **IN PROCESS**
 - **BEING CONSIDERED**

4. **OWNER OF PROPERTY**
 - **NAME**
 - Multiple Ownership / Contact - Mr. H. Bates
 - **STREET & NUMBER**
 - Church Baptist Congress
 - **CITY, TOWN**
 - Nicodemus
 - **STATE**
 - Kansas
 - **VICINITY OF**

5. **LOCATION OF LEGAL DESCRIPTION**
 - **COURTHOUSE, REGISTRY OF DEEDS, ETC.**
 - Graham County Courthouse
 - **STREET & NUMBER**
 - Pomeroys Street
 - **CITY, TOWN**
 - Hill City
 - **STATE**
 - Kansas

6. **REPRESENTATION IN EXISTING SURVEYS**
 - **TITLE**
 -
 - **DATE**
 -
 - **FEDERAL STATE COUNTY LOCAL**
 - **DEPOSITORY FOR SURVEY RECORDS**
 -
 - **CITY, TOWN**
 -
 - **STATE**
 -
The historic buildings and sites of the Nicodemus Historic District are as follows:

Sayer's General Store and Post Office - Built in 1880 Sayer's General Store and Post Office is presently an unoccupied two story building of native limestone with a wood frame roof and brick masonry chimney. The doors, windows and frame of the rest of the structure are also wood. The one story structure at the rear of the main building is wood framed with stucco walls and a brick chimney. The roof of this structure also has a wood frame and wood shingles as does the frame of the interior. Although it is not now in active use there are a few articles stored on the inside of the building.

First Baptist Church - Replacing an earlier structure of the initial church structure that was a dugout, the present First Baptist Church was built in 1908 and is presently in active use by a religious group. A one story structure of native limestone that is covered with stucco, the church has a wood frame roof with wood shingles. On the interior there are partitions of wood lath with plaster over the wood frame and buttresses on the east side of the building to brace the wall. There have been additions to the original building over the years.

Township (T. W. P.) Hall - A one story assembly hall with stage, proscenium arch, high ceiling, and a half basement, this structure was built in 1939 with exterior walls of native limestone. The roof is structural steel with composition shingles and the floor is concrete slab. The walls are plaster, and the ceiling is acoustical tile. It is presently used for all community meetings.

Site of the Masonic Hall - A marker placed in 1972 by the Masons designates the site of the old masonic hall. Resting on a concrete slab, the brick masonry marker has three stones with carved exposed surfaces incorporated into the masonry work. The South one is dated "1880" with the north one bearing the letter "G". The central stone is semi-circular with the lower portion showing "A.F. & A.M. 1893" and the upper portion having a half moon with a face in profile.

A.M.E. Church - Built in 1885 of native limestone covered with stucco this one story structure has a wood frame roof with wood shingles that are partially covered with composition shingles. The north wing is in ruins.

Fletcher Residence - Built in 1878 this building is one of the original structures of the town. One and one-half stories high it was originally native limestone walls that are now covered with stucco. The frame walls and roof structure of wood frame with wood shingles are additions to the original structure that also housed the town's first Post Office before it was moved to Sayer's General Store.

An Original Town Residence - Although the exact date of the construction of this original building is not known it was one of the original residences of the town. Although in a state of ruins what remains are sod walls veneered with native limestone, a wood frame door, and partially standing walls.
Historical Marker - Constructed in 1970 this roadside marker briefly states the early history of the town of Nicodemus. It was erected by the Kansas Historical Society and the State Highway Commi:

Dr. D. L. Stewart Residence- Built in 1906 with native limestone exterior walls, this one story structure has interior walls that are wood frame with lath and plaster and a roof that is wood frame with wood shingles. The porch on the north end of the house is in ruins.

The proposed boundaries for the Nicodemus Historic District are as follows:

Northern Boundary - Washington Street to Fourth Street to North Street
Eastern Boundary - East Bend Road
Southern Boundary - South Street
Western Boundary - Seventh Street

The sod house though not within the boundaries of the proposed district, because of their distance from it, should nonetheless be designated a landmark because of its significance and relationship to the history of Nicodemus. The property is less than one acre.
During the 1870s the great human phenomena of a mass migration of blacks from the "South" to the Midwest took place. Greatly dissatisfied with the conditions in the South, blacks, in numbers sizeable enough to initiate an investigation and report by the United State Congress, swarmed from the South to the Midwest. Black spokesmen such as Frederick Douglass and Richard T. Greener offered their peasantry conflicting advice on how to deal with the oppression and poverty of the South. Douglass advocated that they remain in the region in order to change and ameliorate the conditions. Greener, on the other hand, urged migration from an area that he felt was beyond change as far as blacks were concerned. In line with Greener's advice, blacks from Mississippi, Louisiana, Alabama, Tennessee, and Kentucky surged westward.

One of the principle leaders of this mass migration movement was Benjamin "Pap" Singleton, who glowingly told stories of the "Promised Land" in Kansas. He was responsible for the founding of eleven colonies in Kansas alone between 1873 and 1880. Singleton, born a slave in Nashville, Tennessee about 1809, learned the trades of carpentry and cabinet making. He hated his enslavement and so fled to Canada settling later in Detroit, Michigan, where he pursued a variety of occupations. After the general emancipation of slaves, he returned to his native Tennessee and began attempts to colonize blacks there. He soon realized that such an effort in the South was not conducive to the welfare and future progress of black people. Finally, he visited Kansas in 1873, bringing with him 300 blacks from Tennessee, most of whom settled in "Singleton's Colony" in Cherokee County. Returning to the South in the latter part of 1873, he traveled throughout Tennessee, Kentucky, and Mississippi, organizing groups to migrate to Kansas.

The impact of black migration on the population of Kansas is evident from census reports. In 1860 there were 625 free blacks and two slaves in the entire state. In 1870 the colored population had jumped to 17,108 and a number of all-black communities had sprung up in the eastern part of the state. By 1880 the black population had doubled to 43,107. Singleton's efforts were primarily responsible for this increase in the colored population of the state of Kansas during his last great colonizing effort, 1878-1879.

Nicodemus, under Singleton's influence, was one of the towns that resulted from this black migration. Established on homestead land in Graham County, Kansas with assistance from a white Tennessee minister, W. T. Hill, and named after a legendary slave, the town of Nicodemus was officially founded on September 17, 1877. However, prior to that date, during the previous summer there had been some earlier arrivals to the townsite, the first being Reverend Simon P. Roundtree who
was there on June 18, 1877. The next arrivals came on July 30th. In this group were Mr. and Mrs. Fletcher. Mrs. Fletcher was the only woman in the colony until others of her sex arrived with a group of "Exodusters" came from Kentucky in the spring of 1878. Finally in 1879 the last sizable group, 50 blacks from Mississippi, settled in Nicodemus. According to the 1880 census there were 260 blacks living in Nicodemus township.

The Nicodemus colonists had to cope with many hardships on the Kansas frontier. The initial form of shelter was a "burrow" constructed out of the side of a bank or small hill. Sod dugouts and then wooden structures eventually replaced the "burrows". The problem of finding food was a far more difficult obstacle for the colonists to overcome. Few of the settlers had any money, (most of them having spent their funds in order to get to Kansas) and thus, to aid in the alleviation of this problem, the Nicodemus Town Company was established to appropriate food and supplies from across the state and to distribute them to the settlers.

By 1881 however, there were 35 residential and commercial structures in the town. Although most of these structures were scattered haphazardly throughout the district, there was a defined business district. The general store of Z. T. Fletcher founded in the fall of 1877 was the oldest business in the county. In 1878 a Post Office was established in a section of the store. One of the highlights of Nicodemus' history is connected with this Post Office. It has been reported throughout the town's history that Mrs. Fletcher, who was the official post mistress, and her husband went forty miles a month to the neighboring town of Ellis to carry outgoing and incoming mail. In 1879 a livery stable and lumber yard were started. The establishment of the latter is an excellent indication of the progress the Nicodemites were making as their sod structures were being replaced by wood. The first church edifice, a sod structure, was constructed in 1879 under the auspices of the Baptist minister Daniel Hickman. In June 1879 School District No. 1 was established in Nicodemus with most of the classes being taught in peoples' homes. In 1887 a formal four room structure was erected. By the 1880s Nicodemus was showing all the signs of a thriving social center — a baseball team, a literary and benefit society, lodges, and an ice cream parlor. Nicodemus had two newspapers, the Western Cyclone established May 13, 1886 by A. G. Tallman and the Enterprise established August 17, 1887 by H. K. Lightfoot. By 1887 when the town's first bank was established by a white man, A. L. McPherson, Nicodemus was a recognized social and business center of Graham County.

The esteem in which the town was held is further evidenced by the prominence of its members in county affairs. Selected as the temporary site of the township's first election, an honor that acknowledged its potential voting strength in that region, the election was held in December 187
The Nicodemus "Equal Rights Ticket," composed of five white men and three blacks - Granville Lewis, H. Winn, and Lewis Welton - all won their respective seats: Lewis as one of the town justices of the peace; Winn as township clerk; and Welton as road overseer. The Nicodemites continued their promising beginnings in the field of politics when the county elections were held in June 1880. John DePrad was elected county clerk, an office that was to be held by a number of blacks in future elections. Other Nicodemites who were to achieve county elected offices were: J. R. Hawkins who served in the office of the clerk of the court; W. L. Sayers (a relative of the football player Gale Sayers) who served as county attorney; and Lewis Welton and Daniel Hickman who served as county commissioners. In the field of politics for the county and state, it has been said that it was a rare election that did not have a black Nicodemite on its ballot.

An outstanding member of the Nicodemus community, and of the entire state, was Edward P. McCabe whose rise to prominence in that frontier community was evidence of the opportunities available to any person who wanted to excel in the fluidity of a frontier society. McCabe came from New York and Chicago in 1878. He served as the county's first county clerk, being appointed to that temporary position by Governor St. John until the county elections of June, 1880. He and A. T. Hall operated a land agency in the town and in 1882 and 1884 he was elected to the position of state auditor. He held the same position in the territory of Oklahoma from 1897 to 1907 by appointment from Governor G. S. Steel.

Nicodemus probably reached its peak by 1910 when the federal census of that year reported 595 colored inhabitants in the county. Although there are no reliable figures for the town of Nicodemus, it is presumed that the decline in the population paralleled that of the rest of the county. By 1950 only sixteen people were counted there and by 1953 the Post Office station was closed, symbolizing the end of a cycle of seventy-six years of existence.

Nicodemus, Kansas, is of national historical significance because it is the only remaining town established by blacks of the "Exoduster" movement which was organized mainly through the efforts of Benjamin "Pap" Singleton. It is the site of the oldest reported Post Office supervised by blacks in the United States. Nicodemus is also symbolic of the pioneer spirit of blacks who dared to leave the only region they had been familiar with, in a search for personal freedom and the opportunity to develop their talents and capabilities.
MAJOR BIBLICAL PHICAL REFERENCES

Gavin, Roy. "Benjamin, or 'Pap' Singleton, and His Followers." Journal of Negro History, XXXII (January, 1948), 7-23.

PARTIAL LISTING

GEOPHICAL DATA

Acreage of Nominated Property: 161.15

U.S. REFERENCES

| NE | 41 | 44.7 | 10.5 | 4.36 | 10.0 |
| NW | 14 | 44.6 | 10.5 | 4.35 | 9.0 |

VERBAL BOUNDARY DESCRIPTION

The Historic District of Nicodemus, Kansas is square shaped. In the North it follows North Street eastward to East Bend Road, and then traveling South to South Street. Here it continues West on South Street to Seventh Street going North until it joins North Street.

LIST ALL STATES AND COUNTIES FOR PROPERTIES OVERLAPPING STATE OR COUNTY BOUNDARIES

STATE CODE COUNTY CODE

FORM PREPARED BY

Marcia M. Greenlee, Historical Projects Director

Afro-American Bicentennial Corporation

1420 N Street, Northwest

Washington, D.C.

STATE HISTORIC PRESERVATION OFFICER CERTIFICATION

THE EVALUATED SIGNIFICANCE OF THIS PROPERTY WITHIN THE STATE IS:

NATIONAL ____ STATE ____ LOCAL ____

As the designated State Historic Preservation Officer for the National Historic Preservation Act of 1966 (Public Law 89-665), I hereby nominate this property for inclusion in the National Register and certify that it has been evaluated according to the criteria and procedures set forth by the National Park Service.

FEDERAL REPRESENTATIVE SIGNATURE

TITLE DATE

FOR NPS USE ONLY

I HEREBY CERTIFY THAT THIS PROPERTY IS INCLUDED IN THE NATIONAL REGISTER

DIRECTOR, OFFICE OF ARCHEOLOGY AND HISTORIC PRESERVATION

ATTEST: KEEPER OF THE NATIONAL REGISTER
UNITED STATES DEPARTMENT OF THE INTERIOR
NATIONAL PARK SERVICE

NATIONAL REGISTER OF HISTORIC PLACES
PROPERTY PHOTOGRAPH FORM
(Type all entries - attach to or enclose with photograph)

1. NAME
COMMON:
AND/OR HISTORIC: Nicodemus Historic District

2. LOCATION
STREET AND NUMBER:
CITY OR TOWN: Nicodemus
STATE: Kansas

3. PHOTO REFERENCE
PHOTO CREDIT: Afro-American Bicentennial Corporation
DATE OF PHOTO: 1975
NEGATIVE FILED AT:
Afro-American Bicentennial Corporation

4. IDENTIFICATION
DESCRIBE VIEW, DIRECTION, ETC.
Side view of Fletcher House, near eastern boundary of Historic District

STATE
Kansas
COUNTY
Graham
ENTRY NUMBER
DATE

FOR NPS USE ONLY

CODE
CO
COUNTY:

065
Graham

United States Department of the Interior
National Park Service

National Register of Historic Places
Property Photograph Form

(Type all entries - attach to or enclose with photograph)

1. NAME

COMMON:

AND/OR HISTORIC:
Nicodemus Historic District

2. LOCATION

STREET AND NUMBER:

CITY OR TOWN:
Nicodemus

STATE:
Kansas

CODE:
20

COUNTY:
Graham

CODE:
065

3. PHOTO REFERENCE

PHOTO CREDIT:
Afro-American Bicentennial Corporation

DATE OF PHOTO:
1975

NEGATIVE FILED AT:
Afro-American Bicentennial Corporation

4. IDENTIFICATION

Describe View, Direction, etc.

Southwest view of the Baptist Church, near the northwestern boundary of the Historic District
<table>
<thead>
<tr>
<th>1. NAME</th>
<th>COMMON:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND/OR HISTORIC: Nicodemus Historic District</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREET AND NUMBER:</td>
</tr>
<tr>
<td>CITY OR TOWN: Nicodemus</td>
</tr>
<tr>
<td>STATE: Kansas</td>
</tr>
<tr>
<td>CODE: 20</td>
</tr>
<tr>
<td>COUNTY: Graham</td>
</tr>
<tr>
<td>CODE: 065</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. PHOTO REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHOTO CREDIT: Afro-American Bicentennial Corporation</td>
</tr>
<tr>
<td>DATE OF PHOTO: 1975</td>
</tr>
<tr>
<td>NEGATIVE FILED AT: Afro-American Bicentennial Corporation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. IDENTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIBE VIEW, DIRECTION, ETC.</td>
</tr>
<tr>
<td>Southwest view of the Nicodemus School, near the Southern Boundary of the Historic District</td>
</tr>
</tbody>
</table>

F. S. GOVERNMENT PRINTING OFFICE: 1973-720-152/1448 MD-1
Fletcher House, Nicodemus, Kansas

Photo by ABC for NPS, 1974
Alvin Bates, Nicodemus

The history of this structure evolves two church congregations: A.M.E. and Mt. Pleasant Baptist Church.

The A.M.E. Church was organized on the town site in 1879, with five charter members: Charles Barter, Moses Wims and wife, Kitty; Mrs. Jeanie Fletcher; and Mary Myers. As the congregation grew, they met in various homes until enough funds were secured to build a sanctuary north of the Nicodemus school grounds. Philanthropist, J.P. Pomeroy donated $50 for the new structure. Between May and August, 1887, a new stone and frame sanctuary was completed. No description was given. The congregation worshipped there until 1910, when they moved into an existing church structure, previously owned by the Mt. Pleasant Baptist Church congregation, in Block 11. (See continuation card.)

Probably, the first relatively significant stone church edifice on Nicodemus town site.

Native stone structure was built by congregation in 1885, and was considered one of the finest structures, valued at $1,000, in 1895.

It is an outstanding example of vernacular religious building with evidence of some detailing, i.e. arched openings and vestibule. Church epitomizes the evolution of building on the town site: additions over time are distinguishable and limestone is treated with stucco to temporarily deter

(See continuation card)
Alvin Bates - 3/84 with LBJWF
HABS/HAER INVENTORY

1. **SITE ID. NO.**
2. **NAME(S) OF STRUCTURE**
 - A.M.E. Church

3. **SITE ADDRESS (STREET & NO.)**
 - Block 11; lots 19-24

4. **CITY/VICINITY**
 - Nicodemus

5. **ORIGINAL USE**
 - 2nd Baptist Church; A.M.E. Church

6. **PRESENT USE**
 - Farm storage

7. **CLASSIFICATION**

8. **RATING**

9. **DATE**

10. **UTM ZONE**

11. **REGION**

12. **OWNER/ADMIN ADDRESS**
 - Graham

13. **DESCRIPTION AND BACKGROUND HISTORY INCLUDING CONSTRUCTION DATE(S), PHYSICAL DIMENSIONS, MATERIALS, MAJOR ALTERATIONS, EXTANT EQUIPMENT, AND IMPORTANT BUILDERS, ARCHITECTS, ENGINEERS, ETC.**

 In early 1920s, Rev. Joe Wilson, native son, became pastor of the A.M.E. Church and remained with the congregation until his death, in 1967. During his tenure, there were numerous improvements and additions made: in 1923, a door was constructed through a window opening on the Northeast corner of the building and a vestibule added to buffer north winds (this entry became an arched opening on the east with a small framed, arched window on the north side of vestibule); in 1931, the east entry room was added, with bookshelves, most likely used for Sunday School. (Several of the legal books belonged to Rev. Wilson, who studied law, at one time.)

 Before 1940s, a large arched window on the west end of the north facade was closed; the church was wired for electricity; and the ceiling was apparently lowered, since the existing ceiling barely clears the large arched opening. By mid-1940, a parsonage, the Baxter House, in Block 2, lot 10, was included as church property. The church building was stuccoed probably after 1950, to reduce facade deterioration. When Rev. Wilson died and the congregation disbanded, Alvin Bates purchased the church and furnishings, i.e. pulpit, wood railings, kneeling boards, and 30 curved wooden pews which were arranged symmetrically on either side of a center aisle. Eventually, the benches deteriorated with use by the township, in the local park. (See rear for continuation.)

14. **CONDITION**
 - Excellent
 - Good
 - Fair
 - Deteriorated
 - Run-down

15. **DANGER OF DEMOLITION?**
 - Yes
 - No
 - Unknown

16. **SIGNIFICANCE**

Nicodemus Historic District

A.M.E. Church

HABS No. KS-49-I (Page 3)
Currently, the church contains some remnants of front pulpit arrangement, including steps, railings, and some wooden folding deacon chairs. The structure is used by Mr. Alvin Bates as farm equipment storage.

Alvin Bates - 3/84 with LBJWF

La Barbara Wigfall Fly Nicodemus H.A.B.S. 3/84
HABS/HAER INVENTORY

<table>
<thead>
<tr>
<th>1. SITE I.D. NO</th>
<th>2. NAME(S) OF STRUCTURE</th>
<th>5. ORIGINAL USE</th>
<th>7. CLASSIFICATION</th>
<th>9. RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A.M.E. Church</td>
<td>2nd Baptist Church; A.M.E. Church</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. SITE ADDRESS (STREET & NO)</td>
<td></td>
<td>8. PRESENT USE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block 11; lots 19-24</td>
<td></td>
<td>farm storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. CITY/VICINITY</td>
<td>5. COUNTY</td>
<td>6. STATE</td>
<td>10. DATE</td>
<td></td>
</tr>
<tr>
<td>Nicodemus</td>
<td>Graham</td>
<td>Kansas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. OWNER/ADMIN ADDRESS</td>
<td>Nicodemus, Kans.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alvin Bates: Nicodemus

The ruins of the early A.M.E. structure remained visible on the town site until mid-twentieth century. (NOTE: Reference is given to S.G. Wilson's stone residence, which is unknown and was converted into a church and mission school by the A.M.E. congregation in February, 1881, prior to their sanctuary completion.)

Occurring during the 1880s, there was a split in the First Baptist Church congregation and a less fortunate group of members expanded the existing Mt. Pleasant Baptist Church congregation. As the congregation grew, they aspired to build a sanctuary. In 1885, they built a native rock church structure on lots 19-24, in Block 11, only one block east and one block south of the parent church, First Baptist Church. The one story, native limestone structure with simple gable roof was less significant and more vernacular in style than the First Baptist Church. In 1895, census showed this building was valued at $1,000. In 1908, the Baptist State Convention voted to transfer lots 19-24 to the A.M.E. Church due to the decline of the congregation, but the A.M.E. congregation did not occupy the building until circa 1910. (See continuation card.)

14 CONDITION □ EXCELLENT □ GOOD □ FAIR □ DETERIORATED □ RUINS
15 DANGER OF DEMOLITION? □ YES □ NO □ UNKNOWN

facade and structural deterioration. Sanctuary was utilized by two different pioneer congregations. Mt. Pleasant Baptist Church congregation and later, the African Methodist Episcopal Church congregation. Presently used as farm equipment storage by local resident.
18. LOCATED IN AN HISTORIC DISTRICT
 - [X] Yes
 - [] No
 - [] Name

19. PUBLIC ACCESSIBILITY
 - Yes, Limited
 - [] Yes, Unlimited
 - No
 - Unknown

20. EXISTING SURVEYS
 - [] NR
 - [] NHL
 - [] HABS
 - [] HAER-I
 - [] HAER
 - [] NPS
 - [] State

21. REFERENCES—HISTORICAL REFERENCES, PERSONAL CONTACTS, AND/OR OTHER

 Alvin Bates - 3-84 with LBJWF

22. INVENTORYED BY
 - La Barbara Wigfall Fly

23. AFFILIATION
 - Nicodemus H.A.B.S.

24. DATE
 - 3/84

NICodemus Historic District
HABS No. KS-49-I (Page 6)
Trustees, First Baptist Church, Nicodemus

In the spring of 1878, approximately 9 months after the first Negro settlers arrived on the Kansas prairie land, plans began at Tom Johnson’s farm to organize the First Baptist Church in Nicodemus, under the leadership of Rev. Roundtree. Shortly after organization, the congregation met in a dugout structure, located approximately between the old and new existing church buildings. (The first baptismal was officiated by Rev. S.M. Lee, near the late Henry Williams, Sr. farm.) In 1879, under Rev. Hickman, a sod structure was partially built over the dugout, to accommodate growth in membership, and the dugout used as a basement. This church existed just north of the existing stucco and limestone structure.

By 1880, a small, one room stone sanctuary was erected; it occupied the same church site. For four years, this structure (See continuation card)

The first church congregation organized in 1878 on the town site; the first congregation to build a church edifice of sod blocks. One of the few sites within the village proper which illustrates the evolution of building types from dugout, sod structure, limestone structure with gable roofs and eventually stuccoed, to new brick sanctuary built in 1975. (All sanctuaries built by ex-slaves and/or local residents.) The largest and most enduring congregation existing on the town site since 1878. Congregation still utilizing the 1907 church building as a fellowship hall. Excluding the 1939 Township Hall, the 1907 church structure is the largest single building on town site.
Mrs. Bernice Bates, Mrs. Ora Switzer, Mr. Alvin Bates, Mr. and Mrs. Irvin Sayers - 3/84 with LBJWP

(Information received from Mrs. Bernice Bates and Mr. and Mrs. Irvin Sayers came primarily from a written historical account prepared by Mrs. Ola Wilson, deceased.)
HABS/HAER INVENTORY

1. SITE I.D. NO

2. NAME(S) OF STRUCTURE

Old First Baptist Church

3. SITE ADDRESS (STREET & NO)

Block 4; lots 13, 14; Southwest corner of Fourth and Washington Streets

4. CITY/VICINITY

Nicodemus

5. ORIGINAL USE

church

6. PRESENT USE

fellowship hall

7. CLASSIFICATION

8. UTM ZONE

9. RATING

10. DATE

11. REGION

12. OWNER/ADMIN ADDRESS

Nicodemus Graham Kansas

13. DESCRIPTION AND BACKGROUND HISTORY INCLUDING CONSTRUCTION DATE(S), PHYSICAL DIMENSIONS, MATERIALS, MAJOR ALTERATIONS, EXTANT EQUIPMENT, AND IMPORTANT BUILDERS, ARCHITECTS, ENGINEERS, ETC.

had a dirt floor and boards on stones for seats. The lumber used for roofing was hauled from Ellis, Kansas in wagons pulled by horses; the rock was native limestone from area quarries. As the congregation grew in the late 1880s, there was a split in leadership and membership, which created the Mt. Pleasant Baptist Church. (This group eventually generated enough funds to build a sanctuary one block east and one block south of the First Baptist Church, in 1885. They later rejoined the First Baptist Church congregation circa 1967. Ref: A.M.E. Church HABS/HAER Inventory Card)

By 1907, a larger limestone structure was erected around the 1880 building. Supposedly, Andrew Alexander was instrumental in building about the construction of this Church building. Since it took 4 to 5 years to build, the congregation continued to meet in the smaller church until the new structure was completed. Then the smaller structure within was demolished and materials hauled away through the front door, which faced south, at that time. (The native limestone was secured locally and the tin panels for the sanctuary ceiling purchased in Phillipsburg.)

(See continuation card)

14. CONDITION

- [X] EXCELLENT
- [] GOOD
- [X] FAIR
- [] DETERIORATED
- [] RUNS

15. DANGER OF DEMOLITION (SPECIFY THREAT)

- [] YES
- [X] NO
- [] UNKNOWN

16. SIGNIFICANCE
Mrs. Bernice Bates, Mrs. Ora Switzer, Mr. Alvin Bates, Mr. and Mrs. Irvin Sayers - 3/84 with LBJ

(Information received from Mrs. Bernice Bates and Mr. and Mrs. Irvin Sayers came primarily from a written historical account prepared by Mr. Ola Wilson, deceased.)

La Barbara Wigfall Fly
Nicodemus H.A.B.S.
3/84
Old First Baptist Church

Block 4; lots 13, 14; Southwest corner of Fourth and Washington Streets

Trustees, First Baptist Church, Nicodemus

The two story limestone structure with single gable roof was augmented with a new wing and gable roof to the west to house Sunday School classes and meetings, by 1920. This created a L-shaped building. A bell tower and cupola were also added at this time. (Prior to that, the bell was mounted on a post, south of the entry.) Due to an accident, when teenagers on the town site were playing in the church loft and fell through, the ceiling was lowered and replaced with a new tin pattern, which covered the circular gable end windows. This accounts for the difference in ceiling patterns between the original structure and the addition. The buckling east walls of the limestone church were buttressed in the late 1920s and the windows of the north wall were infilled to stop structural settling, which was aggravated by the application of a double layer of wood shingles. Structural settling also caused the walls to crack and the floor to warp. (It is suspected that the north wall of the building was built over the filled-in dugout.)

All exterior walls were stuccoed circa 1949 by Harness of Ellis, Kansas, to further deter structural deterioration, and tie the various components together. Two small bathrooms and a pastor's study were added to the northwest portion of the church circa 1965. (See rear for continuation)
Presently, the building is used as a fellowship hall for various church and community social functions. Interior walls are painted medium blue with a white wainscoting. The intention of the residents is to eventually restore the structure and use it as a museum/archives.
District #1 Schoolhouse

Block 24

American Legion Hall

Nicodemus, Kansas

On this site circa 1887, was frame structure similar to existing except that it was 2 stories. Had one main room, and coal room downstairs and 2 rooms upstairs. Upstairs also served as skating rink. Existing school built in 1915. Circa 1945, Fairview schoolhouse moved from southeast ¼ of Section 23, township 7, range 21, to north side of District #1. Fairview used for grades 1-4. Other structure for grades 4-8. By 1952, Fairview moved to block 13, lots 5-8, to be used as American Legion Hall. By 1955, District #1 closed.

By 1955, District #1 closed and local children sent to Bogue, KS to school. In 1966, 4-H club bought structure to use for meetings. In 1983, American Legion bought structure to use for meetings and gatherings.

Nicodemus was first community in Graham County to establish a school, thus the #1, a demonstration that education was very important to the Black community. Private owners of lots sold to school district so that structure could be erected.
Irvin Sayers, Bernice Bates, Yvonne Sayers, and Bertha Carter - 7/83 with BVD
HABS/HAER INVENTORY

1. SITE I.D. NO

2. NAME(S) OF STRUCTURE
Township Hall

3. SITE ADDRESS (STREET & NO)
Block 3; lots 21-24, corner of Second and Washington Streets

4. CITY/VICINITY COUNTY STATE
Nicodemus Graham Kansas

5. ORIGINAL USE Community Building

6. PRESENT USE Community building

7. CLASSIFICATION

8. UTM ZONE 14
EASTING 4471154360390
NORTHING

9. RATING

10. DATE

11. REGION

12. OWNER/ADMIN ADDRESS
Nicodemus Township

13. DESCRIPTION AND BACKGROUND HISTORY INCLUDING CONSTRUCTION DATE(S), PHYSICAL DIMENSIONS, MATERIALS, MAJOR ALTERATIONS, EXISTING EQUIPMENT, AND IMPORTANT BUILDERS, ARCHITECTS, ENGINEERS, ETC.

One story limestone building three bays wide and six bays long. Stone scratches with fingernail. Two story gable roof with exposed rafters covered with off-white asphalt shingles.

Constructed in 1939 as WPA project. Stone quarried near Webster Reservoir in Rooks County.

Periodic alterations include: ceilings lowered and vaulted with acoustical tile. Approximately 16' high. In 1982, panel wainscoting added, bathrooms added in north end and theatre chairs which line long walls reupholstered. In 1983, mini-blinds put on large windows.

Stone privy to north appears to have been built at same time.

Nicodemus residents constituted the work crew. Garold Napue was the stonemason; Gilbert Alexander was the timekeeper.

14. CONDITION ☐ EXCELLENT ☐ GOOD ☐ FAIR ☐ DETERIORATED ☐ RUINS

15. DANGER OF DEMOLITION? ☐ YES ☐ NO ☐ UNKNOWN (SPECIFY THREAT)

16. SIGNIFICANCE

Hall forms focus of meetings, ballot casting, and large community gatherings, such as dances during Homecoming weekend. Nicodemus H.A.B.S. team used hall for office summer 1983.

Hall should be regularly maintained so that its role in local activities is safeguarded.
Mrs. Ora Switzer - 7/83 with BVD
PUBLIC LAW 104-333—NOV. 12, 1996

SEC. 512. NICODEMUS NATIONAL HISTORIC SITE.

(a) FINDINGS AND PURPOSES.—

(1) FINDINGS.—Congress finds that—

(A) the town of Nicodemus, in Kansas, has national significance as the only remaining western town established by African-Americans during the Reconstruction period following the Civil War;

(B) the town of Nicodemus is symbolic of the pioneer spirit of African-Americans who dared to leave the only region they had been familiar with to seek personal freedom and the opportunity to develop their talents and capabilities; and

(C) the town of Nicodemus continues to be a valuable African-American community.

(2) PURPOSES.—The purposes of this section are—

(A) to preserve, protect, and interpret for the benefit and enjoyment of present and future generations, the remaining structures and locations that represent the history (including the settlement and growth) of the town of Nicodemus, Kansas; and

(B) to interpret the historical role of the town of Nicodemus in the Reconstruction period in the context of the experience of westward expansion in the United States.

(b) DEFINITIONS.—In this section:

(1) HISTORIC SITE.—The term "historic site" means the Nicodemus National Historic Site established by subsection (c).

(2) SECRETARY.—The term "Secretary" means the Secretary of the Interior.

(c) ESTABLISHMENT OF NICODEMUS NATIONAL HISTORIC SITE.—

(1) ESTABLISHMENT.—There is established the Nicodemus National Historic Site in Nicodemus, Kansas.

(2) DESCRIPTION.—

(A) IN GENERAL.—The historic site shall consist of the first Baptist Church, the St. Francis Hotel, the Nicodemus School District Number 1, the African Methodist Episcopal Church, and the Township Hall located within the approximately 161.35 acres designated as the Nicodemus National Landmark in the Township of Nicodemus, Graham County, Kansas, as registered on the National Register of Historic Places pursuant to section 101 of the National Historic Preservation Act (16 U.S.C. 470a), and depicted on a map entitled "Nicodemus National Historic Site", numbered 80,000 and dated August 1994.

(B) MAP AND BOUNDARY DESCRIPTION.—The map referred to in subparagraph (A) and accompanying boundary description shall be on file and available for public inspection in the office of the Director of the National Park Service and any other office of the National Park Service that the Secretary determines to be an appropriate location for filing the map and boundary description.

(d) ADMINISTRATION OF THE HISTORIC SITE.—

(1) IN GENERAL.—The Secretary shall administer the historic site in accordance with this section and the provisions of law generally applicable to units of the National Park System, including the Act entitled "An Act to establish a National

(2) COOPERATIVE AGREEMENTS.—To further the purposes of this section, the Secretary may enter into a cooperative agreement with any interested individual, public or private agency, organization, or institution.

(3) TECHNICAL AND PRESERVATION ASSISTANCE.—

(A) IN GENERAL.—The Secretary may provide to any eligible person described in subparagraph (B) technical assistance for the preservation of historic structures of, the maintenance of the cultural landscape of, and local preservation planning for, the historic site.

(B) ELIGIBLE PERSONS.—The eligible persons described in this subparagraph are—

(i) an owner of real property within the boundary of the historic site, as described in subsection (c)(2); and

(ii) any interested individual, agency, organization, or institution that has entered into an agreement with the Secretary pursuant to paragraph (2).

(e) ACQUISITION OF REAL PROPERTY.—

(1) IN GENERAL.—Subject to paragraph (2), the Secretary is authorized to acquire by donation, exchange, or purchase with funds made available by donation or appropriation, such lands or interests in lands as may be necessary to allow for the interpretation, preservation, or restoration of the First Baptist Church, the St. Francis Hotel, the Nicodemus School District Number 1, the African Methodist Episcopal Church, or the Township Hall, as described in subsection (c)(2)(A), or any combination thereof.

(2) LIMITATIONS.—

(A) ACQUISITION OF PROPERTY OWNED BY THE STATE OF KANSAS.—Real property that is owned by the State of Kansas or a political subdivision of the State of Kansas that is acquired pursuant to paragraph (1) may only be acquired by donation.

(B) CONSENT OF OWNER REQUIRED.—No real property may be acquired under this subsection without the consent of the owner of the real property.

(f) GENERAL MANAGEMENT PLAN.—

(1) IN GENERAL.—Not later than the last day of the third full fiscal year beginning after the date of enactment of this Act, the Secretary shall, in consultation with the officials described in paragraph (2), prepare a general management plan for the historic site.

(2) CONSULTATION.—In preparing the general management plan, the Secretary shall consult with an appropriate official of each of the following:

(A) The Nicodemus Historical Society.

(B) The Kansas Historical Society.

(C) Appropriate political subdivisions of the State of Kansas that have jurisdiction over all or a portion of the historic site.

(3) SUBMISSION OF PLAN TO CONGRESS.—Upon the completion of the general management plan, the Secretary shall submit a copy of the plan to the Committee on Energy and
Natural Resources of the Senate and the Committee on Resources of the House of Representatives.

(g) AUTHORIZATION OF APPROPRIATIONS.—There are authorized to be appropriated to the Department of the Interior such sums as are necessary to carry out this section.

SEC. 513. UNALASKA.

(a) SHORT TITLE.—This section may be cited as the "Aleutian World War II National Historic Areas Act of 1996".

(b) PURPOSE.—The purpose of this section is to designate and preserve the Aleutian World War II National Historic Area within lands owned by the Ounalaska Corporation on the island of Amaknak, Alaska and to provide for the interpretation, for the educational and inspirational benefit of present and future generations, of the unique and significant circumstances involving the history of the Aleut people, and the role of the Aleut people and the Aleutian Islands in the defense of the United States in World War II.

(c) BOUNDARIES.—The Aleutian World War II National Historic Area shall be comprised of areas on Amaknak Island depicted on the map entitled "Aleutian World War II National Historic Area".

(d) TERMS AND CONDITIONS.—Nothing in this section shall—

1. authorize the conveyance of lands between the Ounalaska Corporation and the United States Department of the Interior, nor remove land or structures appurtenant to the land from the exclusive control of the Ounalaska Corporation; or

2. provide authority for the Department of the Interior to assume the duties associated with the daily operation for the historic area or any of its facilities or structures.

(e) TECHNICAL ASSISTANCE.—The Secretary of the Interior may award grants and provide technical assistance to the Ounalaska Corporation and the City of Unalaska to assist with the planning, development, and historic preservation from any program funds authorized by law for technical assistance, land use planning or historic preservation.

SEC. 514. JAPANESE AMERICAN PATRIOTISM MEMORIAL.

(a) PURPOSE.—It is the purpose of this section—

1. to assist in the effort to timely establish within the District of Columbia a national memorial to Japanese American patriotism in World War II; and

2. to improve management of certain parcels of Federal real property located within the District of Columbia, by the transferring jurisdiction over such parcels to the Architect of the Capitol, the Secretary of the Interior, and the Government of the District of Columbia.

(b) TRANSFERS OF JURISDICTION.—

1. IN GENERAL.—Effective on the date of the enactment of this Act and notwithstanding any other provision of law, jurisdiction over the parcels of Federal real property described in paragraph (2) is transferred without additional consideration as provided by paragraph (2).

2. SPECIFIC TRANSFERS.—

(A) TRANSFERS TO SECRETARY OF THE INTERIOR.—

(i) IN GENERAL.—Jurisdiction over the following parcels is transferred to the Secretary of the Interior:
Rear Gable:

The rear gable may not have been constructed high enough.
Window opening (plywood)

Baptist was misspelled. The mason tried to rub it out. They said Mt Pleasant Baptist Church 1897.
1st Cedar Roof Shows green paint on the Nail Heads and in Some parts of the Shingle - possibly Entire Roof painted green

Soffit All wire nails and is a continuous Run on North & South Walls / The Gable’s Soffit Starts at Peak and Stops at Approx 9" from end of Rafter on Rake. Soffit on North Wall was cut w/ Angle.

East Gable (South East Side) dewelled Soffit

Removal of Roof consisted of Metal Roof Attached to 1" x 4" Pine Shading Shot in w/ coated #10 (Common) Nail gun Rolled Roofing - Green (Dark)
2 wood cedar Roofs
Edges of 1st Roof had been removed and A filler Bd was installed 3/4" x 3/2"

Paint can Found inside Roof on South Side of Shed. (Can approx 7" diam.) Turned upside down.

Stone 150'. SW corner could be where stone pipe was.
Green paint inside of can very close to color found on Shingles & Nails

Freeze Bd Separated Soffits from Meeting.

Lookouts were used on Both Peaks To Hold up Soffit 10 1/4" Long 2" x 2" and 2 more down Rake 1 center & 1 where 2 Soffits Meet
3 1/2" Spacing Between Sheathing

3/4" Thick
3/8" Fascia Width

Soffit 9" x 3/4" 7/8" Thick

Rake

Last End & End out Nail 1/4".... = Original Pitch

1/2" 11 1/4" Still Plate

3 1/4"
13 3/4"

5 1/4" 10 3/16" 6"

No Nail Holes in Ends of Rafters
No Nail Hole in Bottom

Shingle overhangs Rafter by 3 3/4"
South Frieze 600' 5" wide
East ' ' 5"

- Roof 364" 12' 34" West
- South
- 25 3/4" Anchor 511 Plate
- 227 1/2" Anchor
- 26 1 1/2" Anchor
- 43 8"
- 25 15 8" 43 8"
Actual Measurements

Old Sheathing 3'-0" spacing

4 Anchors
Holding Sill plate

5" Exposure

South Side
FREEZE Bel. 5" wide x 3/4"

Fascia
3 7/8" x 3/4" (New 7/8")

North South Soffit
9" x 3/4" (New 7/8") coped to stone

East-West C able
10 1/4" x 3/4" coped to fit stone

Original rafters had no nail holes
For a Soffit it is Soffit was nailed to a Sill on Nub 3" x 3" x 2-1/2"
Appendix D – Previous Studies

First Baptist Church, Condition Assessment Report, Restoration Associates, 1986–87
A.M.E. Church: Repair and Reconstruction Alternatives, Architecture 2000, PC, 1999
THE FIRST BAPTIST CHURCH
(Nicodemus Historic District)

Nicodemus, Kansas

Dates of Inspection and

Inspected by:
Restoration Associates
a division of
Solomon Claybaugh Young Architects Inc.
20 West 9th Street
Kansas City, Missouri 64105

Prepared for:
Preservation Assistance Division
National Park Service
Washington, D.C. 20013

and

Division of Cultural Resources
Rocky Mountain Regional Office
National Park Service
Denver, Colorado 80225

Compiled by:
Division of Cultural Resources
Rocky Mountain Regional Office
National Park Service
Denver, Colorado 80225

NATIONAL PARK SERVICE
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT STATEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>DEFINITIONS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>vii</td>
</tr>
<tr>
<td>BUILDING PHOTOGRAPHS/PLANS</td>
<td>ix</td>
</tr>
<tr>
<td>BUILDING REPORT</td>
<td>1</td>
</tr>
</tbody>
</table>
PROJECT STATEMENT

As part of its initiative to provide technical assistance to National Historic Landmarks, the National Park Service is coordinating the preparation of in-depth condition assessment reports on selected threatened historic properties. These planning reports are uniform in format and provide current, precise information on the physical condition of each landmark structure inspected. This information will assist present owners and potential buyers in evaluating the technical and economic feasibility of rehabilitating landmarks while preserving those qualities which led to their designation. The information will also be used by the National Park Service to report to Congress more accurately on the status of America's threatened National Historic Landmarks.

The condition assessment is based on a comprehensive field inspection conducted by a team of professional architects and/or engineers who prepare a report assessing the findings of the inspection and recommending, where necessary, appropriate repair and historic preservation treatments consistent with the Secretary of the Interior's STANDARDS FOR HISTORIC PRESERVATION PROJECTS. A condition assessment report consists of the following information:

1) **Administrative Data**— Information on the history and significance of the building, its location and size, and other background data.

2) **Inventory Data**— Information on architectural and engineering items, describing the major building elements, ranking the historic significance of each of these elements, determining the condition of the elements, and identifying the priority of each of the work needs.

3) **Inspection Data**— Information on deficiencies identified through the inventory process, describing and proposing corrective action.

4) **Management Cost Summary**— A one page matrix of estimated costs for all recommended work. The matrix gives a clear picture of the approximate costs to correct the identified deficiencies.

5) **Graphic Data**— A site sketch and simple drawings of existing floor plans indicating room use, bearing walls and historical development of the building form. Color photocopies of exterior and representative interior photographs of the building are also provided.
DEFINITIONS

CONDITION

An element is evaluated as **Good** when:

- the element is intact, structurally sound and performing its intended purpose
- there are few or no cosmetic imperfections
- the element *needs* no repair and only minor or routine maintenance

An element is evaluated as **Fair** when:

- there are *early* signs of wear, failure, or deterioration, though the element is generally structurally sound and performing its intended purpose
- there is failure of a sub-component of the element
- replacement of up to 25% of the element or replacement of a defective sub-component is required.

An element is evaluated as **Poor** when:

- the element is no longer performing its intended purpose
- the element is missing
- deterioration or damage affects more than 25% of the element and cannot be adjusted or repaired
- the element shows signs of imminent failure or breakdown
- the element requires major repair or replacement

TREATMENT RATINGS

Preservation: Defined as the act or process of applying measures to sustain the existing form, integrity, and material of a building or structure.

Element: Defined as the basic component or issue on which the program collects information for inventory use. An element may be an architectural feature, structural component, engineering system or a functional requirement.
1. PRESERVE

Statement of Importance:

- the element is associated with those qualities for which the property was designated an NHL and dates from this period(s) of significance, or

- the element is highly distinctive architecturally and dates to the NHL's period(s) of significance, and

- the level of damage or deterioration is such that it is still feasible to preserve.

Condition: Poor to good- Preserve

2. PRESERVE WHEREVER POSSIBLE- IF TOO DETERIORATED TO SAVE, MUST BE REPLACED IN-KIND

Statement of Importance:

- the element has acquired significance in its own right or makes an important contribution to other historic periods or levels of significance identified for the property, or

- the element makes a significant contribution either to the property's historic appearance or as an integral part of the buildings historic construction, or

- the element meets "1" level criteria except that preservation is not feasible.

Condition: Fair to good- Preserve
Poor- Replace

Note Exception: If the element is antiquated and no longer serves a functioning role, retain it, in situ, as an historic artifact, wherever possible.

3. PRESERVE WHEREVER POSSIBLE- IF TOO DETERIORATED TO SAVE, ELEMENT MUST BE REPLACED WITH COMPATIBLE MATERIAL AND DESIGN.

Statement of Importance:

- the element contributes to the historic appearance of the building and dates either to the period(s) of historic significance or represents later, sensitive repair or replacement work, or
- the element dates to the historic period(s) of significance of the building and represents a substantial amount of historic fabric.

Condition: Fair to good - Preserve
Poor - Replace

4. **PRESERVE WHERE THERE IS NO COMPELLING REASON FOR REMOVAL; UNDERTAKE ALL NECESSARY ALTERATION WORK AS SENSITIVELY AS POSSIBLE, INCLUDING ANY DEMOLITION WORK.**

Statement of Importance:

- the element dates to the historic period(s) of significance of the building or is a later, sensitive repair, but does not represent a substantial amount of historic fabric, is not distinctive, nor does it make any measurable contribution to the building’s historic appearance or system of construction.

Condition: Fair to good - Preserve
Poor - Alter/Replace

5. **REMOVE/ALTER/REPLACE; UNDERTAKE ALL SUCH NEW WORK AS SENSITIVELY AS POSSIBLE.**

Statement of Importance:

- the element is not significant and through design or condition detracts from the historic appearance of the building, or

- the element is a poor design and/or construction detail which contributes to the deterioration of the landmark, or

- the element creates a serious code violation which can not be mitigated. (In cases where mitigation is not possible, removal or alteration of the element may, in some cases, take precedence over higher ratings normally assigned to the element.)

Condition: Poor to good - Remove/Replace
6. SPECIFIED TREATMENT IS NOT REQUIRED, HOWEVER, IF ANY WORK IS DONE ON THIS ELEMENT IT SHOULD BE SYMPATHETIC TO THE HISTORIC QUALITIES OF THE LANDMARK.

Statement of Importance:
- the element has no historic value.

PRIORITY

A **Critical** deficiency of an element exists where:
- there is advanced deterioration which has resulted in the failure of the building element or will result in the failure of the building element if not corrected within two years, and/or
- there is accelerated deterioration of adjacent or related building materials as a result of the element's deficiency, and/or
- there is a threat to the health and/or safety of the user, and/or
- there is a failure to meet a legislative requirement.

A **Serious** deficiency of an element exists where:
- there is deterioration which, if not corrected within 2-5 years, will result in the failure of the building element, and/or
- a threat to the health and/or safety of the user may occur within 2-5 years if the deterioration is not corrected, and/or
- there is deterioration of adjacent or related building materials and/or systems as a result of the element's deficiency.

A **Minor** deficiency of an element exists where:
- standard preventive maintenance practices and building conservation methods have not been followed, and/or
- there is a reduced life expectancy of affected or related building materials and/or systems, and/or
- there is a condition with long-term impact beyond 5 years.
WORK RECOMMENDATIONS

Within the inventory section of the building report, each time a priority has been cited, i.e. critical, serious or minor, a work recommendation will appear in the back of the report. Occasionally, several related deficient elements can be grouped together under one work recommendation. When this happens, the description of each of the affected elements refers the reader to that element where the work recommendation appears and no priorities are cited for the cross-referenced elements.

COST ESTIMATES

The cost figures included in the work recommendations are estimates to be used for the planning of future work. They can be based on the inspector's own records, cost data provided by the owner or standard cost estimating guides by RS Means, but they are only estimates. Costs for architect's or engineer's fees or other contingencies are not included.

LIST OF SYMBOLS AND ABBREVIATIONS

ARO- Alaska Regional Office/NPS
bedrm or BR- bedroom
bldg- building
bm- beam
bmt- basement
btwn- between
clg- ceiling
dbl- double
dine or DR- dining room
E- east
elev- elevation
exist- existing
fdn- foundation
ftg- footing
FL or FLR- floor
galv- galvanized
gyp bd- gypsum board
kit- kitchen
LF- linear feet
LR- living room
MARG- Mid-Atlantic Regional Office/NPS
mtl- metal
N- north
NPS- National Park Service
oc- on center
orig- original
reqd- required
rm- room
RMRO - Rocky Mountain Regional Office/NPS
S - south
SERO - Southeast Regional Office/NPS
SF - square feet
SY - square yard
sgl - single
sht mtl - sheet metal
sm - small
stl - steel
T+G - tongue and groove
typ - typical
UBC - Uniform Building Code
W - west
WASO - Washington Office/Preservation Assistance Division/NPS
WRO - Western Regional Office/NPS
wd - wood
wdo - window

Symbols
"+" - and
"/" - period
"," - dash
"-" - comma
WEST ELEVATION

MATERIALS
FOUNDATION: CONCRETE
WALLS: STUCCO OVER LIMESTONE
WINDOWS: WOOD WITH WIRE MESH SCREENS
DOORS: WOOD
FRIZZLE: WOOD
FASCIA: WOOD
ROOF: WOOD SHINGLES
CHIMNEY: BRICK

SCALE 1/2 = 1'-0"
FEET 1/8 = 1/10 METER
METERS 1 = 40

THE FIRST BAPTIST CHURCH
GRAHAM COUNTY
KANSAS

The First Baptist Church, West Elevation
EAST ELEVATION

MATERIALS

FOUNDATION CONCRETE
WALLS STUCCO OVER LIMESTONE
BUTTRESSES STUCCO OVER LIMESTONE
WINDOWS WOOD WITH WIRE MESH SCREENS
FRONTE WOOD
FASCIA WOOD
ROOF: ASPHALT SHINGLES
CHIMNEY BRICK

SCALE

0 1 2 3 4 5 10
FEET 1/4 1/0
0 1 2 3
METERS 1/40

The First Baptist Church. East Elevation
NORTH ELEVATION

MATERIALS
FOUNDATION: CONCRETE
WALLS: STUCCO OVER LIMESTONE; ADDITION: STUCCO OVER MASONRY BLOCK
BUTTRESSES: STUCCO OVER LIMESTONE
FRIEZE WOOD
FASCIA WOOD
ROOF WOOD SHINGLES; ADDITION: ROLL ASPHALT
CHIMNEY: BRICK

SCALE
1/3" = 1'-0"

THE FIRST BAPTIST CHURCH
GRAHAM COUNTY, KANSAS

The First Baptist Church, North Elevation
The First Baptist Church, South Elevation
The First Baptist Church, Floor Plan
GENERAL INFORMATION

NICODEMUS HISTORIC DISTRICT (The First Baptist Church)
Nicodemus Historic District
Fourth and Washington Street
Nicodemus, Kansas 67625

OWNERSHIP: Private

CURRENT USE: Church/Social

PROPOSED USE: Same

OWNERS
Church Baptist Congress
Trustees First Baptist Church/
Nicodemus

ADDRESS
R.R. 2, Bogue, Kansas 67625
same as above

PHONE
see contacts

CONTACTS
Leland Clark
Clint Bates

ADDRESS
309 S. Secord Street — Hill City, Kansas 67642
317 West McFarland — Hill City, Kansas 67642

PHONE
913-674-2573
913-674-2764

LANDMARK SIGNIFICANCE
Founded in 1877, Nicodemus is the oldest of more than 2 dozen towns established in the Midwest by black freedmen during Reconstruction. Black migrants who sought freedom from the poverty and oppression of the post-Civil War South, named it after a legendary slave. It reached a peak of settlement in 1910, with 595 black inhabitants. In the spring of 1878 the First Baptist Church was organized and the congregation met in a dugout structure. Additions on the same site were a 1879 sod structure, a small 1 room native limestone sanctuary in 1880, and a larger limestone structure in 1907, still used as a church social hall.

ENDANGERED STATUS
Priority 1 (1986, 1997) — Several structures in the district are abandoned and rapidly deteriorating; others are already in ruins. The community is aware of their historic value but lacks resources to preserve them.

ARCHITECTURAL DESCRIPTION
The building is a 1½-story L-shaped plan, 58 ft 4 in by 53 ft 4 in. The moderately pitched intersecting gable roof with boxed cornice and returns is covered with wood shingles, with roll asphalt on one wing. The low foundation is stone; walls are covered with stucco over masonry and stucco over masonry block. Windows are 1-over-1 light, double-hung wood sash and 1 light fixed pane, all with plain wood surrounds. There are plain circular 1 light fixed pane windows on the gable at the north and south elevations. The main entrance is at an articulated vestibule with a hip roof at the southwest intersection of the L-plan. The primary door at the vestibule is wood with a plain wood covered semicircular opening above it, probably designed for a glass overlight. Nonhistoric stuccoed limestone buttresses on the east elevation were added to brace the wall. The interior is an open rectangular space, with kitchen and utility rooms on the west side, and study in a small wing.
GENERAL INFORMATION

CONDITION DESCRIPTION
The building is in fair condition. It has had numerous alterations such as stucco over the original stone masonry bearing walls, lowering of the original ceiling with a flat pressed metal ceiling, a concrete masonry block addition in the 1960s, replacement of exterior windows with stock double-hung wood windows, and other miscellaneous changes. The exterior stucco is in very poor condition with cracks and delamination from the masonry. There is termite damage in the joists and floor boards of the sanctuary and the bell tower. The lack of guttering allows water to fall at the edge of the foundation. The soft local stone walls are fairly stable, but have suffered deterioration over the years due to weathering.

EVALUATION PROCEDURE
The church is used as a social hall approximately once per month. There are no building or zoning codes which govern this building. Ideally it would be appropriate to restore the church to its appearance in the 1940s photo which would be exposed stone, angle head double-hung windows, and bell tower balustrade and bell. Professional observation of stone in the attic and on other buildings reveals deterioration of the soft stone from weathering that would be expensive to restore. Since restoration is prohibitively expensive for the congregation, the recommendations made are to stabilize extant historic elements of the building for its continued use as a church fellowship hall.
GENERAL INFORMATION

LANDMARK INFORMATION

NHL LISTING: Nicodemus
DATE LISTED: 1976
ESTABLISHED BOUNDARIES: No
ACREAGE: -1 acres
ARCHAEOLOGICAL RESOURCES ON SITE:
ABOVE GROUND: no
BELOW GROUND: unknown
OTHER HISTORIC BUILDINGS ON SITE:
None

OTHER BUILDINGS ON SITE:
New Sanctuary Building directly
adj to church lot to North

BUILDING HISTORY

DATE OF CONSTRUCTION: 1879-07
ARCHITECT: Unknown
HISTORIC FUNCTION: Baptist Church
YEARS MODIFIED/MODIFICATION:
1880-Church built over sod.
1907-Larger limestone building
over 1880 building.

MARKETING INFORMATION

PERCENT OCCUPIED: 100%
ASSESS VALUE:
LAND...... N/A
BUILDING...
DATE......
PROPERTY TAX RATE. None
APPRaisal:
LAND......N/A
BUILDING..
DATE.....
SOURCE....
ADDRESS.

PHONE...
IS BUILDING ON MARKET? No
ASKING PRICE: N/A
FEASIBILITY STUDIES: No
DEED RESTRICTIONS: None
ZONING CLASSIFICATION: None
HISTORIC PRESERVATION ZONING RESTRICTIONS: No
ARCHITECTURAL REVIEW BOARD JURISDICTION: No
PROXIMITY TO RAPID TRANSIT: None
PROXIMITY TO MASS TRANSIT: None
PROXIMITY TO MAJOR HWYS: U.S.424-500 Ft.South
PROXIMITY TO OTHER DEVELOPMENTS: Housing to West
PROXIMITY TO CBD: None
NUMBER OF PREVIOUS OWNERS: 0
LOCAL COST FACTOR: .55

SIGNIFICANCE

NHL PERIOD OF SIGNIFICANCE: 1877
AREA OF SIGNIFICANCE: Architecture, Religion, Social/
Humanitarian, Afro-Amer.History

NHL THEME: II: American Ways of Life: Minorities
OTHER PERIODS OF SIGNIFICANCE: 1877-1907
STATE HISTORIC LISTING:
None
LOCAL HISTORIC LISTING:
None
PAST FEDERAL INVOLVEMENT/FUNDING:
NPS-RMAG,
HABS
PAST STATE INVOLVEMENT/FUNDING:
KS Hist. Soc./KSU

LOCATION INFORMATION

LOCATION: Northeast Corner of Intersection
COUNTY: Graham
COUNTY CODE: 065
US CONGRESSIONAL DISTRICT: 1
STATE LEGISLATIVE DISTRICT: 10(S); 118(H).
UTM COORDINATES: 14,448,20,436,3400

OPERATIONS INFORMATION

Open to the Public
SEASON: Usually/Warm Weather
HOURS: Church/Once Per Month
AVERAGE OPERATING COSTS
YEARS......... 1985-86
ELECTRICAL..... $360.00
GAS............. $50.00
OIL............... N/A
WATER/SEWER.... $48.00
INSURANCE...... $698.00
PROPERTY TAXES: None

BUILDING CODE INFORMATION

APPLICABLE CODES:
No City or County
Building Codes

HISTORIC PRESERVATION CLAUSE: No
OCCUPANCY CLASSIFICATION: Assembly
OCCUPANT LOAD: 100+
HAZARD OF CONTENTS: Ordinary
SEISMIC ZONE: Zone #1
OCCUPANCY IMPORTANCE FACTOR: 1.0
GENERAL INFORMATION

BUILDING INFORMATION
FLOOR AREA: 2411 SF
ROOF AREA: 4005 SF
PERIMETER LENGTH: 203 LF
NUMBER OF STORIES: 1
TYPE OF CONSTRUCTION: Masonry Bearing Wall

NUMBERING INFORMATION
BUILDING NUMBER: 76000820-A
 NATIONAL REGISTER NUMBER: 76000820
 OTHER NUMBER:
 SOURCE:

DOCUMENTATION
WRITTEN/PHOTOGRAPHIC/GRAPHIC MATERIAL:
TYPE DATE LOCATION

EMERGENCY SERVICES INFORMATION
Fire Protection by: Nicodemus Volunteer
Truck Parked in Town
Hill City, KS 67625
913-674-2400

Hospital facilities at: Graham County Hospital
304 West Pratt
Hill City, KS 67625
913/674-2121

Police Protection by: Graham County Sheriff
110 North Pomeroy
Hill City, KS 67625
913-674-2108

OTHER CONTACT INFORMATION
REDEVELOPMENT COMMISSION

NATIONAL PARK SERVICE REGIONAL OFFICE
Rickey L. Hendricks/RMRO-PR
455 Park St., P.O. Box 25287, Denver, Colorado - 80225
913-256-8675

STATE HISTORIC PRESERVATION OFFICE
Kansas Historical Society
120 West 10th Street, Topeka, Kansas - 66612
913-296-4788

LOCAL/STATE-WIDE PRESERVATION GROUPS
Kansas Preservation Alliance

BUILDING INSPECTION DEPARTMENT
None in City or County
GENERAL INFORMATION

INSPECTION TEAM DATA
DATE OF INITIAL INSPECTION: 09/30/86

INSPECTION TEAM PERSONNEL:
INSPECTOR #1
Robert J. Claybaugh
Architect
20 West 9th Street
Kansas City, MO 64105
816-842-2292
AREAS: Architect./Mech./Elect.
TIME: 6 Hours

INSPECTOR #2
Richard Klein
Engineer
11202 Johnson Drive
Shawnee, KS 66202
913-268-3700
AREAS: Structural
TIME: 4 Hours

DATE OF DATA ENTRY: 03/10/87
DATA ENTRY BY:
NAME.... Rickey L. Hendricks
ADDRESS.... NPS-RMRO 655 Parfit
Denver, CO 80225
PHONE.... 303-236-8575

DATE OF LAST UPDATE INSPECTION:

COMMENTS:

--
--
--
--
--
--
--
BUILDING INVENTORY

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>DESCRIPTION</th>
<th>RATING</th>
<th>QUANTITY</th>
<th>CONDITION</th>
<th>PRIORIT Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 PEDESTRIAN ACCESS:WALKWAY</td>
<td>4' wide concrete walk from front stoop to public walk</td>
<td>6</td>
<td>68 SF</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>2 VEHICULAR ACCESS:PARKING</td>
<td>No parking except at street curb</td>
<td>6</td>
<td></td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>NOTE: Concrete curb and gutters new</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 VEHICULAR ACCESS:DRIVeway</td>
<td>No access drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 LANDSCAPING:FLORA</td>
<td>Grounds are grass and weeds/Rose bush at west should be trimmed to clear wall</td>
<td>6</td>
<td></td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>7 LANDSCAPING:GRADE</td>
<td>Generally level/Slopes away from bldg except on east/Grade slopes toward bldg on east</td>
<td>5</td>
<td></td>
<td>FA IR</td>
<td>MINOR</td>
</tr>
<tr>
<td>NOTE: Some depressed areas—particularly at the north</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 UTILITY SERVICE:HYDRANTS</td>
<td>Southeast corner of 4th street+HWY 124—south side of Washington west of 4th St</td>
<td>6</td>
<td>2</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>9 SITE:GENERAL 1</td>
<td>Site plan drawing shows other features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTERIOR ENVELOPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 FOUNDATION:WALLS 1</td>
<td>Original stone foundations—full perimeter except at north wall and north west corner addition</td>
<td>1</td>
<td>205 LF</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>NOTE: Foundation is stucco +/or soil covered—deterioration of native stone below coverings should be investigated/ See Item 9 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 FOUNDATION:WALLS 2</td>
<td>Concrete block at northwest corner/ study/toilet addition</td>
<td>1</td>
<td>28 LF</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>13 FOUNDATION:WALLS 3</td>
<td>Concrete exterior encasement over the original natural stone at north wall and north end of east and west walls</td>
<td>6</td>
<td>46 LF</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>NOTE: Probably installed due to deterioration of original native stone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Building Inventory

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>DESCRIPTION</th>
<th>RATING</th>
<th>QUANTITY</th>
<th>CONDITION</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTERIOR ENVELOPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 FOUNDATION:PIERS 1</td>
<td>stucco-covered stone buttresses at east wall/Size varies</td>
<td>2</td>
<td>4</td>
<td>FAIR</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Not original but added early in life of structure/Structural benefit considerably diminished from time of installation

| FOUNDATION:GENERAL | The exposed native stone is a soft lime or chalk stone that is crumbling at ground level/See recommendation for #19 | | | | |

NOTE: Another remaining bldg in town of similar age/construction has experienced severe stone deterioration

| WALLS:STRUCTURE 1 | Original building-exterior walls-soft native stone with exterior stucco/same stone as foundation | 1 | 195 LF | FAIR | CRITICAL |

NOTE: Many areas of cracked and loose stucco/East wall out of plumb - 8 1/2' maximum

WALLS:STRUCTURE 3	Concrete block walls at northwest corner /study/toilet addition	5	28 LF	GOOD	
WALLS:CAVITY 1	None/Walls are solid stone				
WALLS:CAVITY 2	None/Walls of 1967 addition are 6' concrete block				
WALLS:INSULATION	None/Plaster applied directly to stone				
WALLS:SURFACE MATERIAL 1	Stucco on stone with wood float finish	3	2932 SF	POOR	CRITICAL

NOTE: Large patch areas on north facade 1979(date marked in stucco)

| WALLS:SURFACE MATERIAL 2 | Stucco on concrete block with wood float finish | 4 | 227 SF | POOR | SERIOUS |

NOTE: Much of the stucco has weathered off the block/Stucco is powdery
Building Inventory

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
<th>Rating</th>
<th>Quantity</th>
<th>Condition</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Envelope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 WALLS: Finish 1</td>
<td>White paint on stucco</td>
<td>5</td>
<td>2932 SF</td>
<td>POOR</td>
<td>SERIOUS</td>
</tr>
<tr>
<td>30 WALLS: Finish 2</td>
<td>Probably white paint on stucco/Has weathered off/ See work recommendation #29</td>
<td>5</td>
<td>227 SF</td>
<td>POOR</td>
<td></td>
</tr>
<tr>
<td>32 WALLS: General</td>
<td>Glass mounts are placed on cracks to monitor/Most of cracks appear to be delamination of stucco—not wall movement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Stucco not original/1943 photo shows exposed stone walls.

| Openings: Main Door | 1 pair hollow core-1 3/4" thick-wood/flush panel | 5 | 1 PR | POOR | SERIOUS |

Note: Not original doors/1943 photo shows stile & rail wood doors similar to interior.

| Openings: Main Door Trim | Painted wood/See work recommendation #33 | 1 | 19 LF | FAIR | |
| Openings: Window Frame 1 | 3'-w x 4'-h wood frames/Painted/set back from stucco 2"+ | 5 | 8 | FAIR | MINOR |

Note: Not original frames.

| Openings: Window Sash 1 | Double hung-1 over 1-single glazed with metal friction glides/See work recommendation #37 | 5 | 8 | FAIR | |

Note: Not original/1943 photo shows peaked upper sash/divided lites.

Openings: Window Trim 1	Plain square wood trim/painted/See work recommendation #37	5	96 LF	FAIR	
Openings: Window Frame 2	Circular wood framed openings in gables	1	3	FAIR	MINOR
Openings: Window Sash 2	Circular wood fixed sash/painted/See work recommendation #40	1	3	POOR	

Note:
- North opening - Plaster over
- North opening - Metal cover
- South opening - Plywood cover
Building Inventory

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>DESCRIPTION</th>
<th>RATING</th>
<th>QUANTITY</th>
<th>CONDITION</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Envelope</td>
<td>46 Openings: Glazing</td>
<td>Single-ply glazed/Generally upper sash pattern glass and lower sash clear glass</td>
<td>4</td>
<td>16</td>
<td>FAIR</td>
</tr>
<tr>
<td>47 Openings: Storms</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 Openings: Screens</td>
<td>Some windows have metal screen wire attached with wood quarter round</td>
<td>6</td>
<td>8</td>
<td>POOR</td>
<td></td>
</tr>
<tr>
<td>50 Openings: Hardware</td>
<td>Front door: brass plated lockset + rose/Windows(8): painted steel sash locks</td>
<td>6</td>
<td>9</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>51 Openings: WDO Lintels/Sills</td>
<td>Lintels - Stone openings with wood infill + stucco covered stone sills</td>
<td>4</td>
<td>8</td>
<td>GOOD</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Window in concrete block has concrete block lintel+sill/stucco covered

52 Openings: General	All window openings in stone walls have been altered from original				
55 Features: Porches 1	Concrete porch at front entry/two risers to porch and one riser up to bldg floor/Porch is uncovered	5	1	POOR	SERIOUS
59 Features: Turret/Tower/Steeple	Wood framed bell tower over foyer with wood shingle roof/Steel pipe column at corner of roof for extra support/See #8	1	1	POOR	

NOTE: Bell has been removed/Bell rope hole remains in roof + ceiling/See work recommendation for #62

| **62 Features: Chimneys 1** | Brick chimney over west wall of sanctuary/Extends down to above door head/Supports on ceiling joists | 1 | 1 | GOOD | |

NOTE: Not plumb in attic/4'x4' wood post added below head of door for support

| **66 Roof: Horiz Eaves/Gable Fascia** | Painted hood eave and gable fascia and trim board along wall at eaves + gable/Wood molding on trim board | 1 | 314 LF | FAIR | SERIOUS |

NOTE: Concrete block addition has plain painted wood fascia
Building Inventory

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>DESCRIPTION</th>
<th>RATING</th>
<th>QUANTITY</th>
<th>CONDITION</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>57 ROOF: SOFFIT</td>
<td>Painted wood soffit on projecting eave + gable/See work recommendation #66</td>
<td>2</td>
<td>314 LF</td>
<td>POOR</td>
<td></td>
</tr>
<tr>
<td>71 ROOF: SURFACE MATERIAL 1</td>
<td>Main roof-belltower sloped roof and kitchen roof are wood shingles</td>
<td>3</td>
<td>2320 SF</td>
<td>FAIR</td>
<td>CRITICAL</td>
</tr>
</tbody>
</table>

NOTE: Not original

| 72 ROOF: SURFACE MATERIAL 2 | East side main roof and roof of concrete block addition are asphalt shingles over wood shingle | 5 | 1596 SF | FAIR | MINOR |

NOTE: Extra layer of shingles adds extra dead load/See #71 for work recommendation on east side

| 73 ROOF: SURFACE MATERIAL 3 | Covered asphalt roll roofing over wood sheathing/See work recommendation #71 | 5 | 81 SF | POOR | |

NOTE: Hole in roof for bell rope-not now in use

| 74 ROOF: VENTS/OPENINGS | Cement asbestos flue from unit heater in sanctuary/2-galv metal flues in low roof/1-PVC plumbing vent in low roof | 6 | 4 | GOOD | |

NOTE: Flue from old gas hot water heater should be removed

| 75 ROOF: FLASHING | Chimney valley, roof edge and tower ridge flashing are galv sheet metal/See work recommendation #71 + #72 | 4 | | POOR | |

| 76 ROOF: DRAINAGE | Galv metal gutters over foyer/ No other drainage system exists | 5 | 1 | POOR | CRITICAL |

| 77 ROOF: DECKING/SHEATHING 1 | Main roof; random 1x boards/may not be original | 6 | 3324 SF | GOOD | |

NOTE: Lumber is surfaced on four sides which makes it appear to be newer than the building
BUILDING INVENTORY

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>DESCRIPTION</th>
<th>RATING</th>
<th>QUANTITY</th>
<th>CONDITION</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>78 ROOF: DECKING/SHEATHING 2</td>
<td>Belltower random 1x boards w/some replacement</td>
<td>6</td>
<td>426 SF</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>79 ROOF: DECKING/SHEATHING 3</td>
<td>Study/toilet addition - No access - either 1x boards or plywood</td>
<td>6</td>
<td>256 SF</td>
<td>POOR</td>
<td>SERIOUS</td>
</tr>
</tbody>
</table>

NOTE: Probable damage from roof leaks and/or termites

| 80 ROOF: STRUCTURE 1 | Main Roof - 2x6 rafters w/2x6 collar ties and added 2x4 ties with lowered ceiling at 24°OC | 4 | | FAIR | CRITICAL |

NOTE: Termite damage to end of 1 rafter and support beam at belltower/entry

| 81 ROOF: STRUCTURE 2 | West gable 2x6 rafters at 24°OC-pulled loose from main roof. | 4 | | POOR | SERIOUS |
| 82 ROOF: STRUCTURE 3 | Belltower - 2x8 at 24° with mansard roof oct walls-supported by 4 posts-63/4x8 ea | 4 | | POOR | CRITICAL |

NOTE: Poorly framed and extensive termite damage to posts

| 83 ROOF: INSULATION | None | | | | |
| 84 ROOF: GENERAL | Low roof at study/toilet addition/2x joists with termite infestation | 5 | | POOR | CRITICAL |

NOTE: Asphalt shingles should be removed on east side of main roof to reduce weight - add additional hanger boards for ceiling continuous to rafters

| 85 EXTERIOR: GENERAL 1 | Primary problem is roof leakage-termite damage/Stone walls appear stable-stucco seriously cracked-pulled loose fr stone | | | | |
| 86 EXTERIOR: GENERAL 2 | Bldg was originally exposed limestone as shown in 1943 photo/Stucco added later probably due to stone deterioration | | | | |
BUILDING INVENTORY

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>DESCRIPTION</th>
<th>RATING</th>
<th>QUANTITY</th>
<th>CONDITION</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERIOR ENVELOPE</td>
<td>87 WALLS: MATERIAL 1 Exterior walls: plaster over stone on interior</td>
<td>2</td>
<td>266 LF</td>
<td>FAIR</td>
<td>SERIOUS</td>
</tr>
<tr>
<td>88 WALLS: MATERIAL 2</td>
<td>1967 addition - plaster over stone</td>
<td>6</td>
<td>27 LF</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>89 WALLS: MATERIAL 3</td>
<td>Interior partitions - Wood studs; assume plaster on wood lath on orig kitchen partition/See work recommendation #96</td>
<td>1</td>
<td>36 LF</td>
<td>FAIR</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Partitions in 1967 addition - plywood on wood studs/20LF in good condition-6 rating

WALLS: FINISH 1	Paint on plaster	4	2554 SF	FAIR	MINOR
WALLS: FINISH 2	Paint on concrete block	6	216 SF	GOOD	
WALLS: FINISH 3	Prefinished plywood in 1967 addition	6	320 SF	GOOD	
WALLS: TRIM 1	Painted beaded board wainscott 48"H/with quarter round at base + 2-1/2"x 3/4" wd cap and 1 3/4" trim	1	260 LF	GOOD	MINOR

NOTE: Quarter round removed where carpet installed/Beaded board was originally stained + varnished

WALLS: TRIM 2	Painted 1 x 4 wood base in foyer	1	18 LF	GOOD	
WALLS: TRIM 3	Stained wood quarter round at plywood paneling	6	30 LF	GOOD	
WALLS: STRUCTURE 1	2x6 wood stud walls between kitchen/entry and sanctuary	1	28 LF	FAIR	SERIOUS

NOTE: Center 4"x4 post at large opening in this wall supports 16x16 masonry chimney hanging on kitchen side of wall

| WALLS: STRUCTURE 2 | 2x6 wood stud between kitchen and entry/See work recommendation #96 | 1 | 8 LF | FAIR | |

NOTE: Cracked wood lath and plaster. Potential termite damage in east portion of this wall/Unknown structural capacity of lintels over doors
Building Inventory

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>DESCRIPTION</th>
<th>RATING</th>
<th>QUANTITY</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERIOR ENVELOPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102 OPENINGS: DOORS 1</td>
<td>1 3/8" wood stile & rail door with 6 horizontal panels/1 pair at foyer/2 sets of 3 folding at kitchen</td>
<td>1</td>
<td>8</td>
<td>GOOD</td>
</tr>
<tr>
<td>NOTE: Painted white over green/original stain and varnish</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103 OPENINGS: DOOR TRIM 1</td>
<td>1x4 wood trim at jambs/1x6 wood trim head with cap molding/All trim is pine</td>
<td>1</td>
<td>8</td>
<td>GOOD</td>
</tr>
<tr>
<td>NOTE: Surface mounted cast all lock sets with white porcelain knobs/1 1/2 pair hinges</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 OPENINGS: DOORS 2</td>
<td>1 1/8" wood stile and rail door with 4 vertical panels</td>
<td>1</td>
<td>4</td>
<td>GOOD</td>
</tr>
<tr>
<td>NOTE: Same as Door 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105 OPENINGS: DOOR TRIM 2</td>
<td>Same as door trim 1 on 2 doors to kitchen</td>
<td>1</td>
<td>2</td>
<td>GOOD</td>
</tr>
<tr>
<td>NOTE: Same as door trim 1 except one pair butt hinges on door from study and 1 pair surface hinges on door from foyer—these appear original</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107 OPENINGS: DOOR TRIM 3</td>
<td>Toilet doors have 1x3 wood trim circa 1967</td>
<td>6</td>
<td>2</td>
<td>GOOD</td>
</tr>
<tr>
<td>NOTE: Hardware same as door trim #2 with 1 pair butt hinges</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108 OPENINGS: WINDOW TRIM 1</td>
<td>1x4 wood trim on inside wall surfaces</td>
<td>1</td>
<td>7</td>
<td>GOOD</td>
</tr>
<tr>
<td>NOTE: Plaster returns on stone walls/Plaster is in fair condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109 OPENINGS: WINDOW TRIM 2</td>
<td>No trim on window in concrete block wall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112 CEILINGS: MATERIAL 1</td>
<td>Kitchen and sanctuary/Pressed all. on 1" and 1 1/2" wood furring</td>
<td>2</td>
<td>1780 SF</td>
<td>GOOD</td>
</tr>
<tr>
<td>NOTE: This is not the original ceiling—it was installed circa 1936</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEMENT</td>
<td>DESCRIPTION</td>
<td>RATING</td>
<td>QUANTITY</td>
<td>CONDITION</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>113 CEILINGS: MATERIAL 2</td>
<td>Study and toilets-gypsum board on wood studs/untaped joints</td>
<td>5</td>
<td>182 SF</td>
<td>FAIR</td>
</tr>
<tr>
<td>114 CEILINGS: MATERIAL 3</td>
<td>Foyer-Beadboard on wood joists with quarter round trim at walls</td>
<td>1</td>
<td>81 SF</td>
<td>GOOD</td>
</tr>
<tr>
<td>115 CEILINGS: FINISH 1</td>
<td>Pressed metal painted</td>
<td>3</td>
<td>1780 SF</td>
<td>FAIR</td>
</tr>
<tr>
<td>116 CEILINGS: FINISH 2</td>
<td>Gypsum board - painted</td>
<td>5</td>
<td>182 SF</td>
<td>GOOD</td>
</tr>
</tbody>
</table>

NOTE: See #113 for work write-up

117 CEILINGS: FINISH 3	Bead board - painted	3	81 SF	FAIR	MINOR
118 CEILINGS: TRIM 1	Kitchen and sanctuary/Pressed metal cove molding/painted	2	160 LF	GOOD	MINOR
119 CEILINGS: TRIM 2	Kitchen and sanctuary/1x wood trim below cove molding/See work recommendation #118	2	160 SF	FAIR	
121 CEILINGS: STRUCTURE 1	Sanctuary 2x4 2 24" OC suspended by 1x4 hanger boards at midspan	6	FAIR	MINOR	

NOTE: Only every 4th hanger extends to roof rafters-others hang from old 2x6 collar beams about 4'-9" above ceiling

| 122 CEILINGS: STRUCTURE 2 | Kitchen-2x6 2 24" OC - perpendicular to west gable roof rafters | 6 | GOOD | |

NOTE: No ties for roof rafters

| 123 CEILINGS: STRUCTURE 3 | Foyer-2x4's hung from 2x6 with 1x hangers at 24" oc | 6 | GOOD | |

NOTE: Both members run north-south

| 125 FLOORS: MATERIAL/FINISH 1 | Sanctuary and kitchen-3/4"x3'/1/4" oak T&G flooring-varnished-partially covered with carpet | 2 | 1780 SF | FAIR | CRITICAL |

NOTE: Termite activity - particularly noticeable under some carpet areas
BUILDING INVENTORY

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>DESCRIPTION</th>
<th>RATING</th>
<th>QUANTITY</th>
<th>CONDITION</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERIOR ENVELOPE</td>
<td>Foyer same as material/finish 1</td>
<td>2</td>
<td>81 SF</td>
<td>FAIR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study and toilets-sheet vinyl flooring over 1/2" plywood/See work recommendation #129</td>
<td>5</td>
<td>132 SF</td>
<td>FAIR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sanctuary-foyer-kitchen=2x8 wood joists over crawl space w/ no access to crawl space.</td>
<td>4</td>
<td></td>
<td>POOR</td>
<td>CRITICAL</td>
</tr>
</tbody>
</table>

NOTE: At tertiary damaged area of floor-joists are down on soil

| FLOORS:STRUCTURE 2 | Study + toilet-2x8 floor joist over crawl space with only partial access at bathroom plumbing | 5 | | FAIR | SERIOUS |

NOTE: Probable termite activity

| FLOORS:GENERAL | Need repairs and complete treatment for termites | |
| FEATURES:BUILT-IN FURNITURE | Raised wood platform with headboard face + 2 wood rail posts | 1 | 290 SF | GOOD | |

NOTE: Rail and two additional rail posts have been removed

| FEATURES:EXPOSED COLUMNS | 4x4 wood post, painted at wall between kitchen and sanctuary/Post was put in to shore wall below chimney | 6 | 1 | GOOD | |

| FEATURES:GENERAL | Built-in bead board cabinet-6' high in corner of kitchen | 1 | 1 | GOOD | |

| INTERIOR:GENERAL 1 | A built-in wood counter has been built in one half of the kitchen opening | 6 | 1 | GOOD | |

NOTE: The 3 folding doors have been removed + put in storage /They could be reinstalled
BUILDING INVENTORY

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>DESCRIPTION</th>
<th>RATING</th>
<th>QUANTITY</th>
<th>CONDITION</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE/LIFE SAFETY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142 CODE:VARIANCES</td>
<td>None</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143 EGRESS:LIGHTING/SIGNS</td>
<td>None/Occupant load of 50 or more requires exit signs</td>
<td></td>
<td></td>
<td>POOR</td>
<td>CRITICAL</td>
</tr>
<tr>
<td>144 EGRESS:PATH</td>
<td>Exit from the sanctuary is direct to the outside/Exit from the study and kitchen is thru the sanctuary</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146 EGRESS:DISTANCE</td>
<td>Maximum travel distance=55 ft/No corridors/One exit from building</td>
<td>5</td>
<td></td>
<td>POOR</td>
<td>CRITICAL</td>
</tr>
</tbody>
</table>

NOTE: UBC requires 2 exits from assembly spaces with more than 50 occupants

| 147 EGRESS:STAIRS/HANDRAILS | Entry steps at porch are concrete and have no handrails | 1 | | | |
| 150 EGRESS:DOORS/HARDWARE | Front entry pair of doors-lock set on one door/Top and bottom bolts on the other/1 1/2 pair hinges per door | 5 | 1 | FAIR |

NOTE: Doors swing in/No fire labels/See # 33 for work recommendation

151 DETECTION:INTRUSION DET SYS	None				
152 DETECTION:_FIRE DETECTION SYS	None				
153 DETECTION:PULL-STATION	None				
154 EXTINGUISHING:EXTINGUISHERS	None				
155 EXTINGUISHING:STAND PIPES	None				
156 EXTINGUISHING:SPRINKLERS	None				
157 SEISMIC:CODE CONCERNS	No seismic design provided due to age of building				
159 SEISMIC:PRIMARY STRUCTURAL	Stone masonry exterior walls	1		FAIR	
BUILDING INVENTORY

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>DESCRIPTION</th>
<th>RATING</th>
<th>QUANTITY</th>
<th>CONDITION</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE/LIFE SAFETY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159 SEISMIC:EXT NON-STRUCTURAL</td>
<td>No elements of this nature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 SEISMIC:INT NON-STRUCTURAL</td>
<td>Brick chimney hanging on wood roof/wall structure at west side of sanctuary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: Element would probably fail under significant seismic loading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HANDICAPPED ACCESSIBILITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>161 ACCESSIBILITY:PLAN</td>
<td>There is no building code in Nicodemus or Graham County, therefore the building is not required to be accessible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: Building codes such as the UBC would require a church to be accessible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163 EXTERIOR:ACCESSIBLE ENTRY</td>
<td>Handicapped ramp at street curb to porch with 2 steps up to porch/Exterior entry is 2-2' doors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164 INTERIOR:RESTROOMS</td>
<td>Not accessible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: Size of toilet rooms prevents making them accessible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165 ACCESSIBILITY:GENERAL 1</td>
<td>The building is not accessible because of the steps and the front entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUBLIC HEALTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168 WATER TREATMENT:DOMESTIC WATER</td>
<td>Nicodemus Township Board water tower + treatment system</td>
<td>6</td>
<td>6000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>167 WATER TREATMENT:WASTE WATER</td>
<td>Septic tank and leaching field to east of new building/This serves the toilets in the 1967 addition and new building</td>
<td>5</td>
<td>6000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170 REFUSE:HANDLING</td>
<td>Taken by members to the Graham County landfill</td>
<td>5</td>
<td>6000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEMENT</td>
<td>DESCRIPTION</td>
<td>RATING</td>
<td>QUANTITY</td>
<td>CONDITION</td>
<td>PRIORITY</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>PUBLIC HEALTH</td>
<td>Kitchen has residential sink with unvented PVC drain that runs to a gravel filled barrel in the yard</td>
<td>5</td>
<td></td>
<td>FAIR</td>
<td>SERIOUS</td>
</tr>
<tr>
<td>171 PUBLIC HEALTH:GENERAL</td>
<td>NOTE: Residential stoves have no hoods or fire suppression equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEATING/VENTILATION & AIR CONDITIONING</td>
<td>Ceiling hung propane unit heater in SW corner of sanctuary/Thermostat on wall</td>
<td>6</td>
<td>1</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>172 HEATING:EQIPMENT 1</td>
<td>NOTE: Air control by Hastings Air Conditioning Inc - 1/4 H.P.L.P. 200,000 BTU/HR input - 160,000 BTU/HR output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173 HEATING:EQIPMENT 2</td>
<td>Floor LP Heater in kitchen served by flexible line from ceiling hung heater</td>
<td>6</td>
<td>1</td>
<td>FAIR</td>
<td></td>
</tr>
<tr>
<td>174 HEATING:PIPING NETWORK</td>
<td>NOTE: Warm Morning Gas Heater by Locke Stove Company/L.P. 50,000 BTU/HR input</td>
<td>6</td>
<td>1</td>
<td>FAIR</td>
<td>MINOR</td>
</tr>
<tr>
<td>174 HEATING:PIPING NETWORK</td>
<td>Wall LP heater in study with electric fan + wall thermostat</td>
<td>5</td>
<td>1</td>
<td>FAIR</td>
<td>MINOR</td>
</tr>
<tr>
<td>184 VENTILATION:GENERAL</td>
<td>NOTE: Heil Quaker Corporation LP input - 35,000 output - 26,250</td>
<td>6</td>
<td></td>
<td>FAIR</td>
<td></td>
</tr>
<tr>
<td>PLUMBING/UTILITY</td>
<td>No ventilation other than fan in unit heater + double hung windows</td>
<td>6</td>
<td></td>
<td>FAIR</td>
<td></td>
</tr>
<tr>
<td>187 WATER:PIPING NETWORK</td>
<td>1/2" copper in kitchen + 1/2" plastic in bathrooms</td>
<td>5</td>
<td></td>
<td>FAIR</td>
<td>MINOR</td>
</tr>
<tr>
<td>189 WATER:HOT WATER HEATING</td>
<td>NOTE: Mostly exposed + uninsulated</td>
<td>6</td>
<td>1</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>189 WATER:HOT WATER HEATING</td>
<td>19.9 electric hot water heater in north toilet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189 WATER:HOT WATER HEATING</td>
<td>NOTE: State Water Heater by Courier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Building Inventory

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>DESCRIPTION</th>
<th>RATING</th>
<th>QUANTITY</th>
<th>CONDITION</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLUMBING/UTILITY</td>
<td>WATER: FIXTURES 1</td>
<td>Water closet in toilets/removed in north toilet</td>
<td>5</td>
<td>2</td>
<td>POOR</td>
</tr>
<tr>
<td></td>
<td>NOTE: Also 2 wall-hung lavatory in toilets/rating 6/good condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WATER: FIXTURES 2</td>
<td>Kitchen sink in metal cabinet</td>
<td>6</td>
<td>1</td>
<td>GOOD</td>
</tr>
<tr>
<td></td>
<td>WASTEWATER: PIPING NETWORK</td>
<td>2" PVC above floor to outside from kitchen sink/ 3" PVC from toilets in crawl space/See recommendation #171</td>
<td>6</td>
<td></td>
<td>FAIR</td>
</tr>
<tr>
<td></td>
<td>FUEL: TYPE/STORAGE 1</td>
<td>Propane tank for 2 heaters to east of building/ 40.5" diameter-150 gallon. Dallas Tank Company</td>
<td>6</td>
<td>1</td>
<td>GOOD</td>
</tr>
<tr>
<td></td>
<td>NOTE: Line goes underground to edge of building then on outside of south wall to attic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FUEL: TYPE/STORAGE 2</td>
<td>Propane tank for kitchen stove on barrel outside kitchen window/This is a small portable tank</td>
<td>6</td>
<td>1</td>
<td>GOOD</td>
</tr>
<tr>
<td>ELECTRICAL</td>
<td>INCOMING SERVICE: TRANSFORMER</td>
<td>Pole mounted transformer across Washington Street to south</td>
<td>6</td>
<td>1</td>
<td>GOOD</td>
</tr>
<tr>
<td></td>
<td>NOTE: Morton-Decatur Co-op Electric Company Inc-Morton-Kansas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INCOMING SERVICE: SERVICE LINES</td>
<td>Pole mounted meter-240 V/3 phase/15 AMP with 2 50 AMP disconnect switches</td>
<td>6</td>
<td></td>
<td>GOOD</td>
</tr>
<tr>
<td></td>
<td>INCOMING SERVICE: GROUND</td>
<td>Wire down outside of building to ground</td>
<td>6</td>
<td></td>
<td>GOOD</td>
</tr>
<tr>
<td></td>
<td>INCOMING SERVICE: MAIN DIST PNL</td>
<td>60 AMP fuse panel in foyer/125-250 Volt 2 circuits</td>
<td>6</td>
<td>1</td>
<td>GOOD</td>
</tr>
<tr>
<td></td>
<td>NOTE: Cutler-Hammer Box/surface mounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEMENT</td>
<td>DESCRIPTION</td>
<td>RATING</td>
<td>QUANTITY</td>
<td>CONDITION</td>
<td>PRIORITY</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>ELECTRICAL</td>
<td>No circuit marking</td>
<td>5</td>
<td>FAIR</td>
<td>MINOR</td>
<td></td>
</tr>
<tr>
<td>204 NETWORK:CONDUCTORS/RACEWAY</td>
<td>All wiring is surface mounted or in attic and surface mounted outlet boxes/All wiring is non-metallic cable</td>
<td>5</td>
<td>FAIR</td>
<td>MINOR</td>
<td></td>
</tr>
<tr>
<td>205 NETWORK:LIGHTING TYPE 1</td>
<td>Bare bulb incandescent socket hanging from electric cord + outlet box at ceiling/See work recommendation #204</td>
<td>5</td>
<td>7</td>
<td>FAIR</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: 1-Foyer/1-Kitchen/5-Sanctuary

| 206 NETWORK:LIGHTING TYPE 2 | Ceiling mounted incandescent porcelain lamp holder/See work recommendation #204 | 5 | 4 | FAIR |

NOTE: 1-Study/2-Toilets/1-Outside entry door

| 207 ELECTRICAL:GENERAL 1 | All electric service was added after the historic period | | | |

NOTE: Serves only lights-outlets-refrigerator-heater fans
WORK RECOMMENDATIONS

by Priority

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>ELEMENT</th>
<th>RATING</th>
<th>DEFICIENCY & CODE</th>
<th>RECOMMENDATION</th>
<th>QUANTITY</th>
<th>LABOR</th>
<th>MARKUP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRITICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>EXTERIOR ENVELOPE</td>
<td>1</td>
<td>Severe cracking in stucco, much loose stucco—probably some cracking in masonry walls under stucco</td>
<td>Remove loose stucco and interior plaster/repair; exposed stone masonry/rebuild + repoint stone walls as required to achieve sound walls</td>
<td>2932 SF</td>
<td>1000</td>
<td>2899</td>
</tr>
<tr>
<td></td>
<td>WALLS:STRUCTURE 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRIORITY: CRITICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATING: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOURCE: ARCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>EXTERIOR ENVELOPE</td>
<td>1</td>
<td>Extensive cracking and delamination of stucco applied to stone walls</td>
<td>Test to determine extent of damage/Removal of all stucco probably necessary/Remove + restucco w/ uniform quality + texture/Replace deteriorated mortar prior to stuccoing</td>
<td>2924 SF</td>
<td>860</td>
<td>3475</td>
</tr>
<tr>
<td></td>
<td>WALLS:SURFACE MATERIAL 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRIORITY: CRITICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATING: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOURCE: AS MEANS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>EXTERIOR ENVELOPE</td>
<td>1</td>
<td>Wood and asphalt shingles on main roofs and bell tower sloped roof are deteriorated + leaking/Flashings are also deteriorated</td>
<td>Remove all existing roofing materials and repair deteriorated wood sheathing/Replace flashings with new galv metal</td>
<td>3679 SF</td>
<td>3679</td>
<td>2919</td>
</tr>
<tr>
<td></td>
<td>ROOF:SURFACE MATERIAL 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRIORITY: CRITICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATING: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOURCE: AS MEANS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>EXTERIOR ENVELOPE</td>
<td>1</td>
<td>Poorly attached gutters at entry are only gutters/Lack of gutters + downspouts allows water to run down walls + soak in at wall base</td>
<td>Remove existing gutters and downspouts/install new galv metal gutters+downspouts at all roof eaves/turn out downspouts onto concrete splash blocks pitched away from bldg</td>
<td>175 SF</td>
<td>175</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>ROOF:DRAINAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRIORITY: CRITICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATING: 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOURCE: AS MEANS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>EXTERIOR ENVELOPE</td>
<td>1</td>
<td>Termite and rot damage in one roof rafter and supporting beam over entry vestibule</td>
<td>Inspect for termites/Treat if needed—including ground/foundation—See #125/Add 2x reinforcing to damaged rafter/Remove + replace damaged beam with replacement</td>
<td>100</td>
<td>100</td>
<td>665</td>
</tr>
<tr>
<td></td>
<td>ROOF:STRUCTURE 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRIORITY: CRITICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATING: 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOURCE: ARCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>EXTERIOR ENVELOPE</td>
<td>1</td>
<td>Termite damage and generally poor quality framing</td>
<td>Replace 4 posts supporting bell tower/reframe mansards to eliminate added exterior steel post/Treat for termites to prevent further damage—See recommendation for #125</td>
<td></td>
<td>200</td>
<td>1330</td>
</tr>
<tr>
<td></td>
<td>ROOF:STRUCTURE 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRIORITY: CRITICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATING: 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOURCE: ARCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Work Recommendations by Priority

<table>
<thead>
<tr>
<th>Category</th>
<th>Element</th>
<th>Deficiency & Code</th>
<th>Recommendation</th>
<th>Quantity</th>
<th>Rate</th>
<th>Labor</th>
<th>Markup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84 Exterior Envelope</td>
<td>Roor: General</td>
<td>Probable termite damage to rafters - termite damage visible in top plate on exterior north wall</td>
<td>Remove water damaged ceiling to permit full inspection of roof rafters and wall plates, replace any damaged members, treatment according to recommendation #125</td>
<td>4</td>
<td>50</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>125 Interior Envelope</td>
<td>Floors: Material/Finish 1</td>
<td>Termite damaged floor boards</td>
<td>Remove damaged fir bds + others to enable complete inspect of remaining fir + joists/Assume replacement 1/3 of fir bds w/matching/Sand + refinish fir/termite treat under + armd bldg</td>
<td>1780 SF</td>
<td>1000</td>
<td>1833</td>
<td>566</td>
</tr>
<tr>
<td>128 Interior Envelope</td>
<td>Floors: Structure 1</td>
<td>Termite/rot damage to floor joists</td>
<td>Remove flooring/Inspect + treat for termites damaged framing - see #125/Lower soil to prevent framing contact/Use treated yellow pine for all replacement wood members</td>
<td></td>
<td>300</td>
<td>1330</td>
<td>326</td>
</tr>
<tr>
<td>143 Fire/Life Safety</td>
<td>Egress: Lighting/Signs</td>
<td>Lack of exit signs and exit illumination in a space with an occupant load of more than 50</td>
<td>Install a battery powered exit light + emergency light at the main sanctuary door</td>
<td>1 EA</td>
<td>268</td>
<td>65</td>
<td>66</td>
</tr>
<tr>
<td>146 Fire/Life Safety</td>
<td>Egress: Distance</td>
<td>Only one exit from sanctuary/Two exits required with occupant load of more than 50</td>
<td>2nd or would damage historic charac of bldg/Historic bldgs can have code variance/Recommend that windows on east be designated emergency exits</td>
<td>2 EA</td>
<td>20</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>154 Fire/Life Safety</td>
<td>Extinguishing: Extinguishers</td>
<td>There are no fire extinguisher units in the building</td>
<td>Install portable fire extinguishers in the kitchen and foyer</td>
<td>2 EA</td>
<td>92</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>

Note: The table above contains a summary of recommendations for various categories including exterior envelope, interior envelope, fire safety, etc. Each recommendation includes details on the type of deficiency, the recommended action, and the associated rate, labor, and markup costs.
<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>ELEMENT</th>
<th>DEFICIENCY & CODE</th>
<th>RECOMMENDATION</th>
<th>QUANTITY</th>
<th>MATERIAL</th>
<th>LABOR</th>
<th>MARKUP</th>
</tr>
</thead>
</table>
| SERIOUS | EXTERIOR ENVELOPE | Stucco has weathered off the concrete block and some of the mortar joints are deteriorated. | Remove all existing stucco/ Tuckpoint mortar joints as reqd
/Restucco | 26 SY | 70 | 280 | 70 |
| | WALLS: SURFACE MATERIAL 2 | | | | | | |
| | PRIORITY: SERIOUS | | | | | | |
| | RATING: 4 | | | | | | |
| | SOURCE: AS MEANS | | | | | | |
| | 29 EXTERIOR ENVELOPE | Paint in poor condition and will be removed along with the existing stucco | Paint new stucco | 3159 SF | 415 | 345 | 152 |
| | WALLS: FINISH 1 | | | | | | |
| | PRIORITY: SERIOUS | | | | | | |
| | RATING: 5 | | | | | | |
| | SOURCE: AS MEANS | | | | | | |
| | 33 EXTERIOR ENVELOPE | Hollow core wood doors are deteriorated and swing-in opposite egress requirement/
Floor + top bolts prevent use of other door leaf | Replace pair of doors with wood panel doors similar to original/install to swing out with appropriate hardware | 2 EA | 535 | 155 | 138 |
| | OPENINGS: MAIN DOOR | | | | | | |
| | PRIORITY: SERIOUS | | | | | | |
| | RATING: 5 | | | | | | |
| | SOURCE: AS MEANS | | | | | | |
| | 55 EXTERIOR ENVELOPE | Front porch concrete is cracked and spalled which is a danger to those entering the building | Remove existing concrete front porch and steps and replace with new reinforced concrete porch with a handicapped ramp cut in the step | 80 SF | 125 | 133 | 51 |
| | FEATURES: PORCHES 1 | | | | | | |
| | PRIORITY: SERIOUS | | | | | | |
| | RATING: 5 | | | | | | |
| | SOURCE: AS MEANS | | | | | | |
| | 66 EXTERIOR ENVELOPE | Many eave and gable trim boards are loose and split/ Many soffits are rotted due to water penetration | Repair eave and gable boards/ Replace rotted soffits/Paint all wood | 628 LF | 200 | 665 | 173 |
| | ROOF: HORIZ EAVES/GABLE FASCIA | | | | | | |
| | PRIORITY: SERIOUS | | | | | | |
| | RATING: 1 | | | | | | |
| | SOURCE: ARCH | | | | | | |
| | 79 EXTERIOR ENVELOPE | Potential termites/Rot + termite damage visible in top plate on north block wall | Inspet by removal of water damanged ceiling/Prior to
reroofing replace damaged members/Assume 20% replacement/
Treat ground around + under building for termites | 256 SF | 50 | 133 | 36 |
| | ROOF: DECKING/SHEATHING 3 | | | | | | |
| | PRIORITY: SERIOUS | | | | | | |
| | RATING: 6 | | | | | | |
| | SOURCE: ARCH | | | | | | |
Work Recommendations by Priority

<table>
<thead>
<tr>
<th>Category</th>
<th>Element</th>
<th>Deficiency & Code</th>
<th>Recommendation</th>
<th>Justification</th>
<th>Quantity</th>
<th>Labor Cost</th>
<th>Markup</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIOUS</td>
<td>Exterior Envelope</td>
<td>Gable separating at connection to main roof</td>
<td>Provide 2x10 plate(s) attached to main roof joists and attach gable rafters to these plates</td>
<td>50</td>
<td>133</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roof: Structure 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$219</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Priority: Serious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rating: 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source: ARCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERIOR ENVELOPE</td>
<td>Walls: Material 1</td>
<td>Cracked and loose plaster on exterior stone walls/Worst conditions are in sanctuary</td>
<td>Remove all loose plaster, cut out cracks and replaster these areas to match the existing/Assume 30 per cent repair</td>
<td>255 SY 200</td>
<td>1195</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Priority: Serious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rating: 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source: Means-Arch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERIOR ENVELOPE</td>
<td>Walls: Structure 1</td>
<td>Potential termite damage to load bearing wood framing</td>
<td>Remove plaster and wood lath to expose structure for visual and physical testing for termite damage/Replace any damaged members and treat remainder to prevent damage</td>
<td>37 LF 100</td>
<td>505</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Priority: Serious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rating: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source: ARCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERIOR ENVELOPE</td>
<td>Ceilings: Material 2</td>
<td>Water damaged gypsum board. Ceilings in study and toilets/ Roof structure repair will require replacement of ceiling</td>
<td>Remove existing gypsum board ceiling and replace with new 1/2" gypsum board/Paint with 2 coats latex paint</td>
<td>182 SF 60</td>
<td>150</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Priority: Serious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rating: 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source: RS Means</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERIOR ENVELOPE</td>
<td>Floors: Structure 2</td>
<td>Probable termite damage to floor joists</td>
<td>Remove enough flr sheathing to allow total inspection joist system/Replace damaged joists+other framing members/Replace sheathing as req+vinyl floor/Use treated yellow pine on all</td>
<td>182 SF 200</td>
<td>266</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Priority: Serious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rating: 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source: ARCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUBLIC HEALTH</td>
<td>Kitchen sink is not vented + the drain line runs above grade to a gravel filled barrel</td>
<td>Properly vent the sink + tie the drain line into the toilet drain line</td>
<td></td>
<td>1 EA 120</td>
<td>208</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>PUBLIC HEALTH: GENERAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Work Recommendations by Priority

<table>
<thead>
<tr>
<th>Category</th>
<th>Element</th>
<th>Deficiency & Code</th>
<th>Recommendation</th>
<th>Justification</th>
<th>Quantity</th>
<th>Time</th>
<th>Markup</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 SITE</td>
<td>LANDSCAPING:GRADE</td>
<td>Areas on east side slope</td>
<td>Regrade to slope away from</td>
<td>Building and fill depressed areas.</td>
<td>0</td>
<td>650</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>PRIORITY: MINOR</td>
<td>toward building and some depressed areas at the north</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATING: 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOURCE: ARCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 EXTERIOR ENVELOPE</td>
<td>OPENINGS: WINDOW FRAME 1</td>
<td>Badly peeling paint on all window frames-sash-trim</td>
<td>Remove screen/scrap+sand/</td>
<td>8 EA</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRIORITY: MINOR</td>
<td></td>
<td>Cut out old caulk and recaulk perimeter and repaint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATING: 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOURCE: ARCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 EXTERIOR ENVELOPE</td>
<td>OPENINGS: WINDOW FRAME 2</td>
<td>Wood frames of circular openings require repair + replacement of plywood cover/ Paint and caulk have weathered away</td>
<td>Rebuild frames as required and replace rotted wood members/ Replace existing covers with 1/2" exterior plywood/Caulk joint at stone/Prime and paint all wood</td>
<td>3</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRIORITY: MINOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATING: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOURCE: ARCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46 EXTERIOR ENVELOPE</td>
<td>OPENINGS: SLAVING</td>
<td>Broken or cracked window glass</td>
<td>Replace cracked or broken window glass</td>
<td>64 SF</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRIORITY: MINOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATING: 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOURCE: RS MEANS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72 EXTERIOR ENVELOPE</td>
<td>ROOF: SURFACE MATERIAL 2</td>
<td>Asphalt roll roofing on bell tower roof and asphalt shingles on 1967 addition are deteriorated</td>
<td>Remove existing roofing+flash-ing material+deteriorated sheathing/Replace w/torch welded modified bitumen sgl ply membrane/See #79 for sheathing recommendation</td>
<td>326 SF</td>
<td>316</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRIORITY: MINOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATING: 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOURCE: RS MEANS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 INTERIOR ENVELOPE</td>
<td>WALLS: FINISH 1</td>
<td>Plaster wall surfaces/Walls require repainting after repair</td>
<td>Repaint plaster walls with roller</td>
<td>2554 SF</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRIORITY: MINOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATING: 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOURCE: RS MEANS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Work Recommendations by Priority

<table>
<thead>
<tr>
<th>Category</th>
<th>Element</th>
<th>Rating</th>
<th>Deficiency & Code</th>
<th>Recommendation</th>
<th>Justification</th>
<th>Quantity</th>
<th>Labor Cost</th>
<th>Markup Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINOR</td>
<td>WALLS:TRIM 1</td>
<td>1</td>
<td>Paint chipped and peeling on wood trim + beadboard</td>
<td>Chemically remove paint/prime</td>
<td>+ paint with 2 coats</td>
<td>1040 SF</td>
<td>235</td>
<td>1518</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td>2103</td>
</tr>
<tr>
<td>INTERIOR ENVELOPE</td>
<td>CEILINGS:FINISH 1</td>
<td>3</td>
<td>Pressed metal ceiling paint in poor condition</td>
<td>Sand chipped or flaking paint</td>
<td>+ prime + spray paint</td>
<td>1780 SF</td>
<td>139</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>153</td>
<td>922</td>
</tr>
<tr>
<td>INTERIOR ENVELOPE</td>
<td>CEILINGS:FINISH 3</td>
<td>3</td>
<td>Bead board ceiling paint in poor condition</td>
<td>Scrape-sand-prime-repaint</td>
<td></td>
<td>81 SF</td>
<td>15</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>93</td>
</tr>
<tr>
<td>INTERIOR ENVELOPE</td>
<td>CEILINGS:TRIM 1</td>
<td>2</td>
<td>Paint on wood and pressed metal ceiling trim in poor</td>
<td>Scrape-sand-prime-repaint</td>
<td></td>
<td>160 LF</td>
<td>100</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>condition</td>
<td></td>
<td></td>
<td></td>
<td>146</td>
<td>876</td>
</tr>
<tr>
<td>INTERIOR ENVELOPE</td>
<td>CEILINGS:STRUCTURE 1</td>
<td>6</td>
<td>Center support ceiling hangers only extend to roof</td>
<td>Add 1x4 ties to connect collar</td>
<td>beams supporting ceiling to</td>
<td>20</td>
<td>100</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rafters at every fourth ceiling joist/</td>
<td></td>
<td>roof rafters</td>
<td></td>
<td>73</td>
<td>439</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>others attach to old 2x6 collar beams 4'-9' + above</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVAC</td>
<td>HEATING:PIPING NETWORK</td>
<td>5</td>
<td>This unit has not been used for a long time + should</td>
<td>Inspect + repair as required</td>
<td></td>
<td>1 EA</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>be disconnected or inspected + repaired as required</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
African Methodist Episcopal (AME) Church
Nicodemus, Kansas

Repair and Reconstruction Alternatives

November 15, 1999

Submitted to:
National Park Service
Denver Service Center

Submitted by:
Architecture 2000, P.C.
Denver, Colorado
Table of Contents

Purpose and Scope of Report
Location
Project Background
History and Significance
Description of the AME Church
Stabilization efforts to date
Major problems contributing to decay
Summary of alternative approaches
Advantages and Disadvantages of Alternative Approaches
Project Delivery
Budget Figures
Selected References
Figures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose and Scope of Report</td>
<td>1</td>
</tr>
<tr>
<td>Location</td>
<td>1</td>
</tr>
<tr>
<td>Project Background</td>
<td>1</td>
</tr>
<tr>
<td>History and Significance</td>
<td>2</td>
</tr>
<tr>
<td>Description of the AME Church</td>
<td>3</td>
</tr>
<tr>
<td>Stabilization efforts to date</td>
<td>4</td>
</tr>
<tr>
<td>Major problems contributing to decay</td>
<td>6</td>
</tr>
<tr>
<td>Summary of alternative approaches</td>
<td>7</td>
</tr>
<tr>
<td>Advantages and Disadvantages of Alternative Approaches</td>
<td>8</td>
</tr>
<tr>
<td>Project Delivery</td>
<td>9</td>
</tr>
<tr>
<td>Budget Figures</td>
<td>13</td>
</tr>
<tr>
<td>Selected References</td>
<td>14</td>
</tr>
</tbody>
</table>
African Methodist Episcopal (AME) Church, Nicodemus Kansas
Repair and Reconstruction Alternatives

1. Purpose and Scope of Report
The purpose of this report is to describe alternative approaches to the repair and/or reconstruction of the deteriorated historic African Methodist Episcopal Church in the Nicodemus National Historic Site, Nicodemus, Kansas. The intent is to give the National Park Service adequate information to decide upon a further course of action.

The information in this report was based upon a site visit on August 31, 1999, by Walt Graham, project manager with the Denver Service Center; Kathy Lingo, historic architect with Architecture 2000 P.C.; Steve Linderer, superintendent of Fort Larned National Historic Site; and Felix Revello, chief ranger of Fort Larned National Historic Site.

2. Location
Nicodemus is located in rural central Kansas, approximately five miles east of Bogue, Kansas. The AME Church is located in the southwest portion of the town.

3. Project Background
The church building and its site were recently acquired by the National Park Service. The site will be administered by National Park Service personnel from the Fort Larned Historic Site in Kansas, approximately 100 miles away. No full-time on-site staffing is anticipated at this time.

This building is a contributing structure to the Nicodemus National Historic Site. Stabilization or repair recommendations to other structures in the District are not included in this report. The AME Church is the only structure in the town which is presently owned by the National Park Service.

4. History and Significance
The Nicodemus National Historic Site preserves, protects, and interprets the only remaining western town established by African Americans during the Reconstruction Period following the Civil War. The town was platted in 1877 by freed slaves, who distributed circulars inviting other African American freedmen to join them. By 1886 the town included four general stores, a grocery, a bank, two druggists, three land companies, a lawyer, a post office, a school, two hotels, two livery stables, a blacksmith shop, a harness and boot repair store, and an ice cream parlor. It had a baseball team, literary society, benefit society, a band, a music teacher, and two newspapers. The population reached a reported total of over 350 people. The subject of this report, the AME Church, was constructed in 1885.

In 1888 the Union Pacific railroad installed its track south of the Solomon River, bypassing Nicodemus by six miles. This created an economic hardship the town could not overcome, and by 1950 the town population was reduced to 16. The post office closed in 1953.

Nicodemus was designated a National Historic Landmark in 1976. In 1996 Congress established the Nicodemus National Historic Site.

Emancipation Day, August 1, is an annual day of celebration in the town. This tradition, begun in 1881, continues to the present day. Former Nicodemus residents and their descendants still return for the annual celebration.

AME Church, Nicodemus Kansas
Page 1
5. **Description of the AME Church**

Summary
The AME Church was constructed in 1885. It is a single story structure constructed of limestone masonry walls with a more recent stucco coating, a wood-framed roof, wood-framed floor, and stone foundation (Fig. 3). The overall condition is extremely dilapidated. The floor plan is rectangular and the primary elevation faces east. The building measures approximately forty-three feet six inches from east to west, and approximately twenty-six feet six inches from north to south. A small rectangular vestibule is on the east side. Evidence of an arched opening into the main church was found above the vestibule ceiling, suggesting that the vestibule may have been an addition, although probably a very early one.

Setting
The church is located near the south end of Nicodemus, which is almost totally abandoned. The topography is very flat. The only vegetation on the immediate site is grass. Agricultural fields lie to the south, and the property to the north has metal storage silos.

Roof and roof structure
The building has a front-facing gable roof with an eave height of approximately twelve feet. The original roofing was wood shingles on 1x6 spaced wood sheathing (Fig. 4). The shingles and sheathing are still existing, although very deteriorated. The roof is framed with original 2x6 rafters at 24" on center, with 1x6 horizontal ties and kingposts at 24" on center. There are no gutters or edge flashing, and the decking edge is exposed to the elements. Stabilization efforts in 1996 included the addition of new 2x6 sister rafters in the northwest corner, and corrugated metal roofing over the existing roof.

Exterior walls
The exterior walls are constructed of cut local limestone blocks laid up in ashlar fashion in a double-wythe wall on a shallow limestone foundation. The cut stones vary in size, but they average about 8 inches high, 16 inches long, and 8 inches deep. The entire wall thickness is about 20 inches. The north and south walls were originally bearing walls, but a freestanding interior wood post-and-beam structure was added in 1996 to remove the roof load from the deteriorated stone walls (Fig. 10). There are four boarded-up window openings on the south side, and a pair of partially boarded-up entry doors on the east side (Fig 3).

At some point in the past, possibly in the 1930's, the exterior wythe of limestone blocks was scarified and a cement plaster stucco was placed over the entire exterior (Figs 1, 8). The interior finish on the stone walls is painted plaster which appears to be original. The exterior stucco is fairly intact, except for some vertical cracking, on the vestibule and on the east and west walls of the main church. The stucco on the south wall has fallen off along the entire length of the wall for a height of about twenty-four inches above the foundation (Fig. 3). Stucco has fallen off from the eastern half of the south wall for a height of four to six feet, indicating a more severe problem in this area (Fig. 2). The stone exposed to the exterior appears to be in fairly good condition, except at the base of the wall in the eastern half of the south elevation. In general, not much mortar remains, although the extent of this condition is difficult to determine without removal of the stucco.

The north wall of the main church is extremely dilapidated and partially collapsed (Figs 7, 9, 12). At some point in the past, a large opening (about twelve feet high and about twelve feet long) was cut into the western portion of the north wall (Fig. 12). Another opening, about eight feet high and about six feet wide, was cut into the eastern portion of the north wall (Fig. 12). The north wall has
been shored up from the interior and the exterior with wood shoring (Figs 7, 10). Much of the stone has collapsed, leaving the remainder of the wall very unstable. The north wall is about six inches from vertical at the west end (Fig. 8).

Foundation
The original foundation is a very shallow continuous stone spread footing. At some point in the past, concrete was poured against the outside face of the foundation in an effort to stabilize it (Figs 1, 2). In 1996, the new interior post-and-beam roof structure was installed on a new wood cribbing foundation (Fig. 11).

Interior
The interior has a painted wood 1x4 T&G ceiling which is partially collapsed. The interior wall finish is painted plaster on stone. The paint is peeling and there is evidence of severe moisture damage on the walls. The flooring consisted of 1x6 T&G on 2x8 wood joists at 24" on center. Much of the flooring has collapsed or has been removed. At the west end, wooden steps, a raised wooden platform, and turned wooden posts define the original altar area. There is evidence of a patched-in area on the west wall, where presumably an attached altar or table once existed.

6. **Stabilization efforts to date**
A building condition survey was done in 1992 by the National Park Service Midwest Regional Office. The survey recommended major stabilization to the foundation, stone walls, roof, doors and windows, exterior stucco, interior finishes, and HVAC / electrical systems.

In 1996, the Denver Service Center prepared stabilization recommendations for five buildings in the District, including the AME Church. This package included stabilization drawings for the Church, which described a new interior wood frame on new wood cribbing isolated foundations, and a partial roof framing replacement (Fig 10, 11). This approach, which has been implemented, effectively removed the roof load from the deteriorated stone walls. At the same time, existing window openings were infilled with wood panels and ventilation louveres to reduce the weather exposure of the building interior (Fig. 3). Trees and shrubs which were growing too close to the foundation on the southeast and north sides were removed. An existing brick chimney was stabilized.

Also in 1996 corrugated metal sheeting was installed over the existing deteriorated roof, in an attempt to reduce water infiltration. This was a good idea, but its effectiveness is limited by the poor substrate conditions. There is very little sound roof structure or decking to attach the new roofing to, and some of the new roofing has already blown off (Fig. 4). The working conditions on the roof are difficult and dangerous due to the unstable roof and walls. Scaffolding is required to keep workers on a stable surface.

AME Church, Nicodemus Kansas
Page 3
7. Major problems contributing to decay
The following description of the problems causing deterioration in the structure are based upon on-site observations in 1999, and comparison of 1999 photographs with photographs taken prior to 1996. The earlier photographs were provided by the Denver Service Center. It would be helpful to have access to photographs taken over a longer period of time, so that the deterioration rate and contributing conditions could be better assessed. Fort Larned staff indicated that they had tried to encourage local residents to allow their historic photographs to be scanned, but did not meet with much success. There was reportedly some concern that the scanned images had monetary value. Additional efforts at encouraging local dialogue and input should be pursued. The best way to correctly identify the causes of structural decay is to compare photographs taken over a longer period of time.

The primary causes of the deterioration of the AME Church appear to be as follows:

A. Water in the form of rain and snow entered the building through the deteriorated wood shingle roof.
B. Water in the form of rain and snow entered the building through missing or broken windows.
C. Large openings were cut into the north wall without adequate structural compensation, making the entire north wall unstable. At the time, this wall was a bearing wall which supported the roof.
D. Cement-based stucco was placed over the limestone exterior walls. With an interior finish of painted plaster, this modification trapped moisture inside the stone walls with no way to get out. An excessive amount of moisture got into the walls through the poor roof and open windows. The vapor transmission rate of the stucco was slower than that of the limestone. The trapped moisture ran down the inside of the wall to the bottom and caused stone deterioration at the base of the walls.
E. A supplemental concrete foundation was poured at the base of the stone walls, outside the existing stone foundation. This trapped water at the base of the walls, contributing to further stone deterioration.
F. Photos taken prior to 1996 show large shrubs and trees very close to the foundation on the north and northeast sides of the building. These have since been removed, but they probably contributed to the deterioration of the north wall and foundation.

The roof is the most obvious problem, and it has been partially addressed in the last few years by National Park Service efforts. Corrugated metal sheeting was placed over the existing roofing to minimize the water problem. This has undoubtedly served its purpose, but the problem is that there is not enough sound material for adequate attachment of new roofing and sheathing (Fig. 4). The existing spaced sheathing and wood rafters have been exposed to the elements for too long and much of the material is too rotted to adequately support new roofing. As the sheathing and rafters rotted, they deflected, thus accelerating the problem. The problem is further exacerbated by the dilapidated condition of the north wall. As the north wall deteriorated, it pulled the roof structure and part of the west wall with it (Figs 7, 8).

Water entry through the roof caused extensive interior damage to the wood ceiling, wood framed floor, and painted interior plaster walls. It probably caused much of the deterioration now visible in the exterior masonry walls.

The excessive water entry through the roof allowed water to penetrate into the double-wythe limestone walls from the top. Limestone is a chemical sedimentary rock formed from precipitation.
from sea, lake, or ground waters. It was formed in layers. When cut into building blocks, it performs best when laid up with the layers horizontal so that moisture can work its way out. The blocks used to construct the AME Church were laid in the correct orientation. They were not originally covered with stucco.

Under normal circumstances, a masonry wall will not become saturated with water during a one-hour rainstorm. If the wall is not saturated, the water evaporates out to the exterior between the sedimentary layers of the stone and through the mortar joints. If water does not continually evaporate out to the exterior of the wall, then it remains in the stone and becomes destructive. It is especially destructive if the temperature inside the wall goes through freeze-thaw cycles. Water expands when it freezes, and shrinks when it thaws. These movements place stresses on the inside of the wall which cause it to break up.

Three factors are present in the AME Church which made this water problem especially destructive to the stone. First, the absence of a good roof, and good windows, allowed more water to get into the walls than could evaporate out, even under ideal conditions. Second, the later addition of a cement plaster stucco coating on the outside made the wall more impervious to moisture. While this may have seemed like a good idea at the time, it trapped moisture on the inside of the wall. The stucco has a lower vapor transmission rate than the limestone. Third, the wall appears to have been partially repointed with a cement mortar (Fig. 2). The original mortar should be tested for its composition, but was likely to be a lime mortar. Cement mortar is harder than limestone and has a lower vapor transmission rate. Again, the moisture which needed to evaporate out through highly transmissive "sacrificial" lime mortar joints could not evaporate through the harder cement mortar joints.

The excess moisture ran down the inside of the wall, probably between wythes, and got trapped at the bottom of the wall. Again, a well-intentioned later intervention made this condition worse. A newer concrete foundation was poured against the outside of the existing stone foundation at some time in the past (Fig. 1). This acts like a "dam" which traps water from both the inside and outside. The effects of this can be seen along the exposed bottom courses of deteriorated stone on the south facade (Fig. 2). If this deterioration were due to standing snow, it would be expected on the north wall, not the south wall.

Much of the exterior wythe of stone is still covered with stucco and not visible. Its condition is not known, but the stucco would probably not stay in place over a deteriorated substrate, so it is assumed for now that most of the covered stone is sound. The areas of visible deterioration are the lower portion of the south wall, and most of the north wall. The north wall is deteriorated beyond repair (Figs 7, 12). The south wall stucco has fallen off of the deteriorated bottom courses of stone, where the water got trapped. The deterioration seems more extensive in the east half of the south facade (Fig. 3). Photographs taken prior to 1996 show a particularly deteriorated portion of roof above this area. It also appears that the two eastern window openings on this facade were not boarded up in 1996, while the two western window openings were boarded up. These two conditions probably contributed to the accelerated deterioration in this area.

Some additional concerns are related to the stucco issue. The first is that the condition and soundness of the concealed stone is not known, making it difficult for a mason to bid any restoration job from drawings. The second concern is that the stone was scarified to receive the stucco (Figs 1, 8). This presents an aesthetic issue if the stone is to be exposed. The scarification marks are not attractive, but the scale and texture of exposed stone walls are important character-defining features of the original structure. Exposed scarification cuts would also create numerous

AME Church, Nicodemus Kansas
Page 5
tiny pockets for water to collect and damage the stone. Photographs taken prior to 1996 show large trees and shrubs along the east and north walls. These have since been removed. It is important to keep any further growth in check, as these conditions probably contributed to the poor condition of the property.

The north and south walls were bearing walls prior to the 1996 installation of an interior wood frame structure. At some point in the past, two large openings were cut into the north bearing wall. Adequate provisions for transferring the roof load were not made, nor were the remaining portions of the wall reinforced. These openings weakened the entire wall to its present state of partial collapse (Figs 7, 12). As the roof structure and north wall sagged toward the north, they pulled part of the west wall with them. The west wall is otherwise fairly sound, but its northern end is well out of plumb and leaning to the north (Fig. 8). The resulting crack is about six inches wide at the top and allows water into the interior. The visible stones, however, appear to be sound.

The east wall seems remarkably free from structural distress (Fig. 6). While there are large stucco cracks, this wall has not been pulled visibly out of plumb by the collapsing north wall. The small vestibule structure on the east facade may have effectively stiffened this wall. As stated previously, interior clues would suggest that the vestibule is an addition, but its similarity of materials and construction suggest that it was a very early addition.

8. Summary of Alternative Approaches
The condition of the building is extremely deteriorated. In its present condition, it is dangerous and could cause harm to a bystander. The corrugated metal roofing is loose and some of it has already blown off. The north wall is in danger of collapse. The building is kept locked, but if someone did get inside, the interior is also hazardous. The framed wood floor is deteriorated and has been partially removed. The tongue and groove ceiling is collapsing.

This report outlines a few alternative approaches to restoration or reconstruction of the building. Selection of an alternative should be made with the understanding that the building is located within a National Historic Site. Preservation of the maximum amount of historic fabric is desirable, in accordance with the Secretary of the Interior Standards. However, the condition of the building is so deteriorated that it will not be possible to save all historic fabric. A combination of preservation and reconstruction approaches will be necessary.

Regardless of which long-term approach is selected, an adequate fence should be immediately erected around the entire property to keep bystanders away from the unstable walls. At present, there is a small temporary wooden fence at the north side. A sturdy chain link fence should be installed until the structure is fully stabilized.

AME Church, Nicodemus Kansas
Page 6
Option I: Reconstruction Alternative with exposed stone walls
Summary: Disassemble the entire building. Install a new concrete foundation down to local frost depth. Reconstruct the south, west, and east walls from existing stones, replacing any deteriorated stones with sound stones salvaged from the collapsed north wall. Stone walls to remain exposed on the exterior side. Construct a new wood framed north wall with new stucco finish. Construct a new wood roof structure, re-using some of the historic rafters if possible. Construct a new wood shingle roof on new decking, with wood shingles to match profile, color, and texture of historic shingles. Replace entry doors and four windows with new doors and windows custom built to match historic ones. (It will be necessary to find some good historic photographs to do this.)

Option IIA: Reconstruction Alternative with replacement stucco coating
Summary: This option is the same as Option I, except that the reset stone walls would be covered on the outside with a breathable stucco product with a high vapor transmission rate. This would allow excess moisture to evaporate out, but solves the functional and aesthetic problems of the exposed scarification marks on the existing stones. The disadvantage is that the character-defining exterior wall finish would not date from the period of significance, but from a later modification.

Option II: Partial Restoration Alternative with exposed stone walls
Summary: Remove existing north wall and replace with a new wood-framed stucco wall on a new concrete foundation (under north wall only). Underpin existing foundation on east, south, and west walls with new concrete foundation poured in small sections. Construct a new wood roof structure, using a “sister” configuration with existing historic rafters to remain where possible. Construct a new wood shingle roof on new decking, matching profile; color, and texture of historic shingles. New wood roof structure to bear on a new wood stud wall inside the stone walls. Remove existing stucco from south, east, and west walls. Replace deteriorated stones with sound stones salvaged from the collapsed north wall. Repoint south, east, and west walls with lime mortar, recipe to be determined by testing. Remove existing nonhistoric concrete foundation.

Option IIA: Partial Restoration Alternative with replacement stucco coating
Summary: This option is the same as Option II, except that the repointed stone walls would be covered on the outside with a breathable stucco product with a high vapor transmission rate. This would allow excess moisture to evaporate out, but solves the functional and aesthetic problems of the exposed scarification marks on the existing stones. The disadvantage is that the character-defining exterior wall finish would not date from the period of significance, but from a later modification.

9. Advantages and Disadvantages of Alternative Approaches
Option I: Reconstruction Alternative with exposed stone walls
This option will result in a completely reconstructed building on a good solid foundation. An archaeologist should be present during excavation. Salvaged stones should be numbered, the old mortar cleaned off, and stones stored temporarily at a safe distance from the building while the foundation is being installed. Salvaged stones should be re-installed in their original configuration, with the exception of deteriorated stones, which should be replaced with salvage from the north wall. The advantage of this option is that it has a solid foundation, and full, solid lime mortar joints between the stones. The disadvantages are the extent of disturbance to historic fabric and exposure of scarified stone to the exterior. The scarification cuts are less sightly, and form places for destructive water to remain. Another disadvantage of this, and all, options is that a mason cannot accurately bid the project while the stone walls in question are covered with stucco.

AME Church, Nicodemus Kansas
Page 7
Option IA: Reconstruction Alternative with replacement stucco coating
This option will result in a completely reconstructed building on a good solid foundation. An archaeologist should be present during the foundation excavations. Salvaged stones should be numbered, cleaned, and re-installed in their original configuration except where replacement is necessary. The advantage of this solution is that it is a long-term solution with a solid foundation and full, solid lime mortar joints between the stones. The breathable stucco will cover the unsightly scarification marks on the stones, and will solve the functional water problems of the exposed cuts. Masonry joints would not need to be tooled, thus speeding up the process and somewhat reducing masonry costs. The disadvantage of this option is the extent of disturbance to historic fabric. Another disadvantage is that the character-defining feature of the exterior wall finish would not date from the period of significance, but from a later time. As with all options, the project costs cannot be accurately estimated in advance since the stones are covered with stucco.

Option II: Partial Restoration Alternative with exposed stone walls
This option retains all of the historic fabric which is salvageable. An archaeologist should be present during the foundation excavations. This is a long-term solution and the most historically accurate but it is the most difficult to build. The services of a mason experienced in historic preservation would be needed to accomplish the difficult in-place repointing and stone replacement tasks. The foundation underpinning would need to be done in small, separated sections. In some areas the underpinning may not be feasible. Replacement of deteriorated stones at the base of the wall would also need to be done in small, separated increments. The problem of accurately estimating project costs is the most extreme with this option, since the conditions of existing stones and mortar joints are critical to estimating labor, but they are concealed with stucco.

Option IIA: Partial Restoration Alternative with replacement stucco coating
This option retains all of the historic fabric which is salvageable. An archaeologist should be present during the foundation excavations. This is a long-term solution but difficult to build. In-place repointing of existing stone does not need to be as accurate as Option II since it will be covered, but it will still be tricky. Foundation underpinning would need to be done in small, separated sections, and in some areas it may not be feasible at all. Replacement of deteriorated stones at the base of the wall is still necessary to provide a good substrate for the new stucco. Once again, the project costs would be difficult to estimate, since the existing conditions are concealed. The advantage of this solution is that the breathable stucco will cover the unsightly scarification marks on the existing stones, and will cover the functional water problems of the exposed cuts. Another disadvantage is that the character-defining feature of the exterior wall finish would not date from the period of significance, but from a later time.

10. Project Delivery
Masonry and foundation repairs will be the most costly and labor-intensive components of this repair project. These repairs will require a skilled mason experienced in historic preservation. The present condition of the building with its stucco coating makes it difficult to adequately assess the extent of needed stone replacements and repointing. Given these issues, we recommend that one of two project delivery approaches be selected. A masonry contract could be executed with a unit price approach to stone replacement and repointing. Another approach would be to remove the stucco prior to bidding or negotiating a fixed price for masonry work. In any case, the masonry work should be bid only to prequalified masonry companies.
11. Budget figures
The following figures can be used for budget purposes. As previously stated, estimating the cost of this project is very difficult since many of the actual conditions are concealed.

These figures were primarily developed in consultation with a Colorado mason who specializes in historic preservation. Some of the numbers were taken from the 1999 RS Means Repair and Remodeling Cost Data, and the National Park Service Class “C” Estimating Manual for Historic Preservation.

Summary
Option I: Reconstruction Alternative with Exposed Stone Walls $233,008.00
Option IA: Reconstruction Alternative with replacement stucco coating $260,168.00
Option II: Partial Restoration Alternative with Exposed Stone Walls $251,180.00
Option IIA: Partial Restoration Alternative with replacement stucco coating $278,346.00

Option I: Reconstruction Alternative with Exposed Stone Walls

Division 2: Sitework
Wrought-iron fence and interpretive signage 400 lf x $23 = 9200.00
Replace topsoil and grass 8000 sf x 0.15 = 1200.00
Replace sidewalk and stoop 500.00
Demolition:
 Remove roof and framing and dispose 1875.00
 Remove stucco & concrete foundation & dispose 2500.00
 Remove interior plaster & dispose 2500.00
 Carefully remove interior t&g ceiling and store salvageable pieces for later re-use 2000.00
 Remove stone foundation 1760.00
 Excavation for new foundation 1000.00
 Archaeology 2000.00

Division 3: Concrete
New concrete foundation 178 lf x 30” depth 5160.00

Division 4: Masonry
Carefully disassemble stone walls south, east, and west. Clean off old mortar, number, and carefully store stones for reassembly. Disassemble north wall. Clean and store reusable stones.
 28 days, 2 masons and laborer= 26880.00
 Scaffold rental 6 weeks 800.00

Reconstruct south, east, and west walls from existing stones. Match historic lime mortar mix.
 55 days, mason and laborer = 33000.00
 Scaffold rental 11 weeks 1200.00
 Mortar and materials 400.00
 Testing 200.00

AME Church, Nicodemus Kansas
Page 9
Division 6: Carpentry
- New interior wood frame all 4 sides: $1452.00
- Sheathing north wall: $700.00
- New wood roof decking: $1210.00
- New wood roof structure: $1228.00
- Scaffold rental 1 week: $150.00

Division 7: Thermal and Moisture Protection
- New wood shingle roofing and felt underlayment: $4190.00
- Foundation dampproofing: $320.00
- New exterior stucco and lath, north wall: $4147.00

Division 8: Doors and Windows
- New replicated windows, 4 @ $700: $2800.00
- New replicated entry doors and hardware 2 @ $1000: $2000.00

Division 9: Finishes
- Paint new exterior north wall: $1650.00

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtotal</td>
<td>112,022.00</td>
</tr>
<tr>
<td>Plus overhead and profit @ 10%</td>
<td>11,202.20</td>
</tr>
<tr>
<td>Plus general conditions @ 20%</td>
<td>22,404.40</td>
</tr>
<tr>
<td>Plus contingency @ 15%</td>
<td>21,845.00</td>
</tr>
<tr>
<td>Add premium for remote location 15%</td>
<td>21,845.00</td>
</tr>
<tr>
<td>Add premium for historic work 30%</td>
<td>43,690.00</td>
</tr>
</tbody>
</table>

Grand Total Option I $233,008.00

Option IA: Reconstruction Alternative with replacement stucco coating
- Same subtotal as Option I: $112022.00
- New exterior stucco, east, south, and west walls: $7609.00
- Paint east, south, and west walls: $5450.00

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtotal</td>
<td>125,081.00</td>
</tr>
<tr>
<td>Plus overhead and profit @ 10%</td>
<td>12,508.10</td>
</tr>
<tr>
<td>Plus general conditions @ 20%</td>
<td>25,016.20</td>
</tr>
<tr>
<td>Plus contingency @ 15%</td>
<td>24,390.80</td>
</tr>
<tr>
<td>Add premium for remote location 15%</td>
<td>24,390.80</td>
</tr>
<tr>
<td>Add premium for historic work 30%</td>
<td>48,781.59</td>
</tr>
</tbody>
</table>

Grand Total Option IA $260,168.00
Option II: Partial Restoration Alternative with Exposed Stone Walls

Division 2: Sitework
Wrought-iron fence and interpretive signage 400 lf x $23 = 9200.00
Replace topsoil and grass 8000 sf x 0.15 = 1200.00
Replace sidewalk and stoop 500.00
Demolition:
 Remove roof and framing and dispose 1875.00
 Remove stucco & dispose 2000.00
 Archaeology 3000.00

Division 3: Concrete
Underpin existing foundation 30 cy @ $2205.00 = 66,150.00
Temporary shoring for foundation work 1600.00

Division 4: Masonry
Disassemble north wall. Clean and store salvageable stones. 7 days, mason and laborer = 3920.00
Replace deteriorated stones on east, south, and west walls with salvaged stones. Assume 90 stone replacements. 3 days, 2 masons 2160.00
Repoint east, south, and west walls using lime mortar mix 13 days, 2 masons 9360.00
Scaffold rental 5 weeks 750.00
Mortar 200.00

Division 6: Carpentry
New interior wood frame north side 450.00
Sheathing north wall 700.00
New wood roof decking 1210.00
New wood roof structure 1228.00
Scaffold rental 1 week 150.00

Division 7: Thermal and Moisture Protection
New wood shingle roofing and felt underlayment 4190.00
Foundation dampproofing 320.00
New exterior stucco and lath, north wall 4147.00

Division 8: Doors and Windows
New replicated windows, 4 @ $700 2800.00
New replicated entry doors and hardware 2 @ $1000 2000.00

Division 9: Finishes
Paint new exterior north wall 1650.00

AME Church, Nicodemus Kansas
Page 11
Subtotal 120,760.00
Plus overhead and profit @ 10% 12,076.00
Plus general conditions @ 20% 24,152.00
Plus contingency @ 15% 23,548.20
Add premium for remote location 15% 23,548.00
Add premium for historic work 30% 47,096.00

Grand Total Option II 251,180.00

Option IIA: Partial Restoration Alternative with replacement stucco coating
Same subtotal as Option II 120760.00
New exterior stucco, east, south, and west walls 7609.00
Paint east, south, and west walls 5450.00

Subtotal 133,819.00
Plus overhead and profit @ 10% 13,381.90
Plus general conditions @ 20% 26,763.80
Plus contingency @ 15% 26,094.71
Add premium for remote location 15% 26,094.71
Add premium for historic work 30% 52,189.42

Grand Total Option IIA 278,346.00
12. Selected References
The following information sources were consulted during the preparation of this report.

Nicodemus Historic Site website: http://www.nps.gov/nico/body_home.html

The African American Mosaic Exhibit website, for Nicodemus, Kansas

Nicodemus Stabilization Recommendations, July 1996, National Park Service Denver Service Center

AME Church, Nicodemus Kansas
Page 13
<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>Southwest Corner, base of wall showing foundation modification. Note scarification marks in stone.</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>South Side, closeup of stone deterioration at base of wall</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>South and east sides</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>Northwest corner</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>Southwest corner, top of wall and roof</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>East side</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>North side, west end</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>Northwest corner, showing north wall pulling away from west wall. Note scarification marks in stone.</td>
</tr>
<tr>
<td>Fig. 9</td>
<td>North and east sides</td>
</tr>
<tr>
<td>Fig. 10</td>
<td>Interior of north wall showing 1996 post-and-beam roof framing and interior shoring</td>
</tr>
<tr>
<td>Fig. 11</td>
<td>Interior of south wall showing 1996 post-and-beam foundation</td>
</tr>
<tr>
<td>Fig. 12</td>
<td>North side, east end</td>
</tr>
<tr>
<td>Fig. 13</td>
<td>Floor Plan</td>
</tr>
</tbody>
</table>

AME Church, Nicodemus Kansas
Page 14
Fig. 1 Southwest Corner, base of wall showing foundation modification. Note scarification marks in stone.

Fig. 2 South Side, closeup of stone deterioration at base of wall

Fig. 3 South and east sides
Fig. 7 North side, west end

Fig. 8 Northwest corner, showing north wall pulling away from west wall. Note scarification marks in stone.

Fig. 9 North and east sides
Fig. 10 Interior of north wall showing 1996 post-and-beam roof framing and interior shoring

Fig. 11 Interior of south wall showing 1996 post-and-beam foundation

Fig. 12 North side, east end
Floor Plan

Scale: \(\frac{1}{8} = 1'0" \)
Appendix E - Consultant Reports

Terracon Hazardous Materials report
David Arbogast Finish Analysis report
David Arbogast Mortar Analysis report
ENVIRONMENTAL HAZARDS ASSESSMENT

National Park Service
Historic Black Settlement Structures
AME Church, First Baptist Church,
District No.1 Schoolhouse
The Fletcher-Switzer Site, & Township Hall
Nicodemus, Kansas

Terracon Project No. 40011007
March 15, 2001

Prepared for:

Mr. Dan Worth
Bahr, Vermeer, & Haecker Architects, LTD.
121 South 13th Street
Lincoln, NE 68508

Prepared by:

TERRACON
Omaha, Nebraska
March 15, 2001

Mr. Dan Worth
Bahr, Vermeer & Haecker Architects, LTD.
121 South 13th Street
Lincoln, NE 68508

Re: Environmental Hazards Assessment
 National Park Service
 Historic Black Settlement Structures
 AME Church, First Baptist Church, District No. 1 Schoolhouse
 The Fletcher-Switzer Site, & Township Hall
 Terracon Project No. 40011007

Dear Mr. Worth:

Terracon is pleased to submit this report entitled, "Environmental Hazards Assessment, National Park Service, Historic Black Settlement Structures". The assessment was conducted between January 30th and February 3rd, 2001 in accordance with Terracon Proposal No. 4000270, dated September 13, 2000.

Terracon appreciates the opportunity to be of service to the National Park Service and Bahr, Vermeer & Haecker Architects, LTD. on this project and looks forward to working with you in the future. Please call us at (402) 330-2202 if you have any questions regarding this report.

Sincerely,

TERRACON

Trevor P. Tobias
Industrial Hygiene Technician

TPT/RAF: tpt/kaj

Enclosure

Copies to: Addressee (1)
EXECUTIVE SUMMARY

From January 30th through February 3rd, 2001, Terracon performed an Environmental Hazards Assessment of the Historic Black Settlement Structures: AME Church, First Baptist Church, Township Hall, District No. 1 Schoolhouse, and the Fletcher-Switzer site located in Nicodemus, Kansas. The goal of the Environmental Hazards Assessment was to identify, assess, and quantify the following environmental hazards: asbestos, lead-based paint, polychlorinated biphenyls (PCB’s), mercury, and the Hanta virus.

Summary of findings by structure:

AME CHURCH
Asbestos
Asbestos was not identified in the collected samples.

Lead-Based Paint
Four (4) prepared surfaces were determined to contain lead-based paint. These surfaces included: main door, window frames, and Sanctuary ceiling.

PCB’s and Mercury
No PCB containing light ballasts were identified. No mercury containing fluorescent light tubes or thermostat switches were identified.

Hanta Virus
Trapping was performed within this structure. No visual evidence of mice or mice feces was identified.

TOWNSHIP HALL
Asbestos
Three (3) sampled materials were determined to contain asbestos: HVAC system seam tape, HVAC duct insulation, and exterior window glazing. Refer to Table 1.0 in Appendix A for estimated quantities and sample locations.

Lead-Based Paint
None of the prepared surfaces tested were determined to contain lead-based paint.
PCB's and Mercury
A representative visual inspection identified the presence of approximately twenty-three (23) PCB-containing light ballasts and forty-five (45) mercury-containing fluorescent light tubes. Two (2) mercury containing thermostat switches were identified.

Hanta Virus
Trapping was performed within this structure. No visual evidence of mice or mouse feces was identified.

DISTRICT No. 1 SCHOOLHOUSE
Asbestos
One (1) sampled material was determined to contain asbestos: exterior window glazing. Refer to Table 1.0 in Appendix A for estimated quantities and sample locations.

Lead-Based Paint
Six (6) prepared surfaces were determined to contain lead-based paint. These surfaces included: front lobby interior door and jamb, exterior wall (East), exterior window frame (East), exterior door (East) and the porch ceiling.

PCB's and Mercury
A representative visual inspection identified the presence of approximately eight (8) PCB-containing light ballasts and eleven (11) mercury-containing fluorescent light tubes.

Hanta Virus
A visual inspection identified rodent feces in the main level of the building and were cleaned up with a cleaning detergent. Three (3) deer mice were collected as a result of trapping. The three mice tested negative for the Hanta virus. Laboratory results for the Hanta virus testing are located in Appendix B.

FIRST BAPTIST CHURCH
Asbestos
One (1) sampled material was determined to contain asbestos: exterior window glazing. Refer to Table 1.0 in Appendix A for estimated quantities and sample locations.

Lead-Based Paint
Ten (10) prepared surfaces were determined to contain lead-based paint. These surfaces included: window sills, wood baseboard, window frames, window header, ceiling molding and tin ceiling tiles.
PCB’s and Mercury
No PCB containing light ballasts were identified. No mercury containing fluorescent light tubes. One (1) mercury containing thermostat switch was identified.

Hanta Virus
Trapping was performed within this structure. Visual evidence of mice feces was identified and cleaned up with a cleaning detergent.

THE FLETCHER-SWITZER SITE
Asbestos
Three (3) sampled materials were determined to contain asbestos: counter-top linoleum, transite pipe, and joint compound. Refer to Table 1.0 in Appendix A for estimated quantities and sample locations.

Lead-Based Paint
Twelve (12) of the prepared surfaces tested were determined to contain lead-based paint. These surfaces included: window frames, door and door jambs, porcelain sink and bathtub.

PCB’s and Mercury
No PCB containing light ballasts were identified. No mercury containing fluorescent light tubes or thermostat switches were identified.

Hanta Virus
Trapping was performed within this structure. No visual evidence of mice or mice feces was identified.
TABLE OF CONTENTS

Cover page
Letter of Transmittal
Table of Contents

EXECUTIVE SUMMARY

<table>
<thead>
<tr>
<th>1.0</th>
<th>INTRODUCTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Asbestos Containing Materials</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Surfacing Materials</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Thermal System Insulation</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Miscellaneous Materials</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Regulatory Standards</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Health Effects</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Asbestos Inspection Procedures - General</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Sample Location Selection</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Sampling Methods</td>
<td>6</td>
</tr>
<tr>
<td>1.7</td>
<td>Sample Analysis</td>
<td>6</td>
</tr>
</tbody>
</table>

2.0	LEAD-BASED PAINT	7
3.0	PCB's AND MERCURY	8
4.0	HANTA VIRUS	8
4.1	Sampling Method	9

5.0	FINDINGS AND CONCLUSIONS	10
5.1	Asbestos	10
5.2	Lead-Based Paint	10
5.3	PCB's and Mercury	11
5.4	Hanta Virus	11

| 6.0 | ASSUMPTIONS AND LIMITATIONS | 11 |

APPENDIX A

AME Church
- Table 2.0 Non-Asbestos Containing Material
- Table 3.0 Results of XRF Sampling
- Analytical Report and Chain-of-Custody Documentation
- Drawing of Asbestos Sample Collection
Township Hall
- Table 1.0 Asbestos Containing Material
- Table 2.0 Non-Asbestos Containing Material
- Table 3.0 Results of XRF Sampling
- Analytical Report and Chain-of-Custody Documentation
- Drawings of Asbestos Sample Collection

District No.1 Schoolhouse
- Table 1.0 Asbestos Containing Material
- Table 2.0 Non-Asbestos Containing Material
- Table 3.0 Results of XRF Sampling
- Analytical Report and Chain-of-Custody Documentation
- Drawing of Asbestos Sample Collection

First Baptist Church
- Table 1.0 Asbestos Containing Material
- Table 2.0 Non-Asbestos Containing Material
- Table 3.0 Results of XRF Sampling
- Analytical Report and Chain-of-Custody Documentation
- Drawing of Asbestos Sample Collection

The Fletcher-Switzer Site
- Table 1.0 Asbestos Containing Material
- Table 2.0 Non-Asbestos Containing Material
- Table 3.0 Results of XRF Sampling
- Analytical Report and Chain-of-Custody Documentation
- Drawings of Asbestos Sample Collection

APPENDIX B Hanta Virus Analytical Report and Chain-of-Custody Documentation

APPENDIX C: Personnel Accreditation
ENVIRONMENTAL HAZARDS ASSESSMENT

National Parks Service
Historic Black Settlement Structures
AME Church, First Baptist Church, District No. 1 Schoolhouse
The Flether-Switzer Site, & Township Hall
Nicodemus, Kansas

Terracon Project No. 40011007
March 15, 2001

1.0 INTRODUCTION

The purpose of the Environmental Hazards Assessment was to locate, sample (when necessary), quantify, and assess suspect building materials and equipment for the presence of Asbestos, Lead-Based Paint, PCB's and Mercury at the Historic Black Settlement Structures in Nicodemus, Kansas. In addition, three mice were trapped and submitted to a diagnostic laboratory to determine if they carried the Hanta virus. The assessment was conducted between January 30th and February 3rd, 2001, in accordance with Terracon Proposal No. 4000270 dated September 13, 2000. The survey was performed by Terracon Inspectors, Mr. Trevor Tobias and Mr. Jon Fannon. A copy of Mr. Tobias and Mr. Fannon’s accreditations are located in Appendix C.

1.1 Asbestos Containing Materials

Asbestos is a naturally occurring fibrous mineral. It is resistant to acid and heat, and does not conduct electricity or heat well. It is because of these features that is was widely used in buildings constructed prior to 1980. Asbestos was used in over 3,000 types of construction materials. The following paragraphs describe materials that commonly contain asbestos, and therefore, are considered suspect ACMs.

1.1.1 Surfacing Materials

The most common type of suspect surfacing materials are used for fireproofing and acoustical insulation purposes. Insulating materials are generally fluffy, but can also be cementitious. Both types of materials are made of a mixture of tiny glass beads and a mineral wool base. The surfacing material may also contain a binding agent and up to 95 percent asbestos. Asbestos can also be found in plasters where a binding material...
was required in the underlying "brown coat" layer or in the finish coat when a smooth finish was desired.

The friability of these materials on building surfaces (walls, ceilings, wide flange beams or other structural members) is determined by touch. If the material can be reduced to powder by hand pressure, it is considered friable.

1.1.2 Thermal System Insulation

All thermal system insulation (TSI) is considered suspect unless it can be identified as non-asbestos. For example, fibrous glass insulation has a characteristic color and texture. Rubber and styrofoam can also be distinguished by color and texture from other types of insulation.

- **Pipe Covering** - Pipe covering (i.e., pipe insulation) is a primary suspect ACM located in buildings built prior to 1971. Pipe insulation has also been found in buildings constructed as late as 1980.

- **Pipe Fitting Insulation** - Pipe fitting insulation (pipe joint compound) is another major source of asbestos in many structures built prior to 1982. Although the use of asbestos in this type of material was banned in 1975, some "left-over" materials remain and may have been used by the owner for repair of damaged fittings. Pipe fittings insulation or compound is used to insulate elbows, tees, valves and steam traps, and may have been used to repair minor damage in pipe coverings. In many cases, pipe fitting insulation types appear identical, but examination under a microscope will allow determination of content.

- **Pressure Vessel and Boiler Stack Insulation** - Asbestos is a common component of boiler and pressure vessel insulation. Older boilers are more likely to be insulated with ACM. Pressure vessels (such as feedwater tanks) are often insulated with fibrous glass on the sides and ACM on the ends of the tank. Asbestos insulation may also have been trowelled onto tank surfaces near drain valves, sight glasses, and temperature or pressure gauges.

- **Air-Handler Ductwork** - A "skim coat" of asbestos mud is often trowelled on over fibrous glass or mineral wool duct insulation. The duct system is then covered with a canvas material.
1.1.3 Miscellaneous Materials

- **Air-Handler Expansion/Shock Joints** - Moist air-handler units have cloth expansion or shock joints between the blower and other components. The material may contain up to 60 percent asbestos, and although it is not friable, the asbestos fibers are exposed to high flow volumes of fast-moving air, and may become airborne.

- **Ceiling Tile** - Approximately two percent of all ceiling tile manufactured prior to 1975 contains asbestos. The tiles are usually friable, even if in good condition, because the tiles can be crushed by hand pressure.

- **Floor Tile, Linoleum, and Mastic** - Asbestos was commonly used as a component of floor tile and linoleum, due to its excellent durability. In this application, the asbestos is tightly bound to the vinyl substrate of the tile or linoleum. Under normal wear, floor tile and linoleum are not considered friable. The mastic/adhesive also commonly contains asbestos. However, the adhesive is usually encapsulated by the floor tile or linoleum.

- **Loose-Fill Attic Insulation** - Some loose-fill insulation may contain asbestos fibers. Most loose-fill insulation is fibrous glass or rock wool.

- **Roofing Materials** - Roofing materials often contain asbestos fibers, which have been added as binding agents for strength. This is most common in built-up roofs where asbestos-containing felts are used. Certain types of older roof shingles have also been known to contain asbestos. Roof and curb flashing are also common asbestos-containing roofing materials (ACRMs).

- **Transite** - The material may be located on interior walls and exterior walls and soffits. Induced draft towers may have siding, louveres, and splashguards manufactured from transite hardboard, which may contain 30 to 80 percent asbestos.

- **Wallboard** - Some types of wallboard can contain asbestos. This is not common, but can be found in older installations. Wallboard spackling also occasionally contains asbestos fibers.
1.2 Regulatory Standards

Airborne levels of asbestos fibers are regulated by the Occupational Safety and Health Administration (OSHA) and United States Environmental Protection Agency (USEPA). These governmental agencies have promulgated standards for permissible airborne concentrations of asbestos fibers and specific requirements for repair and abatement. The laws are designed to protect the worker (OSHA), school building occupants (USEPA), and the general environment (USEPA). In addition, each state may have adopted its own requirements, which may be more stringent than those called for by OSHA or the USEPA.

OSHA established an asbestos standard in 1971, primarily directed toward industrial applications (29 CFR 1910.1001). In response to the growing asbestos abatement industry and the additional concern regarding asbestos exposure, a standard for the construction industry (29 CFR 1926.58) became effective on July 21, 1986. These standards specifically outline asbestos removal procedures, respirator selection and fit testing, air sampling, the analysis of asbestos air samples and employee protection from exposure to airborne asbestos fibers.

The standards include a time-weighted average (TWA) permissible exposure limit (PEL) of 0.1 fibers per cubic centimeter of air (fib/cc), a short-term exposure limit (STEL) of 1.0 fib/cc, and medical surveillance for exposed employees. OSHA amended the construction industry standard as 29 CFR 1926.1101 on August 10, 1994 (Revised September 29, 1995). The amended standard outlined steps for building owners to implement to reduce asbestos exposure to general maintenance employees. The steps include presuming materials as suspect ACM (PACM, surfacing material, and TSI) where no formal survey has been performed, and establishing communication procedures.

The USEPA regulates ACMs and acceptable airborne levels of asbestos in school buildings under the AHERA (40 CFR Part 763). The standard became effective on December 14, 1987. The regulation stipulates that a Local Education Agency (LEA) must have building inspections and management plans regarding ACM in each of the Agency buildings. The LEA was also required to implement management plans and maintenance plans by July 9, 1989. These regulations also prescribe that abatement activities be conducted by accredited individuals and that completion of abatement activities verified by the analysis of clearance air samples [40 CFR, Part 763.90, Paragraph (i)(2)].
The USEPA has also published a "visible emissions" standard under the National Emission Standard for Hazardous Air Pollutants (NESHAPS, 40 CFR 61.140). The standard also regulates specific procedures of notification for renovation and demolition projects, and land disposal of ACMs.

AHERA 40 CFR 763 was first implemented in December, 1987 for all public and private school buildings housing kindergarten through 12th grade classes. Since that time, the standard has become the basis for most accepted industry procedures regarding asbestos inspections in all other types of buildings (i.e., commercial, industrial, residential, and government structures). Although the AHERA regulations do not currently apply to asbestos inspections performed in non-school buildings, OSHA regulations are similar in nature to AHERA and have been implemented for commercial buildings (Refer to: OSHA 29 CFR 1926.1101).

1.3 Health Effects

Asbestos can cause asbestosis, lung cancer, and mesothelioma. The onset of asbestosis has been linked to the concentration of the asbestos dust, the type of asbestos fiber in the dust, and the length of exposure. It is a progressive disease that may develop fully 20 to 30 years after the first exposure. It is characterized by scarring of the lungs, and will significantly decrease the ability of the lungs to exchange air.

Mesothelioma, or cancer of lining of the lung or abdominal cavity, may occur without evidence of asbestosis. Mesothelioma may occur after a short, intensive exposure to asbestos fibers. Approximately 85 percent of all mesothelioma cases are attributable to asbestos exposure.

According the Department of Labor, information is insufficient at the present time to set an exposure standard (other than zero) that could assure the prevention of mesothelioma in all workers, since the disease may occur following a very limited exposure 10 to 15 years earlier. People exposed to industrial concentrations of asbestos are at a risk five times greater than the general public of developing lung cancer.

Cigarette smoking is strongly implicated as a "co-carcinogen" among asbestos workers. Calculations suggest that asbestos workers who smoke have approximately 50 to 90 times the risk of developing lung cancer compared with other smokers.
1.4 Asbestos Inspection Procedures - General

The various structures comprising the Historic Black Settlement in Nicodemus, Kansas were surveyed for the presence of suspect ACMs with an asbestos content greater than one-percent. The suspect materials identified were described and categorized into homogeneous areas. Homogeneous areas consist of suspect materials that are identical in color, appearance, pattern, texture, and date of installation. For the purpose of this survey, identified homogeneous areas were confined to the various structures surveyed. Samples were collected in general compliance with OSHA (29 CFR 1926.1011), dated August 10, 1994 (Revised September 12, 1995), and AHERA guidelines.

1.5 Sample Location Selection

Samples of suspect ACMs were collected in a randomly distributed manner sufficient to determine whether the materials were asbestos-containing or not. Samples were not collected from any homogeneous area where the inspector determined that the material was non-ACM (such as foam, glass, wood, rubber, ceramic tile).

1.6 Sampling Methods

Samples were obtained with a stainless steel knife to penetrate a material without creating excessive dust. Except for joint compound, the knife was utilized to cut, rather than scratch a sample from the surface of suspect materials in an effort to obtain a sample that was representative of all layers of the material. The sampled area was pre-wetted to minimize or reduce fiber generation during the sampling process. Damaged or inconspicuous areas were sampled wherever practical.

Terracon sampling procedures incorporate the use of sealable plastic bags, labeled with black permanent markers using a unique numbering sequence. One label with the sample number was placed on the sample bag, and a second description was written on a bulk sample log. Information about the sample, including the sample type, location, and condition, was noted on the sheet as each sample was collected.

1.7 Sample Analysis

Thirty-seven (37) samples were collected and submitted for analysis to Environmental Hazards Services, Richmond, Virginia. Analysis was performed by polarized light microscopy (PLM), utilizing dispersion staining. Environmental Hazards Services (EHS)
is accredited to perform PLM analysis by the National Voluntary Laboratory Accreditation Program (NVLAP). PLM analysis requires the microscopist to treat a portion of the sample with an oil of specific refractive index. The prepared slide is then subjected to a variety of tests while being viewed under polarized light. Each type of asbestos displays unique characteristics when subjected to these tests. Percentages of the identified types of asbestos are determined by visual estimation. According to OSHA and EPA regulations, any material that contains greater than one percent of any type of asbestos is considered an ACM. A copy of the Analytical Report and Chain-of-Custody documentation are contained in Appendix A.

2.0 LEAD-BASED PAINT

The purpose of the lead-based paint assessment was to identify the presence of lead-based paint or pigment in prepared (painted, varnished, tiled) surfaces throughout the surveyed area. A RMD, Model No. LPA-1, XRF type analyzer, (Serial No. 01522), was used to determine the concentration of lead in tested surfaces. The LPA-1 uses a cobalt (Co)-57 radioactive source and an advanced, solid-state radiation detector to generate an x-ray fluorescence spectrum of a surface. The spectrum is analyzed by a microprocessor to eliminate the effects of substrate and other factors such as back scattering to allow a determination of the amount of lead for the surface sampled. Using the sampling protocols established by Housing and Urban Development (HUD), random samples of prepared surfaces were analyzed. Representatives sampling of surfaces was based on the following criteria:

- The distribution of the suspect material throughout a homogenous area;
- The suspect material's physical characteristics and application;
- Random sampling patterns determined for each homogeneous area

Suspect prepared surfaces that were analyzed were considered to be representative of materials in a homogeneous area if:

1. They exhibited similar physical characteristics (suspect materials alike in appearance, composition and time of application were sampled as homogenous areas)

2. The application of the sampled surface could be associated to an application of unsampled surface.
Two hundred seventy-two (272) prepared surfaces were analyzed for lead using a RMD Model LPA-1, XRF type analyzer. Thirty-two (32) of the two hundred seventy-two (272) prepared surfaces analyzed indicated lead concentrations equal to or above the USEPA level of 1.0 mg/cm². Table 3.0 in Appendix A lists the results of the XRF testing.

If surfaces identified as “inconclusive”, in Table 3.0 XRF Test Results, will be disturbed as a result of planned renovation activities, it is recommended that additional testing be performed or these surfaces be considered as containing lead-based paint.

3.0 PCB's AND MERCURY

A total of thirty-one (31) PCB containing ballasts were identified in lighting fixtures throughout both the Township Hall and District No.1 Schoolhouse interior.

Terracon’s building inspectors performed a representative visual inspection of light fixtures to identify PCB-containing ballasts. Nearly all ballasts manufactured prior to 1979 are assumed to contain PCB’s unless clearly marked as containing “NO PCBs”. Ballasts that did not contain a date stamp were compared to a reference guide developed by the Wisconsin Department of Natural Resources for determining PCB-containing ballasts.

Approximately forty-five (45) mercury-containing fluorescent light tubes were identified in the Township Hall, and eleven (11) mercury-containing fluorescent light tubes in the District No.1 Schoolhouse. Fluorescent light tubes containing mercury should be sent to a recycling facility approved to recover mercury from fluorescent light fixtures. Two (2) mercury containing thermostat switches were identified in the Township Hall, and one (1) was identified in the First Baptist Church.

4.0 HANTA VIRUS

In 1993, a cluster of human cases of adult respiratory distress syndrome in the southwestern United States came to the attention of public health officials. The rapid progression of the disease, its occurrence in previously healthy young adults, and a high case fatality ratio caused considerable alarm. Multi-agency efforts involving state and local health departments, universities, the Indian Health Service, and the Centers of Disease Control and Prevention (CDC) resulted in rapid identification of the infectious agent and the mechanism for its spread. The microorganism causing the illnesses was identified as the Hanta virus that infected rodents in the area.
The deer mouse, *Peromyscus maniculatus*, is the primary reservoir of the Hanta virus in much of North America. Other species of *Peromyscus* may serve as competent hosts, and a variety of species, including chipmunks have been shown to have Hanta virus antibodies. Although Hanta virus infection does not appear to adversely affect the health of the rodent host, infected hosts may develop life long chronic infections and shed the infectious virus in urine, feces, and saliva.

The primary method of human infection with Hanta virus is believed to be inhalation of aerosolized virus, which is shed in urine, faces, and saliva of infected rodents. Exposure to infected rodents in closed, confined spaces may be particularly hazardous. Persons visiting laboratories where infected rodents were housed have contracted Hanta virus after only a few minutes exposure to animal-holding areas or research laboratories. Several cases of Hanta virus in North America have apparently been results of working or living in an indoor area with rodents. Human infection can also occur when virus or virus-contaminated materials are introduced into broken skin, conjunctivae, or mucous membranes, or perhaps when accidentally ingested with food or water. Infection may also be directly transmitted by bite.

4.1 Sampling Method

Terracon set and maintained traps in each structure over a 48 hour sampling period. Three (3) mice were collected from traps set in the District No.1 Schoolhouse. These mice where submitted to Charles River Laboratory, Wilmington, MA, a research laboratory specializing in the analysis of virology, serology, and pathology in rodents.

The purpose of the sampling was to identify if the Hanta virus is present in the mice that inhabit the First Black Settlement Structures of Nicodemus, Kansas. The test results showed that all three (3) mice were deer mice, and each tested negative for the Hanta virus. Results of sampling for the Hanta virus are identified in Table 4.0 located in Appendix B.
5.0 FINDINGS AND CONCLUSIONS

5.1 Asbestos

Thirty-seven (37) bulk samples were collected from suspect building materials of which eight (8) samples were identified as asbestos containing. The building materials identified as asbestos containing materials (ACM) consisted of:

- Counter-top Linoleum
- Transite Vent Piping
- HVAC Duct Insulation and Seam Tape
- Joint Compound
- Window Glazing

5.2 Lead-Based Paint

Based upon the results of XRF and laboratory analysis the following prepared surfaces were determined to contain lead or lead-based paint:

- Door components (various)
- Window components (various)
- Porcelain sink and tub
- Plaster wall and ceilings
- Wood ceilings
- Baseboard and ceiling trim
5.3 PCB's and Mercury

Twenty-three (23) PCB-containing ballasts and forty-five (45) mercury-containing fluorescent light tubes were identified in the Township Hall. Eight (8) PCB-containing ballasts and eleven (11) mercury-containing fluorescent light tubes were identified within the District No. 1 Schoolhouse. Fluorescent light fixtures were not identified within the other structures. Two (2) mercury containing thermostat switches were identified in the Township Hall, and one (1) mercury containing thermostat switch was identified in the First Baptist Church.

5.4 Hanta Virus

Rodent fecal matter and mice were caught within the District No. 1 Schoolhouse structure. The three mice submitted for laboratory testing did not contain the Hanta virus.

6.0 ASSUMPTIONS AND LIMITATIONS

The results, findings, conclusions, and recommendations expressed in this report are based on conditions encountered during the January 30th - February 3rd, 2001 Terracon survey of the Historic Black Settlement Structures, Nicodemus, Kansas.

The identification of Asbestos Containing Material (ACM) could not be performed in inaccessible locations such as wall cavities and above hard (plaster) ceilings. It is possible that some ACM, including asbestos containing pipe insulation, may be located in these inaccessible locations. Terracon recommends that the renovation contractor be made aware of the potential for ACM to be present within inaccessible areas. If suspect material is uncovered during renovation activities it should not be disturbed until a sample has been collected and tested for asbestos content.

Laboratory analysis did not reveal the presence of the Hanta virus within the three submitted samples. Absence of the Hanta virus in the submitted samples does not mean that the Hanta virus is not potentially present in other rodents at the project site.
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Type of Material</th>
<th>Sample Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>AME-1</td>
<td>Plaster</td>
<td>Exterior, East central area</td>
</tr>
<tr>
<td>AME-2</td>
<td>Plaster</td>
<td>Lobby area, south wall</td>
</tr>
<tr>
<td>AME-3</td>
<td>Sheet Flooring</td>
<td>Sanctuary, Central area</td>
</tr>
</tbody>
</table>
TABLE 3.0 - RESULTS OF XRF LEAD SAMPLING

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Location</th>
<th>Description</th>
<th>Color</th>
<th>Substrate</th>
<th>Results mg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>2</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>3</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>4</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td>7</td>
<td>Main Entrance</td>
<td>Exterior, east plaster wall</td>
<td>Off White</td>
<td>Plaster</td>
<td>0.4</td>
</tr>
<tr>
<td>8</td>
<td>Main Entrance</td>
<td>Door jamb</td>
<td>White</td>
<td>Wood</td>
<td>1.0 qm*</td>
</tr>
<tr>
<td>9</td>
<td>Main Entrance</td>
<td>Door jamb</td>
<td>White</td>
<td>Wood</td>
<td>0.9 sm</td>
</tr>
<tr>
<td>10</td>
<td>Lobby Area,</td>
<td>East wall</td>
<td>Pink</td>
<td>Plaster</td>
<td>-0.2</td>
</tr>
<tr>
<td>11</td>
<td>Lobby Area</td>
<td>Ceiling</td>
<td>White</td>
<td>Wood</td>
<td>0.4</td>
</tr>
<tr>
<td>12</td>
<td>Lobby Area</td>
<td>South wall</td>
<td>Pink</td>
<td>Plaster</td>
<td>0.1</td>
</tr>
<tr>
<td>13</td>
<td>Lobby Area</td>
<td>Floor</td>
<td>Gray</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>14</td>
<td>Main Door</td>
<td>Door, interior</td>
<td>White</td>
<td>Wood</td>
<td>2.5</td>
</tr>
<tr>
<td>15</td>
<td>Main Door</td>
<td>Door jamb</td>
<td>White</td>
<td>Wood</td>
<td>0.5</td>
</tr>
<tr>
<td>16</td>
<td>Sanctuary</td>
<td>East wall</td>
<td>Pink</td>
<td>Plaster</td>
<td>0.0</td>
</tr>
<tr>
<td>17</td>
<td>Sanctuary</td>
<td>Window frame</td>
<td>White</td>
<td>Wood</td>
<td>8.4</td>
</tr>
<tr>
<td>18</td>
<td>Sanctuary, Altar</td>
<td>Handrail</td>
<td>White</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>19</td>
<td>Stage Area</td>
<td>Floor</td>
<td>Brown</td>
<td>Wood</td>
<td>0.3</td>
</tr>
<tr>
<td>20</td>
<td>Stage Area</td>
<td>West wall</td>
<td>Pink</td>
<td>Plaster</td>
<td>0.0</td>
</tr>
<tr>
<td>21</td>
<td>Sanctuary</td>
<td>Window frame, south wall</td>
<td>White</td>
<td>Wood</td>
<td>2.8</td>
</tr>
<tr>
<td>22</td>
<td>Sanctuary</td>
<td>Ceiling</td>
<td>White</td>
<td>Wood</td>
<td>6.3</td>
</tr>
<tr>
<td>23</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>24</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>25</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>26</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>27</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>28</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
</tbody>
</table>

$qm = quick mode$

$sm = standard mode$

$* = inconclusive reading$

NOTE: Results equal to or greater than 1 mg/cm² are considered Lead-Based Paint.
ENVIRONMENTAL HAZARDS SERVICES, L.L.C.
7469 WHITE PINE ROAD - RICHMOND, VA 23237
804-275-4788 FAX 804-275-4907

BULK ASBESTOS SAMPLE ANALYSIS SUMMARY

| CLIENT: | Terracon
2211 S. 156th Circle
Omaha, NE 68130 | DATE OF RECEIPT: | 06 FEB 2001 |
| DATE OF ANALYSIS: | 06 FEB 2001 |
| DATE OF REPORT: | 07 FEB 2001 |

CLIENT NUMBER:	28-3542 D
EHS PROJECT #:	02-01-0613
PROJECT:	40011009

<table>
<thead>
<tr>
<th>EHS SAMPLE #</th>
<th>CLIENT SAMPLE #/LABORATORY GROSS DESCRIPTION</th>
<th>% ASBESTOS</th>
<th>OTHER MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 AME-1/</td>
<td>Pale Gray Cementitious</td>
<td>NAD</td>
<td>100% Non-Fibrous</td>
</tr>
<tr>
<td>02 AME-2/</td>
<td>Pale Tan/Pale Gray Cementitious;</td>
<td>NAD</td>
<td>2% Cellulose</td>
</tr>
<tr>
<td></td>
<td>Pink Brittle</td>
<td></td>
<td>1% Hair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>97% Non-Fibrous</td>
</tr>
<tr>
<td>03 AME-3/</td>
<td>Black/Tan Fib.; Gray Brittle</td>
<td>NAD</td>
<td>30% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5% Fibrous Glass</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5% Wollastonite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60% Non-Fibrous</td>
</tr>
</tbody>
</table>

QC SAMPLE: M2-1999-1

REPORTING LIMIT: 1% Asbestos

METHOD: Polarized Light Microscopy, EPA Method 600/R-93/116

ANALYST: Mark Case

Reviewed By Authorized Signatory: [Signature]

Howard Varner, Laboratory Director
Irma Faszewski, Quality Assurance Coordinator
David Xu, MS, Senior Chemist
Peng Jiang, MS, Senior Geologist

Results represent the analysis of samples submitted by the client. Sample location, description, area, volume, etc., was provided by the client. This report cannot be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. This report shall not be reproduced except in full, without the written consent of Environmental Hazards Services, L.L.C. California Certification #2319

Environmental Hazards Services, L.L.C. recommends reanalysis by point count (for more accurate quantification) or Transmission Electron Microscopy (TEM), for enhanced detection capabilities for materials regulated by the EPA NESHAP (National Emission Standards for Hazardous Air Pollutants) and found to contain less than ten percent (<10%) asbestos by polarized light microscopy (PLM). Both services are available for an additional fee.

LEGEND

NAD = no asbestos detected
SCF = suspected ceramic fibers

-- PAGE 01 of 01 -- END OF REPORT --
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Date & Time</th>
<th>Asbestos</th>
<th>Lead</th>
<th>Other Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS-1 & FS-18</td>
<td>2/01/01</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8e-1 & 8e-7</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5H-1 & 5H-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AME-1 & AME-3</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-1 & TH-5</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air Volume (L)</th>
<th>OR</th>
<th>Wipe Area (ft²)</th>
<th>OR</th>
<th>Scrape Area (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:
- LAB NOTE: This sample
 - Group RLVD: Contaminated
 - Samples AME-1 & 76
 - AME-3 only. MDG 022601
- SAMPLE CONDITION:
 - Acceptable
 - Unacceptable

Released by: Jon Fannon
Signature: [Signature]
Date/Time: 2/15/01 1:200

Received by: [Signature]
Date/Time: [Date/Time]

Released by: [Signature]
Date/Time: [Date/Time]

Received by: [Signature]
Date/Time: 2/16/01 9:00 A.M.
KEYED NOTES

- **ØØØ** = Negative Asbestos Sample
- **ΔΔΔ** = Positive Asbestos Sample
- **Χ** = Sample Collected
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Photo No.</th>
<th>Type of Material</th>
<th>Sample Location</th>
<th>Physical Condition</th>
<th>Estimated Quantity</th>
<th>Percent (%)</th>
<th>Asbestos Type(s)</th>
<th>Friability</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH-2</td>
<td></td>
<td>HVAC Seam Tape</td>
<td>Main Floor, East side of Stage</td>
<td>Good</td>
<td>10 Lft</td>
<td>60%</td>
<td>Chrysotile</td>
<td>F</td>
</tr>
<tr>
<td>TH-3</td>
<td></td>
<td>HVAC Duct Insulation</td>
<td>Basement, South central area</td>
<td>Good</td>
<td>30 SF</td>
<td>45%</td>
<td>Chrysotile</td>
<td>F</td>
</tr>
<tr>
<td>TH-5</td>
<td></td>
<td>Window Glazing</td>
<td>Exterior, South side</td>
<td>Good</td>
<td>10 big windows, 3 small windows</td>
<td>15%</td>
<td>Chrysotile</td>
<td>NF</td>
</tr>
</tbody>
</table>

T.S.I. = Thermal System Insulation

NF = NonFriable F = Friable SF = square feet ea = each Lft = Linear feet O.D. = Outside Diameter

"Good" Condition: ACM with no visible damage or deterioration, or showing only very limited damage or deterioration

"Damaged": ACM that exhibits surface crumbling, blistering, water-stains, gouging, marring or delamination over <1/10 of the surface if the damage is evenly distributed (1/4 if localized).

"Significantly damaged": ACM with combined surface crumbling, blistering, water-stains, gouging, or delamination over >1/10 of the surface if the damage is evenly distributed (1/4 if localized).
Table 2.0 HOMOGENEOUS AREAS - NON-ASBESTOS CONTAINING

<table>
<thead>
<tr>
<th>Company/Facility Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Park Services</td>
<td>Nicodemus</td>
<td>Nicodemus</td>
<td>Kansas</td>
<td>Kansas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project No.</th>
<th>Homogeneous Area Description</th>
<th>Township Hall</th>
<th>Sample Collection Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>40011007</td>
<td>Township Hall</td>
<td></td>
<td>1/31/01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Type of Material</th>
<th>Sample Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH-1</td>
<td>Plaster walls</td>
<td>Basement, North wall</td>
</tr>
<tr>
<td>TH-4</td>
<td>Interior, Window Glazing</td>
<td>Main Floor, East wall</td>
</tr>
</tbody>
</table>
TABLE 3.0 - RESULTS OF XRF LEAD SAMPLING

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Location</th>
<th>Description</th>
<th>Color</th>
<th>Substrate</th>
<th>Results mg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>2</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>4</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td>7</td>
<td>Basement</td>
<td>North wall</td>
<td>White</td>
<td>Concrete</td>
<td>-0.0</td>
</tr>
<tr>
<td>8</td>
<td>Basement</td>
<td>Door, north wall</td>
<td>Gray</td>
<td>Metal</td>
<td>-0.0</td>
</tr>
<tr>
<td>9</td>
<td>Basement</td>
<td>East wall</td>
<td>White</td>
<td>Concrete</td>
<td>-0.3</td>
</tr>
<tr>
<td>10</td>
<td>Basement</td>
<td>South wall</td>
<td>White</td>
<td>Concrete</td>
<td>-0.1</td>
</tr>
<tr>
<td>11</td>
<td>Basement</td>
<td>Ceiling</td>
<td>White</td>
<td>Concrete</td>
<td>-0.1</td>
</tr>
<tr>
<td>12</td>
<td>Basement</td>
<td>West wall</td>
<td>White</td>
<td>Concrete</td>
<td>-0.0</td>
</tr>
<tr>
<td>13</td>
<td>Basement</td>
<td>Window Ledge, west wall</td>
<td>Gray</td>
<td>Concrete</td>
<td>0.2</td>
</tr>
<tr>
<td>14</td>
<td>Basement</td>
<td>Window frame, west wall</td>
<td>Red</td>
<td>Metal</td>
<td>0.5</td>
</tr>
<tr>
<td>15</td>
<td>Stage area, west</td>
<td>Stairs</td>
<td>Gray</td>
<td>Concrete</td>
<td>-0.2</td>
</tr>
<tr>
<td>16</td>
<td>West exit, north</td>
<td>Door</td>
<td>Brown</td>
<td>Metal</td>
<td>-0.2</td>
</tr>
<tr>
<td>17</td>
<td>West exit, north</td>
<td>Door header</td>
<td>Brown</td>
<td>Metal</td>
<td>-0.0</td>
</tr>
<tr>
<td>18</td>
<td>Stage, west</td>
<td>Door</td>
<td>Brown</td>
<td>Wood</td>
<td>0.3</td>
</tr>
<tr>
<td>19</td>
<td>Stage, west</td>
<td>Door jamb</td>
<td>Brown</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>20</td>
<td>Restroom, west</td>
<td>Door</td>
<td>Brown</td>
<td>Wood</td>
<td>-0.2</td>
</tr>
<tr>
<td>21</td>
<td>Restroom, west</td>
<td>West wall</td>
<td>White</td>
<td>Plaster</td>
<td>0.0</td>
</tr>
<tr>
<td>22</td>
<td>Restroom, west</td>
<td>Toilet</td>
<td>White</td>
<td>Porcelain</td>
<td>-0.3</td>
</tr>
<tr>
<td>23</td>
<td>Restroom, west</td>
<td>Window ledge</td>
<td>Brown</td>
<td>Concrete</td>
<td>-0.1</td>
</tr>
<tr>
<td>24</td>
<td>Restroom, west</td>
<td>Window frame</td>
<td>Red</td>
<td>Metal</td>
<td>0.1</td>
</tr>
<tr>
<td>25</td>
<td>Stage, west</td>
<td>Door frame</td>
<td>Brown</td>
<td>Wood</td>
<td>0.1</td>
</tr>
<tr>
<td>26</td>
<td>Stage, west</td>
<td>Door jamb</td>
<td>Brown</td>
<td>Wood</td>
<td>-0.0</td>
</tr>
<tr>
<td>27</td>
<td>Stage</td>
<td>Floor</td>
<td>Gray</td>
<td>Concrete</td>
<td>-0.2</td>
</tr>
<tr>
<td>28</td>
<td>Stage, east</td>
<td>Door header</td>
<td>Brown</td>
<td>Wood</td>
<td>-0.0</td>
</tr>
<tr>
<td>29</td>
<td>East restroom</td>
<td>West wall</td>
<td>White</td>
<td>Plaster</td>
<td>0.0</td>
</tr>
<tr>
<td>30</td>
<td>East exit</td>
<td>Door</td>
<td>Brown</td>
<td>Metal</td>
<td>0.1</td>
</tr>
<tr>
<td>31</td>
<td>East exit</td>
<td>Door casing</td>
<td>Brown</td>
<td>Metal</td>
<td>-0.2</td>
</tr>
<tr>
<td>32</td>
<td>Main room</td>
<td>East wall</td>
<td>White</td>
<td>Plaster</td>
<td>-0.1</td>
</tr>
<tr>
<td>33</td>
<td>Main room</td>
<td>South wall</td>
<td>White</td>
<td>Plaster</td>
<td>0.1</td>
</tr>
<tr>
<td>34</td>
<td>Main room</td>
<td>West wall</td>
<td>White</td>
<td>Plaster</td>
<td>-0.2</td>
</tr>
<tr>
<td>35</td>
<td>Main room</td>
<td>Window ledge, east</td>
<td>Brown</td>
<td>Plaster</td>
<td>-0.0</td>
</tr>
<tr>
<td>36</td>
<td>Main room</td>
<td>Window ledge, west</td>
<td>Brown</td>
<td>Plaster</td>
<td>-0.0</td>
</tr>
<tr>
<td>37</td>
<td>Main room</td>
<td>Window frame, west</td>
<td>Red</td>
<td>Metal</td>
<td>-0.0</td>
</tr>
<tr>
<td>38</td>
<td>Main room</td>
<td>Window frame, east</td>
<td>Red</td>
<td>Metal</td>
<td>-0.0</td>
</tr>
<tr>
<td>39</td>
<td>Main entrance</td>
<td>Door</td>
<td>Brown</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

NOTE: Results equal to or greater than 1 mg/cm² are considered Lead Based Paint.
TABLE 3.0 - RESULTS OF XRF LEAD SAMPLING

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Location</th>
<th>Description</th>
<th>Color</th>
<th>Substrate</th>
<th>Results mg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Main entrance</td>
<td>Door jamb</td>
<td>Brown</td>
<td>Wood</td>
<td>-0.0</td>
</tr>
<tr>
<td>41</td>
<td>Main entrance</td>
<td>Baseboard</td>
<td>Brown</td>
<td>Wood</td>
<td>-0.0</td>
</tr>
<tr>
<td>42</td>
<td>Lobby</td>
<td>Floor</td>
<td>Gray</td>
<td>Concrete</td>
<td>-0.4</td>
</tr>
<tr>
<td>43</td>
<td>Main entrance, exterior</td>
<td>Door jamb</td>
<td>Brown</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>44</td>
<td>Main entrance, exterior</td>
<td>Window frame</td>
<td>Red</td>
<td>Metal</td>
<td>0.2</td>
</tr>
<tr>
<td>45</td>
<td>Calibration</td>
<td></td>
<td></td>
<td>Painted</td>
<td>1.1</td>
</tr>
<tr>
<td>46</td>
<td>Calibration</td>
<td></td>
<td></td>
<td>Painted</td>
<td>1.1</td>
</tr>
<tr>
<td>47</td>
<td>Calibration</td>
<td></td>
<td></td>
<td>Painted</td>
<td>1.2</td>
</tr>
<tr>
<td>48</td>
<td>Calibration</td>
<td></td>
<td></td>
<td>Unpainted</td>
<td>0.1</td>
</tr>
<tr>
<td>49</td>
<td>Calibration</td>
<td></td>
<td></td>
<td>Unpainted</td>
<td>0.0</td>
</tr>
<tr>
<td>50</td>
<td>Calibration</td>
<td></td>
<td></td>
<td>Unpainted</td>
<td>0.1</td>
</tr>
</tbody>
</table>

NOTE: Results equal to or greater than 1 mg/cm² are considered Lead Based Paint.
BULK ASBESTOS SAMPLE ANALYSIS SUMMARY

CLIENT: Terracon
2211 S. 156th Circle
Omaha, NE 68130
DATE OF RECEIPT: 06 FEB 2001
DATE OF ANALYSIS: 06 FEB 2001
DATE OF REPORT: 07 FEB 2001

CLIENT NUMBER: 28-3542 D
EHS PROJECT #: 02-01-0614
PROJECT: 40011009

<table>
<thead>
<tr>
<th>EHS SAMPLE #</th>
<th>CLIENT SAMPLE #/LABORATORY GROSS DESCRIPTION</th>
<th>% ASBESTOS</th>
<th>OTHER MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>TH-1/ Pale Gray Cementitious; Off-White Brittle</td>
<td>NAD</td>
<td>3% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1% Hair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>96% Non-Fibrous</td>
</tr>
<tr>
<td>02</td>
<td>TH-2/ Pale Gray Fib.</td>
<td>60% Chrysotile</td>
<td>20% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60% Total Asbestos</td>
<td>20% Non-Fibrous</td>
</tr>
<tr>
<td>03</td>
<td>TH-3/ Off-White Fib.; Pale Yellow Brittle</td>
<td>45% Chrysotile *</td>
<td>25% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45% Total Asbestos</td>
<td>30% Non-Fibrous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Present in off-white fibrous layer.</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>TH-4/ Pink/Off-White/Dk. Red Brittle</td>
<td>NAD</td>
<td>3% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>97% Non-Fibrous</td>
</tr>
<tr>
<td>05</td>
<td>TH-5/ Off-White/Beige Brittle</td>
<td>15% Chrysotile *</td>
<td>85% Non-Fibrous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15% Total Asbestos</td>
<td>* Present throughout sample.</td>
</tr>
</tbody>
</table>

QC SAMPLE: M2-1999-1
REPORTING LIMIT: 1% Asbestos
METHOD: Polarized Light Microscopy, EPA Method 600/R-93/116
ANALYST: Mark Case

Reviewed By Authorized Signatory:

Howard Varner, Laboratory Director
Irma Paszewski, Quality Assurance Coordinator
David Xu, MS, Senior Chemist
Feng Jiang, MS, Senior Geologist

--- PAGE 01 of 02 ---
Results represent the analysis of samples submitted by the client. Sample location, description, area, volume, etc., was provided by the client. This report cannot be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. This report shall not be reproduced except in full, without the written consent of Environmental Hazards Services, L.L.C. California Certification #2319.

Environmental Hazards Services, L.L.C. recommends reanalysis by point count (for more accurate quantification) or Transmission Electron Microscopy (TEM), for enhanced detection capabilities) for materials regulated by the EPA NESHAP (National Emission Standards for Hazardous Air Pollutants) and found to contain less than ten percent (<10%) asbestos by polarized light microscopy (PLM). Both services are available for an additional fee.

LEGEND
NAD = no asbestos detected
SCF = suspected ceramic fibers

im1.dot\01 APR 1999/mb

-- PAGE 02 of 02 -- END OF REPORT --
CHAIN OF CUSTODY FORM

Company Name: Terracon
Address: 2211 S. 156th Circle
City, State, Zip: Omaha, NE 68130
EHS Client Account #: 28-3542
Phone #: (402) 330-7446
Fax #: (402) 330-7606
Date: 2-5-01

Contact Name: Jon Fannon
Sampler Name: Jon Fannon
Project #: 4001/008

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Date & Time</th>
<th>Asbestos</th>
<th>Lead</th>
<th>Other Metals (Specify metals below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS-11 SS-18</td>
<td>2/01/01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8C-1 BO 8C-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9H-5 H 9H-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A-1 A 3A-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3T-1 T 3T-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments

- *LAB NOTE: THIS SAMPLE GROUP PEN 10 CONTAMINANT ONLY SAMPLES NOS. D TH-1 THROUGH TH-5.
- Date/Time: 2/5/01 1:00
- SAMPLE CONDITION: Acceptable
- Date/Time: 2/10/01 9:11

Released by: Jon Fannon
Received by:
Released by:
Received by:

Signature:
Date/Time: 2/5/01 1:00

Signature:
Date/Time: 2/10/01 9:11
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Photo No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH-5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Material</th>
<th>Sample Location</th>
<th>Physical Condition</th>
<th>Estimated Quantity</th>
<th>Percent (%)</th>
<th>Asbestos Type(s)</th>
<th>Friability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window Glazing</td>
<td>South side, exterior</td>
<td>Good</td>
<td>8 large windows, 2 small windows</td>
<td>5%</td>
<td>Chrysotile</td>
<td>NF</td>
</tr>
</tbody>
</table>

T.S.I. = Thermal System Insulation

NF = NonFriable F = Friable SF = square feet ea = each Lft = Linear feet O.D. = Outside Diameter

"Good" Condition: ACM with no visible damage or deterioration, or showing only very limited damage or deterioration

"Damaged": ACM that exhibits surface crumbling, blistering, water-stains, gouging, marring or delamination over <1/10 of the surface if the damage is evenly distributed (1/4 if localized).

"Significantly damaged": ACM with combined surface crumbling, blistering, water-stains, gouging, or delamination over >3/10 of the surface if the damage is evenly distributed (1/4 if localized).
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Type of Material</th>
<th>Sample Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH-1</td>
<td>Plaster</td>
<td>Classroom, North wall</td>
</tr>
<tr>
<td>SH-2</td>
<td>Drywall</td>
<td>Classroom, North wall</td>
</tr>
<tr>
<td>SH-3</td>
<td>Sheet Flooring</td>
<td>Kitchen, Central area</td>
</tr>
<tr>
<td>SH-4</td>
<td>Counter Top Linoleum (Top Layer)</td>
<td>Kitchen, East central area</td>
</tr>
<tr>
<td>Sample No.</td>
<td>Location</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>1</td>
<td>Calibration</td>
<td>Painted</td>
</tr>
<tr>
<td>2</td>
<td>Calibration</td>
<td>Painted</td>
</tr>
<tr>
<td>3</td>
<td>Calibration</td>
<td>Painted</td>
</tr>
<tr>
<td>4</td>
<td>Calibration</td>
<td>Unpainted</td>
</tr>
<tr>
<td>5</td>
<td>Calibration</td>
<td>Unpainted</td>
</tr>
<tr>
<td>6</td>
<td>Calibration</td>
<td>Unpainted</td>
</tr>
<tr>
<td>7</td>
<td>Front Lobby</td>
<td>Door</td>
</tr>
<tr>
<td>8</td>
<td>Front Lobby</td>
<td>Door jamb</td>
</tr>
<tr>
<td>9</td>
<td>Front Lobby</td>
<td>Door frame</td>
</tr>
<tr>
<td>10</td>
<td>Front Lobby</td>
<td>Door header</td>
</tr>
<tr>
<td>11</td>
<td>Front Lobby</td>
<td>North wall</td>
</tr>
<tr>
<td>12</td>
<td>Front Lobby</td>
<td>North wall</td>
</tr>
<tr>
<td>13</td>
<td>Front Lobby</td>
<td>Door frame</td>
</tr>
<tr>
<td>14</td>
<td>Front Lobby</td>
<td>North door</td>
</tr>
<tr>
<td>15</td>
<td>Front Lobby</td>
<td>Baseboard</td>
</tr>
<tr>
<td>16</td>
<td>Front Lobby</td>
<td>Window frame, west</td>
</tr>
<tr>
<td>17</td>
<td>Front Lobby</td>
<td>Fountain</td>
</tr>
<tr>
<td>18</td>
<td>Coat room</td>
<td>Door, frame north</td>
</tr>
<tr>
<td>19</td>
<td>Coat room</td>
<td>North wall</td>
</tr>
<tr>
<td>20</td>
<td>Coat room</td>
<td>South wall</td>
</tr>
<tr>
<td>21</td>
<td>Coat room</td>
<td>Coat rack board</td>
</tr>
<tr>
<td>22</td>
<td>Coat room</td>
<td>Window header, east</td>
</tr>
<tr>
<td>23</td>
<td>Coat room</td>
<td>Window sill, east</td>
</tr>
<tr>
<td>24</td>
<td>Coat room</td>
<td>Window frame, east</td>
</tr>
<tr>
<td>25</td>
<td>Coat room</td>
<td>Door, west</td>
</tr>
<tr>
<td>26</td>
<td>Classroom</td>
<td>Door</td>
</tr>
<tr>
<td>27</td>
<td>Classroom</td>
<td>Door frame</td>
</tr>
<tr>
<td>28</td>
<td>Classroom</td>
<td>Baseboard</td>
</tr>
<tr>
<td>29</td>
<td>Classroom</td>
<td>East wall</td>
</tr>
<tr>
<td>30</td>
<td>Storage closet</td>
<td>Door</td>
</tr>
<tr>
<td>31</td>
<td>Classroom</td>
<td>South wall</td>
</tr>
<tr>
<td>32</td>
<td>Classroom</td>
<td>Baseboard, south wall</td>
</tr>
<tr>
<td>33</td>
<td>Classroom</td>
<td>Window sill, south wall</td>
</tr>
<tr>
<td>34</td>
<td>Classroom</td>
<td>Window frame, south wall</td>
</tr>
<tr>
<td>35</td>
<td>Classroom</td>
<td>West wall</td>
</tr>
<tr>
<td>36</td>
<td>Classroom</td>
<td>West wall</td>
</tr>
<tr>
<td>37</td>
<td>Classroom</td>
<td>West wall</td>
</tr>
<tr>
<td>38</td>
<td>Classroom</td>
<td>Baseboard</td>
</tr>
</tbody>
</table>

NOTE: Results equal to or greater than 1 mg/cm² are considered Lead Based Paint.
TABLE 3.0 - RESULTS OF XRF LEAD SAMPLING

District No. 1 Schoolhouse

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Location</th>
<th>Description</th>
<th>Color</th>
<th>Substrate</th>
<th>Results mg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Classroom</td>
<td>North wall</td>
<td>Red</td>
<td>Plaster</td>
<td>-0.1</td>
</tr>
<tr>
<td>40</td>
<td>Classroom</td>
<td>Window sill, north wall</td>
<td>Black</td>
<td>Wood</td>
<td>0.1</td>
</tr>
<tr>
<td>41</td>
<td>Classroom</td>
<td>Window frame, north wall</td>
<td>Black</td>
<td>Wood</td>
<td>0.1</td>
</tr>
<tr>
<td>42</td>
<td>Kitchen</td>
<td>Door frame, west</td>
<td>Light Blue</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>43</td>
<td>Kitchen</td>
<td>North wall</td>
<td>White</td>
<td>Plaster</td>
<td>-0.2</td>
</tr>
<tr>
<td>44</td>
<td>Kitchen</td>
<td>Baseboard, north wall</td>
<td>Blue</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>45</td>
<td>Kitchen</td>
<td>Window sill, east</td>
<td>Blue</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>46</td>
<td>Kitchen</td>
<td>Window frame, east</td>
<td>Blue</td>
<td>Wood</td>
<td>0.2</td>
</tr>
<tr>
<td>47</td>
<td>Kitchen</td>
<td>Shelf</td>
<td>White</td>
<td>Wood</td>
<td>0.1</td>
</tr>
<tr>
<td>48</td>
<td>Kitchen</td>
<td>Door, south</td>
<td>Blue</td>
<td>Wood</td>
<td>0.0</td>
</tr>
<tr>
<td>49</td>
<td>Kitchen</td>
<td>Door header, south</td>
<td>Blue</td>
<td>Wood</td>
<td>0.0</td>
</tr>
<tr>
<td>50</td>
<td>Kitchen</td>
<td>Closet</td>
<td>White</td>
<td>Wood</td>
<td>0.2</td>
</tr>
<tr>
<td>51</td>
<td>Exterior</td>
<td>East wall</td>
<td>White</td>
<td>Wood</td>
<td>8.0</td>
</tr>
<tr>
<td>52</td>
<td>Exterior</td>
<td>Window frame, east wall</td>
<td>White</td>
<td>Wood</td>
<td>9.7</td>
</tr>
<tr>
<td>53</td>
<td>Exterior</td>
<td>Door, east wall</td>
<td>White</td>
<td>Wood</td>
<td>3.8</td>
</tr>
<tr>
<td>54</td>
<td>Exterior</td>
<td>Porch ceiling</td>
<td>White</td>
<td>Wood</td>
<td>5.9</td>
</tr>
<tr>
<td>55</td>
<td>Exterior</td>
<td>Porch column</td>
<td>White</td>
<td>Metal</td>
<td>-0.0</td>
</tr>
<tr>
<td>56</td>
<td>Exterior</td>
<td>South wall</td>
<td>White</td>
<td>Wood</td>
<td>0.3</td>
</tr>
<tr>
<td>57</td>
<td>Exterior</td>
<td>South wall</td>
<td>White</td>
<td>Wood</td>
<td>0.1</td>
</tr>
<tr>
<td>58</td>
<td>Exterior</td>
<td>Window frame, south wall</td>
<td>White</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>59</td>
<td>Exterior</td>
<td>Window trough, south wall</td>
<td>White</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>60</td>
<td>Exterior</td>
<td>West wall</td>
<td>White</td>
<td>Wood</td>
<td>-0.0</td>
</tr>
<tr>
<td>61</td>
<td>Exterior</td>
<td>North wall</td>
<td>White</td>
<td>Wood</td>
<td>-0.0</td>
</tr>
<tr>
<td>62</td>
<td>Exterior</td>
<td>Window frame, north wall</td>
<td>White</td>
<td>Wood</td>
<td>0.1</td>
</tr>
<tr>
<td>63</td>
<td>Calibration</td>
<td></td>
<td>Painted</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>64</td>
<td>Calibration</td>
<td></td>
<td>Painted</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>65</td>
<td>Calibration</td>
<td></td>
<td>Painted</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>66</td>
<td>Calibration</td>
<td></td>
<td>Unpainted</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td>67</td>
<td>Calibration</td>
<td></td>
<td>Unpainted</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td>68</td>
<td>Calibration</td>
<td></td>
<td>Unpainted</td>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>

NOTE: Results equal to or greater than 1 mg/cm² are considered Lead Based Paint.
BULK ASBESTOS SAMPLE ANALYSIS SUMMARY

CLIENT: Terracon
2211 S. 156th Circle
Omaha, NE 68130

DATE OF RECEIPT: 06 FEB 2001
DATE OF ANALYSIS: 06 FEB 2001
DATE OF REPORT: 07 FEB 2001

CLIENT NUMBER: 28-3542 D
EHS PROJECT #: 02-01-0612
PROJECT: 40011009

<table>
<thead>
<tr>
<th>SAMPLE #</th>
<th>CLIENT SAMPLE #</th>
<th>LABORATORY GROSS DESCRIPTION</th>
<th>% ASBESTOS</th>
<th>OTHER MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>SH-1/</td>
<td>White Gran.</td>
<td>NAD</td>
<td>100% Non-Fibrous</td>
</tr>
<tr>
<td>02</td>
<td>SH-2/</td>
<td>White Chalky</td>
<td>NAD</td>
<td>4% Cellulose</td>
</tr>
<tr>
<td>03</td>
<td>SH-3/</td>
<td>Grayish Green Vinyl; Black Fib.</td>
<td>NAD</td>
<td>96% Non-Fibrous</td>
</tr>
<tr>
<td>04</td>
<td>SH-4/</td>
<td>Red Vinyl; Black Fib.</td>
<td>NAD</td>
<td>65% Cellulose</td>
</tr>
<tr>
<td>05</td>
<td>SH-5/</td>
<td>Gray Gran.</td>
<td>5% Chrysotile</td>
<td>10% Synthetic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5% Total Asbestos</td>
<td>25% Non-Fibrous</td>
</tr>
</tbody>
</table>

QC SAMPLE: M2-1998-1
REPORTING LIMIT: 1% Asbestos
METHOD: Polarized Light Microscopy, EPA Method 600/R-93/116
ANALYST: Kathy Sizemore

Reviewed By Authorized Signatory:
Howard Varner, Laboratory Director
Irma Fassewski, Quality Assurance Coordinator
David Xu, MS, Senior Chemist
Feng Jiang, MS, Senior Geologist
Results represent the analysis of samples submitted by the client. Sample location, description, area, volume, etc., was provided by the client. This report cannot be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. This report shall not be reproduced except in full, without the written consent of Environmental Hazards Services, L.L.C. California Certification #2319

Environmental Hazards Services, L.L.C. recommends reanalysis by point count (for more accurate quantification) or Transmission Electron Microscopy (TEM), for enhanced detection capabilities) for materials regulated by the EPA NESHAP (National Emission Standards for Hazardous Air Pollutants) and found to contain less than ten percent (<10%) asbestos by polarized light microscopy (PLM). Both services are available for an additional fee.

LEGEND

NAD = no asbestos detected
SCF = suspected ceramic fibers

~ PAGE 02 of 02 -- END OF REPORT ~
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Date & Time</th>
<th>Asbestos</th>
<th>Lead</th>
<th>Other Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-1</td>
<td>2/10/01</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88-1</td>
<td>88-7</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH-1</td>
<td>SH-5</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AME-1</td>
<td>AME-3</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-1</td>
<td>TH-5</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Air Volume (L) OR Wipe Area (ft²) OR Scrape Area (cm²)

Comments:
SAMPLE CONDITION
Acceptable

Released by: Jon Fennon
Received by: [Signature]
Signature: [Signature]
Date/Time: 2/10/01 9:00 AM
Symbol Definitions:

★ = Negative Asbestos Sample

▲ = Positive Asbestos Sample

X = Sample Collected

Note:

8 - 1CB Ballasts
11 - Mercury Lights
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Photo No.</th>
<th>Type of Material</th>
<th>Sample Location</th>
<th>Physical Condition</th>
<th>Estimated Quantity</th>
<th>Percent (%)</th>
<th>Asbestos Type(s)</th>
<th>Friability</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC-5</td>
<td></td>
<td>Window Glazing</td>
<td>Exterior, East side</td>
<td>Good</td>
<td>6 windows</td>
<td>5%</td>
<td>Chrysotile</td>
<td>NF</td>
</tr>
</tbody>
</table>

T.S.I. = Thermal System Insulation

NF = NonFriable F = Friable SF = square feet ea = each Lft = Linear feet O.D. = Outside Diameter

Good Condition: ACM with no visible damage or deterioration, or showing only very limited damage or deterioration

Damaged: ACM that exhibits surface crumbling, blistering, water-stains, gouging, marring or delamination over <1/10 of the surface if the damage is evenly distributed (1/4 if localized).

Significantly damaged: ACM with combined surface crumbling, blistering, water-stains, gouging, or delamination over >1/10 of the surface if the damage is evenly distributed (1/4 if localized).
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Type of Material</th>
<th>Sample Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC-1</td>
<td>Plaster</td>
<td>Foyer, South wall</td>
</tr>
<tr>
<td>BC-2</td>
<td>Sheet Flooring</td>
<td>Foyer, Central area</td>
</tr>
<tr>
<td>BC-3</td>
<td>Sheet Flooring</td>
<td>Foyer, Central area</td>
</tr>
<tr>
<td>BC-4</td>
<td>Sheet Flooring</td>
<td>Study, East central area</td>
</tr>
<tr>
<td>BC-6</td>
<td>Plaster</td>
<td>Sanctuary, West wall</td>
</tr>
<tr>
<td>BC-7</td>
<td>Shingles</td>
<td>Exterior, South central area</td>
</tr>
</tbody>
</table>
TABLE 3.0 - RESULTS OF XRF LEAD SAMPLING

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Location</th>
<th>Description</th>
<th>Color</th>
<th>Substrate</th>
<th>Results mg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Calibration</td>
<td></td>
<td>Painted</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>2</td>
<td>Calibration</td>
<td></td>
<td>Painted</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>Calibration</td>
<td></td>
<td>Painted</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>Calibration</td>
<td></td>
<td>Unpainted</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>Calibration</td>
<td></td>
<td>Unpainted</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td>6</td>
<td>Calibration</td>
<td></td>
<td>Unpainted</td>
<td></td>
<td>-0.2</td>
</tr>
<tr>
<td>7</td>
<td>Sanctuary</td>
<td>East wall</td>
<td>White</td>
<td>Plaster</td>
<td>-0.1</td>
</tr>
<tr>
<td>8</td>
<td>Sanctuary</td>
<td>Chair rail</td>
<td>White</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>9</td>
<td>Sanctuary</td>
<td>East wall</td>
<td>White</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>10</td>
<td>Sanctuary</td>
<td>Window ledge</td>
<td>White</td>
<td>Wood</td>
<td>4.2</td>
</tr>
<tr>
<td>11</td>
<td>Sanctuary</td>
<td>Window frame</td>
<td>White</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>12</td>
<td>Sanctuary</td>
<td>Baseboard, east wall</td>
<td>White</td>
<td>Wood</td>
<td>5.6</td>
</tr>
<tr>
<td>13</td>
<td>Sanctuary</td>
<td>North wall</td>
<td>White</td>
<td>Wood</td>
<td>-0.2</td>
</tr>
<tr>
<td>14</td>
<td>Sanctuary</td>
<td>Chair rail, north wall</td>
<td>White</td>
<td>Wood</td>
<td>-0.2</td>
</tr>
<tr>
<td>15</td>
<td>Sanctuary</td>
<td>North wall</td>
<td>White</td>
<td>Plaster</td>
<td>-0.1</td>
</tr>
<tr>
<td>16</td>
<td>Sanctuary</td>
<td>Stage pillar</td>
<td>White</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>17</td>
<td>Sanctuary</td>
<td>Window ledge</td>
<td>White</td>
<td>Wood</td>
<td>3.4</td>
</tr>
<tr>
<td>18</td>
<td>Sanctuary</td>
<td>Window frame, exterior, northwest</td>
<td>White</td>
<td>Wood</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>window</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Sanctuary</td>
<td>West wall</td>
<td>White</td>
<td>Plaster</td>
<td>-0.1</td>
</tr>
<tr>
<td>20</td>
<td>Sanctuary</td>
<td>Chair rail, west wall</td>
<td>White</td>
<td>Wood</td>
<td>-0.2</td>
</tr>
<tr>
<td>21</td>
<td>Sanctuary</td>
<td>West wall, panel</td>
<td>White</td>
<td>Wood</td>
<td>-0.0</td>
</tr>
<tr>
<td>22</td>
<td>Sanctuary</td>
<td>South wall</td>
<td>White</td>
<td>Plaster</td>
<td>-0.2</td>
</tr>
<tr>
<td>23</td>
<td>Sanctuary</td>
<td>Chair rail, south wall</td>
<td>White</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>24</td>
<td>Sanctuary</td>
<td>South wall, panel</td>
<td>White</td>
<td>Wood</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>Sanctuary</td>
<td>Window ledge, south wall</td>
<td>White</td>
<td>Wood</td>
<td>3.9</td>
</tr>
<tr>
<td>26</td>
<td>Sanctuary</td>
<td>Window frame, south wall</td>
<td>White</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>27</td>
<td>Sanctuary</td>
<td>Window frame, header</td>
<td>White</td>
<td>Wood</td>
<td>6.2</td>
</tr>
<tr>
<td>28</td>
<td>Kitchen</td>
<td>Door</td>
<td>White</td>
<td>Wood</td>
<td>-0.0</td>
</tr>
<tr>
<td>29</td>
<td>Kitchen</td>
<td>Counter frame</td>
<td>White</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>30</td>
<td>Kitchen</td>
<td>South wall</td>
<td>White</td>
<td>Plaster</td>
<td>0.1</td>
</tr>
<tr>
<td>31</td>
<td>Kitchen</td>
<td>Door, south</td>
<td>White</td>
<td>Wood</td>
<td>0.1</td>
</tr>
<tr>
<td>32</td>
<td>Kitchen</td>
<td>Door header, south</td>
<td>White</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>33</td>
<td>Kitchen</td>
<td>Window ledge, west</td>
<td>White</td>
<td>Wood</td>
<td>1.0* qm</td>
</tr>
<tr>
<td>34</td>
<td>Kitchen</td>
<td>Window ledge, west</td>
<td>White</td>
<td>Wood</td>
<td>0.0 sm</td>
</tr>
</tbody>
</table>

NOTE: Results equal to or greater than 1 mg/cm² are considered Lead Based Paint.

* = inconclusive reading
q.m = quick mode
sm = standard mode
TABLE 3.0 - RESULTS OF XRF LEAD SAMPLING

First Baptist Church

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Location</th>
<th>Description</th>
<th>Color</th>
<th>Substrate</th>
<th>Results mg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Kitchen</td>
<td>Window header, exterior</td>
<td>White</td>
<td>Wood</td>
<td>3.2</td>
</tr>
<tr>
<td>36</td>
<td>Kitchen</td>
<td>Window frame</td>
<td>White</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>37</td>
<td>Kitchen</td>
<td>Door</td>
<td>White</td>
<td>Wood</td>
<td>0.1</td>
</tr>
<tr>
<td>38</td>
<td>Study</td>
<td>Door frame</td>
<td>Brown</td>
<td>Wood</td>
<td>0.1</td>
</tr>
<tr>
<td>39</td>
<td>Study</td>
<td>West wall</td>
<td>Tan</td>
<td>Plaster</td>
<td>-0.1</td>
</tr>
<tr>
<td>40</td>
<td>Restroom</td>
<td>Door</td>
<td>Brown</td>
<td>Wood</td>
<td>0.1</td>
</tr>
<tr>
<td>41</td>
<td>Restroom</td>
<td>Door jamb</td>
<td>Brown</td>
<td>Wood</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>Storage</td>
<td>Door jamb</td>
<td>Brown</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>43</td>
<td>Storage</td>
<td>Door</td>
<td>Brown</td>
<td>Wood</td>
<td>-0.0</td>
</tr>
<tr>
<td>44</td>
<td>Sanctuary</td>
<td>Ceiling trim</td>
<td>White</td>
<td>Wood</td>
<td>>9.9</td>
</tr>
<tr>
<td>45</td>
<td>Sanctuary</td>
<td>Ceiling Tile</td>
<td>Silver</td>
<td>Tin</td>
<td>4.1</td>
</tr>
<tr>
<td>46</td>
<td>Sanctuary</td>
<td>Ceiling Tile</td>
<td>Silver</td>
<td>Tin</td>
<td>2.3</td>
</tr>
<tr>
<td>47</td>
<td>Exterior</td>
<td>West wall</td>
<td>White</td>
<td>Wood</td>
<td>-0.0</td>
</tr>
<tr>
<td>48</td>
<td>Exterior</td>
<td>South wall</td>
<td>White</td>
<td>Plaster</td>
<td>0.2</td>
</tr>
<tr>
<td>49</td>
<td>Exterior</td>
<td>Roof overhang</td>
<td>White</td>
<td>Wood</td>
<td>0.6</td>
</tr>
<tr>
<td>50</td>
<td>Exterior</td>
<td>Door jamb</td>
<td>White</td>
<td>Wood</td>
<td>0.2</td>
</tr>
<tr>
<td>51</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>-0.0</td>
</tr>
<tr>
<td>52</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>53</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td>54</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>55</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>56</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

NOTE: Results equal to or greater than 1 mg/cm² are considered Lead Based Paint.

* = inconclusive reading
qm = quick mode
sm = standard mode
BULK ASBESTOS SAMPLE ANALYSIS SUMMARY

CLIENT: Terracon
2211 S. 156th Circle
Omaha, NE 68130

DATE OF RECEIPT: 06 FEB 2001
DATE OF ANALYSIS: 06 FEB 2001
DATE OF REPORT: 07 FEB 2001

CLIENT NUMBER: 28-3542 D
EHS PROJECT #: 02-01-0610
PROJECT: 40011009

<table>
<thead>
<tr>
<th>EHS SAMPLE #</th>
<th>CLIENT SAMPLE #/ LABORATORY GROSS DESCRIPTION</th>
<th>% ASBESTOS</th>
<th>OTHER MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>BC-1/ Beige Gran.</td>
<td>NAD</td>
<td>100% Non-Fibrous</td>
</tr>
<tr>
<td>02</td>
<td>BC-2/ Brown Vinyl; White Fib.</td>
<td>NAD</td>
<td>45% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10% Fibrous Glass</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45% Non-Fibrous</td>
</tr>
<tr>
<td>03</td>
<td>BC-3/ Brown Vinyl; Beige Fib.</td>
<td>NAD</td>
<td>10% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25% Fibrous Glass</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65% Non-Fibrous</td>
</tr>
<tr>
<td>04</td>
<td>BC-4/ Gray Vinyl; Black Fib.</td>
<td>NAD</td>
<td>65% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10% Synthetic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25% Non-Fibrous</td>
</tr>
<tr>
<td>05</td>
<td>BC-5/ White Chalky</td>
<td>5% Chrysotile</td>
<td>95% Non-Fibrous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3% Total Asbestos</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>BC-7/ Black Fib.; White Gran.</td>
<td>NAD</td>
<td>25% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75% Non-Fibrous</td>
</tr>
</tbody>
</table>

QC SAMPLE: M2-1998-1
REPORTING LIMIT: 1% Asbestos
METHOD: Polarized Light Microscopy, EPA Method 600/R-93/116
ANALYST: Kathy Sizemore

Reviewed By Authorized Signatory:

Howard Varner, Laboratory Director
Irma Paszewski, Quality Assurance Coordinator
David Xu, MS, Senior Chemist
Feng Jiang, MS, Senior Geologist
Results represent the analysis of samples submitted by the client. Sample location, description, area, volume, etc., was provided by the client. This report cannot be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. This report shall not be reproduced except in full, without the written consent of Environmental Hazards Services, L.L.C. California Certification #2319.

Environmental Hazards Services, L.L.C. recommends reanalysis by point count (for more accurate quantification) or Transmission Electron Microscopy (TEM), for enhanced detection capabilities) for materials regulated by the EPA NESHAP (National Emission Standards for Hazardous Air Pollutants) and found to contain less than ten percent (<10%) asbestos by polarized light microscopy (PLM). Both services are available for an additional fee.

Legend

NAD = no asbestos detected
SCF = suspected ceramic fibers
CHAIN OF CUSTODY FORM

Company Name: Terracon
Address: 2211 S. 156th Circle
City, State, Zip: Omaha, NE 68130
EHS Client Account #: 28-3542
Phone #: (402) 330-7446
Fax #: (402) 330-7606

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Date & Time</th>
<th>Asbestos</th>
<th>Lead</th>
<th>Other Metals (Specify metals below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS-1 to FS-18</td>
<td>2/10/01</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2E-1 to 2E-7</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH-1 to SH-5</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AME-1 to AME-3</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-1 to TH-5</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Air Volume (L)
Wipe Area (ft²)
Scrape Area (cm²)

Comments

Sample Condition: Acceptable
Unacceptable:

Released by: Jon Fennom
Signature: [Signature]
Date/Time: 2/15/01 11:00

Received by:
Signature: [Signature]
Date/Time:

Released by:
Signature: [Signature]
Date/Time: 2/16/01 9:00 AM

Sample Number BC-6 NOT REC'D (was 02-06-01)
Table 1.0 HOMOGENEOUS AREAS - ASBESTOS CONTAINING

<table>
<thead>
<tr>
<th>Project No.</th>
<th>Homogeneous Area Description</th>
<th>Sample Collection Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>40011007</td>
<td>The Fletcher-Switzer Site</td>
<td>2/1/01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Photo No.</th>
<th>Type of Material</th>
<th>Sample Location</th>
<th>Physical Condition</th>
<th>Estimated Quantity</th>
<th>Percent (%)</th>
<th>Asbestos Type(s)</th>
<th>Friability</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS-9</td>
<td></td>
<td>Counter Top Linoleum (Green) Bottom Layer</td>
<td>Kitchen</td>
<td>Good</td>
<td>40 SF</td>
<td>22%</td>
<td>Chrysotile</td>
<td>F</td>
</tr>
<tr>
<td>FS-14</td>
<td></td>
<td>Transite Vent Pipe</td>
<td>Bathroom</td>
<td>Good</td>
<td>20 Lft</td>
<td>25%</td>
<td>Chrysotile Crocidolite</td>
<td>NF</td>
</tr>
<tr>
<td>FS-18</td>
<td></td>
<td>Joint Compound</td>
<td>Dining Room</td>
<td>Good</td>
<td>Ceilings and Walls</td>
<td>3%</td>
<td>Chrysotile</td>
<td>F</td>
</tr>
</tbody>
</table>

T.S.I. = Thermal System Insulation
NF = NonFriable
F = Friable
SF = square feet
e/a = each
Lft = Linear feet
O.D. = Outside Diameter

"Good" Condition: ACM with no visible damage or deterioration, or showing only very limited damage or deterioration.
"Damaged": ACM that exhibits surface crumbling, blistering, water-stains, gouging, marring or delamination over <1/10 of the surface if the damage is evenly distributed (1/4 if localized).
"Significantly damaged": ACM with combined surface crumbling, blistering, water-stains, gouging, or delamination over >1/10 of the surface if the damage is evenly distributed (1/4 if localized).
Table 2.0 HOMOGENEOUS AREAS - NON-ASBESTOS CONTAINING

<table>
<thead>
<tr>
<th>Project No.</th>
<th>Homogeneous Area Description</th>
<th>Sample Collection Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>40011007</td>
<td>The Fletcher-Switzer Site</td>
<td>2/1/01</td>
</tr>
</tbody>
</table>

AREA IDENTIFICATION & SAMPLE DATA

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Type of Material</th>
<th>Sample Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS-1</td>
<td>Sheet Flooring (Tan/Blue) Top Layer</td>
<td>Dining Room</td>
</tr>
<tr>
<td>FS-2</td>
<td>Sheet Flooring (Red) Second Layer</td>
<td>Dining Room</td>
</tr>
<tr>
<td>FS-3</td>
<td>Sheet Flooring (Brown) Third Layer</td>
<td>Dining Room</td>
</tr>
<tr>
<td>FS-4</td>
<td>Sheet Flooring (Tan) Top Layer</td>
<td>Bedroom</td>
</tr>
<tr>
<td>FS-5</td>
<td>Sheet Flooring (Brown) Bottom Layer</td>
<td>Bedroom</td>
</tr>
<tr>
<td>FS-6</td>
<td>Sheet Flooring (Brown/Gold) Top Layer</td>
<td>Kitchen</td>
</tr>
<tr>
<td>FS-7</td>
<td>Sheet Flooring (Brown/Tan) Bottom Layer</td>
<td>Kitchen</td>
</tr>
<tr>
<td>FS-8</td>
<td>Counter Top Sheeting (Brown Pattern) Top Layer</td>
<td>Kitchen</td>
</tr>
<tr>
<td>FS-10</td>
<td>Counter Top Sheeting (Tan/Brown specks) Bottom Layer</td>
<td>Kitchen</td>
</tr>
</tbody>
</table>
Table 2.0 HOMOGENEOUS AREAS - NON-ASBESTOS CONTAINING

<table>
<thead>
<tr>
<th>Company/Facility Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Park Services</td>
<td></td>
<td>Nicodemus</td>
<td>Kansas</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project No.</th>
<th>Homogeneous Area Description</th>
<th>Sample Collection Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>40011007</td>
<td>The Fletcher-Switzer Site</td>
<td>2/1/01</td>
</tr>
</tbody>
</table>

AREA IDENTIFICATION & SAMPLE DATA

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Type of Material</th>
<th>Sample Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS-11</td>
<td>Sheet Flooring (Black)</td>
<td>Bedroom, Southwest</td>
</tr>
<tr>
<td>FS-12</td>
<td>Plaster</td>
<td>Back Porch</td>
</tr>
<tr>
<td>FS-13</td>
<td>Drywall</td>
<td>Back Porch</td>
</tr>
<tr>
<td>FS-15</td>
<td>Sheet Flooring (Red/Black)</td>
<td>Bedroom, Northwest</td>
</tr>
<tr>
<td>FS-16</td>
<td>Sheet Flooring (Brown/Black Pattern)</td>
<td>Bedroom, Southwest</td>
</tr>
<tr>
<td>FS-17</td>
<td>Window Glazing</td>
<td>Exterior, East side</td>
</tr>
<tr>
<td>Sample No.</td>
<td>Location</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>1</td>
<td>Calibration</td>
<td>Painted</td>
</tr>
<tr>
<td>2</td>
<td>Calibration</td>
<td>Painted</td>
</tr>
<tr>
<td>3</td>
<td>Calibration</td>
<td>Painted</td>
</tr>
<tr>
<td>4</td>
<td>Calibration</td>
<td>Unpainted</td>
</tr>
<tr>
<td>5</td>
<td>Calibration</td>
<td>Unpainted</td>
</tr>
<tr>
<td>6</td>
<td>Calibration</td>
<td>Unpainted</td>
</tr>
<tr>
<td>7</td>
<td>Dining Room</td>
<td>North wall</td>
</tr>
<tr>
<td>8</td>
<td>Dining Room</td>
<td>Window frame, north wall</td>
</tr>
<tr>
<td>9</td>
<td>Dining Room</td>
<td>Window frame</td>
</tr>
<tr>
<td>10</td>
<td>Dining room</td>
<td>Window frame, east wall</td>
</tr>
<tr>
<td>11</td>
<td>Dining room</td>
<td>Window sill, east wall</td>
</tr>
<tr>
<td>12</td>
<td>Dining room</td>
<td>East wall</td>
</tr>
<tr>
<td>13</td>
<td>Dining room</td>
<td>West wall</td>
</tr>
<tr>
<td>14</td>
<td>Kitchen</td>
<td>Cabinets, lower</td>
</tr>
<tr>
<td>15</td>
<td>Kitchen</td>
<td>Cabinets, upper</td>
</tr>
<tr>
<td>16</td>
<td>Kitchen</td>
<td>Cabinets, inside</td>
</tr>
<tr>
<td>17</td>
<td>Kitchen</td>
<td>Window sill</td>
</tr>
<tr>
<td>18</td>
<td>Kitchen</td>
<td>Window frame</td>
</tr>
<tr>
<td>19</td>
<td>Dining room</td>
<td>Ceiling</td>
</tr>
<tr>
<td>20</td>
<td>Kitchen</td>
<td>East wall</td>
</tr>
<tr>
<td>21</td>
<td>Kitchen</td>
<td>South wall</td>
</tr>
<tr>
<td>22</td>
<td>Kitchen</td>
<td>Door, south</td>
</tr>
<tr>
<td>23</td>
<td>Kitchen</td>
<td>Door, jamb, south</td>
</tr>
<tr>
<td>24</td>
<td>Kitchen</td>
<td>West wall</td>
</tr>
<tr>
<td>25</td>
<td>Back porch</td>
<td>North wall</td>
</tr>
<tr>
<td>26</td>
<td>Back porch</td>
<td>Window frame, south</td>
</tr>
<tr>
<td>27</td>
<td>Back porch</td>
<td>Window frame, south</td>
</tr>
<tr>
<td>28</td>
<td>Back porch</td>
<td>Door, west</td>
</tr>
<tr>
<td>29</td>
<td>Back porch</td>
<td>Door, jamb, west</td>
</tr>
<tr>
<td>30</td>
<td>Bedroom, southwest</td>
<td>North wall</td>
</tr>
<tr>
<td>31</td>
<td>Bedroom, southwest</td>
<td>Ceiling</td>
</tr>
<tr>
<td>32</td>
<td>Bedroom, west</td>
<td>Door</td>
</tr>
<tr>
<td>33</td>
<td>Bedroom, west</td>
<td>Door</td>
</tr>
<tr>
<td>34</td>
<td>Bedroom, west</td>
<td>Door frame</td>
</tr>
<tr>
<td>35</td>
<td>Bedroom, west</td>
<td>South wall</td>
</tr>
<tr>
<td>36</td>
<td>Bedroom, west</td>
<td>Window sill</td>
</tr>
<tr>
<td>37</td>
<td>Bedroom, west</td>
<td>East wall</td>
</tr>
<tr>
<td>38</td>
<td>Bathroom</td>
<td>North wall</td>
</tr>
</tbody>
</table>

NOTE: Results equal to or greater than 1 mg/cm² are considered Lead Based Paint.

* = inconclusive reading
qm = quick mode
sm = standard mode
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Location</th>
<th>Description</th>
<th>Color</th>
<th>Substrate</th>
<th>Results mg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Bathroom</td>
<td>East wall</td>
<td>White</td>
<td>Drywall</td>
<td>-0.0</td>
</tr>
<tr>
<td>40</td>
<td>Bathroom</td>
<td>Sink</td>
<td>White</td>
<td>Porcelain</td>
<td><9.9</td>
</tr>
<tr>
<td>41</td>
<td>Bathroom</td>
<td>Bathtub</td>
<td>White</td>
<td>Porcelain</td>
<td>4.0</td>
</tr>
<tr>
<td>42</td>
<td>Bathroom</td>
<td>Toilet</td>
<td>White</td>
<td>Porcelain</td>
<td>-0.5</td>
</tr>
<tr>
<td>43</td>
<td>Bedroom, north</td>
<td>South wall</td>
<td>Tan</td>
<td>Drywall</td>
<td>-0.1</td>
</tr>
<tr>
<td>44</td>
<td>Bedroom, north</td>
<td>Window frame</td>
<td>Cream</td>
<td>Wood</td>
<td>1.9</td>
</tr>
<tr>
<td>45</td>
<td>Bedroom, north</td>
<td>Window ledge</td>
<td>Yellow</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>46</td>
<td>Bedroom, north</td>
<td>North wall</td>
<td>Tan</td>
<td>Plaster</td>
<td>-0.1</td>
</tr>
<tr>
<td>47</td>
<td>Bedroom, north</td>
<td>Ceiling</td>
<td>White</td>
<td>Drywall</td>
<td>-0.0</td>
</tr>
<tr>
<td>48</td>
<td>Stairway</td>
<td>West wall</td>
<td>Pink</td>
<td>Drywall</td>
<td>-0.1</td>
</tr>
<tr>
<td>49</td>
<td>2nd floor, bedroom, east</td>
<td>East wall</td>
<td>Pink</td>
<td>Drywall</td>
<td>-0.1</td>
</tr>
<tr>
<td>50</td>
<td>2nd floor, bedroom, east</td>
<td>Window frame, east wall</td>
<td>White</td>
<td>Wood</td>
<td>2.2</td>
</tr>
<tr>
<td>51</td>
<td>2nd floor, bedroom, east</td>
<td>Window frame, South wall</td>
<td>White</td>
<td>Wood</td>
<td>1.4</td>
</tr>
<tr>
<td>52</td>
<td>2nd floor, southwest bedroom</td>
<td>South wall</td>
<td>Blue</td>
<td>Plaster</td>
<td>0.2</td>
</tr>
<tr>
<td>53</td>
<td>2nd floor, southwest bedroom</td>
<td>South wall</td>
<td>Blue</td>
<td>Plaster</td>
<td>-0.1</td>
</tr>
<tr>
<td>54</td>
<td>2nd floor, northwest bedroom</td>
<td>Door</td>
<td>Blue</td>
<td>Wood</td>
<td>0.2</td>
</tr>
<tr>
<td>55</td>
<td>Exterior</td>
<td>Porch frame, south wall</td>
<td>Blue</td>
<td>Plaster</td>
<td>-0.1</td>
</tr>
<tr>
<td>56</td>
<td>Exterior</td>
<td>Porch frame, north wall</td>
<td>Blue</td>
<td>Plaster</td>
<td>-0.1</td>
</tr>
<tr>
<td>57</td>
<td>Exterior</td>
<td>North wall</td>
<td>White</td>
<td>Wood</td>
<td>-0.0</td>
</tr>
<tr>
<td>58</td>
<td>Exterior</td>
<td>Window frame, north wall</td>
<td>White</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>59</td>
<td>Exterior</td>
<td>West wall, porch</td>
<td>White</td>
<td>Wood</td>
<td>-0.1</td>
</tr>
<tr>
<td>60</td>
<td>Exterior</td>
<td>West wall</td>
<td>Blue</td>
<td>Plaster</td>
<td>0.2</td>
</tr>
<tr>
<td>61</td>
<td>Exterior</td>
<td>South wall</td>
<td>Blue</td>
<td>Plaster</td>
<td>1.0 qm*</td>
</tr>
<tr>
<td>62</td>
<td>Exterior</td>
<td>South wall</td>
<td>Blue</td>
<td>Plaster</td>
<td>0.4 sm*</td>
</tr>
<tr>
<td>63</td>
<td>Exterior</td>
<td>East wall</td>
<td>Blue</td>
<td>Plaster</td>
<td>-0.2</td>
</tr>
<tr>
<td>64</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>65</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>66</td>
<td>Calibration</td>
<td>Painted</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>67</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>68</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td>69</td>
<td>Calibration</td>
<td>Unpainted</td>
<td></td>
<td></td>
<td>-0.0</td>
</tr>
</tbody>
</table>

NOTE: Results equal to or greater than 1 mg/cm² are considered Lead Based Paint.

* = inconclusive reading
qm = quick mode
sm = standard mode
BULK ASBESTOS SAMPLE ANALYSIS SUMMARY

CLIENT: Terracon
2211 S. 156th Circle
Omaha, NE 68130

DATE OF RECEIPT: 06 FEB 2001
DATE OF ANALYSIS: 06 FEB 2001
DATE OF REPORT: 07 FEB 2001

CLIENT NUMBER: 28-3542 D
EHS PROJECT #: 02-01-0611
PROJECT: 40011009

<table>
<thead>
<tr>
<th>EHS SAMPLE #</th>
<th>CLIENT SAMPLE #</th>
<th>LABORATORY GROSS DESCRIPTION</th>
<th>% ASBESTOS</th>
<th>OTHER MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>FS-1/</td>
<td>Beige/Pale Blue Vinyl-Like; Gray Fib.</td>
<td>NAD</td>
<td>20% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7% Hair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73% Non-Fibrous</td>
</tr>
<tr>
<td>02</td>
<td>FS-2/</td>
<td>Red/Orange Vinyl-Like; Black Fib.</td>
<td>NAD</td>
<td>40% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15% Hair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45% Non-Fibrous</td>
</tr>
<tr>
<td>03</td>
<td>FS-3/</td>
<td>Tan/Gray Vinyl-Like; Black Fib.</td>
<td>NAD</td>
<td>45% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20% Hair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35% Non-Fibrous</td>
</tr>
<tr>
<td>04</td>
<td>FS-4/</td>
<td>Beige Vinyl-Like; Blue/Green Fib.</td>
<td>NAD</td>
<td>25% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10% Hair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65% Non-Fibrous</td>
</tr>
<tr>
<td>05</td>
<td>FS-5/</td>
<td>Black/Brown Fib.</td>
<td>NAD</td>
<td>55% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20% Hair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25% Non-Fibrous</td>
</tr>
<tr>
<td>06</td>
<td>FS-6/</td>
<td>Tan Vinyl-Like; Blue Fib.</td>
<td>NAD</td>
<td>25% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10% Hair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65% Non-Fibrous</td>
</tr>
<tr>
<td>07</td>
<td>FS-7/</td>
<td>Beige Vinyl-Like; Blue Fib.</td>
<td>NAD</td>
<td>28% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7% Hair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65% Non-Fibrous</td>
</tr>
<tr>
<td>08</td>
<td>FS-8/</td>
<td>Beige Vinyl-Like; Beige Fib.</td>
<td>NAD</td>
<td>20% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5% Fibrous Glass</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5% Wollastonite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70% Non-Fibrous</td>
</tr>
<tr>
<td>09</td>
<td>FS-9/</td>
<td>Beige/Green Vinyl-Like; Pale Gray Fib.</td>
<td>22% Chrysotile</td>
<td>6% Cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22% Total Asbestos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Present in fibrous backing.</td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>CLIENT SAMPLE #/LABORATORY GROSS DESCRIPTION</td>
<td>% ASBESTOS</td>
<td>OTHER MATERIALS</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>FS-10/Beige Vinyl-Like; Blue Fib.</td>
<td>NAD</td>
<td>30% Cellulose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7% Hair</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>63% Non-Fibrous</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>FS-11/Brown/Gray/Black Fib.</td>
<td>NAD</td>
<td>30% Cellulose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50% Hair</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20% Non-Fibrous</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>FS-12/Gray Cementitious; White Fib.</td>
<td>NAD</td>
<td>3% Cellulose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>97% Non-Fibrous</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>FS-13/Off-White/Tan Fib.</td>
<td>NAD</td>
<td>20% Cellulose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80% Non-Fibrous</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>FS-14/Gray/Green Brittle</td>
<td>25% Chrysotile</td>
<td>70% Non-Fibrous</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5% Crocidolite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30% Total Asbestos *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Present in main gray transite-like layer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>FS-15/Red/Beige Vinyl-Like; Black Fib.</td>
<td>NAD</td>
<td>40% Cellulose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12% Hair</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48% Non-Fibrous</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>FS-16/Multi-Colored Vinyl-Like; Black Fib.</td>
<td>NAD</td>
<td>40% Cellulose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15% Hair</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45% Non-Fibrous</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>FS-17/Off-White Brittle</td>
<td>NAD</td>
<td>1% Cellulose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1% Wollastonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>98% Non-Fibrous</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>FS-18/Tan/White Fib.; Beige/Off-White Brittle</td>
<td>Trace, <1% Chrysotile *</td>
<td>60% Cellulose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><1% Total Asbestos *</td>
<td>40% Non-Fibrous</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*3% chrysotile present in joint compound/texturing-type layer directly beneath surface paint.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QC SAMPLE: M2-1999-1

REPORTING LIMIT: 1% Asbestos

METHOD: Polarized Light Microscopy, EPA Method 600/R-93/116

ANALYST: Mark Case

Reviewed By Authorized Signatory:
Howard Varner, Laboratory Director
Irma Paszewski, Quality Assurance Coordinator
David Xu, MS, Senior Chemist
Feng Jiang, MS, Senior Geologist
Results represent the analysis of samples submitted by the client. Sample location, description, area, volume, etc., was provided by the client. This report cannot be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. This report shall not be reproduced except in full, without the written consent of Environmental Hazards Services, L.L.C., California Certification #2319.

Environmental Hazards Services, L.L.C. recommends reanalysis by point count (for more accurate quantification) or Transmission Electron Microscopy (TEM), for enhanced detection capabilities) for materials regulated by the EPA NESHAP (National Emission Standards for Hazardous Air Pollutants) and found to contain less than ten percent (<10%) asbestos by polarized light microscopy (PLM). Both services are available for an additional fee.

--- PAGE 03 of 03 -- END OF REPORT --
CHAIN OF CUSTODY FORM

Company Name: Terracon
Address: 2211 S. 156th Circle
City, State, Zip: Omaha, NE 68130
EHS Client Account #: 28-3542
Phone#: (402) 330-7446
Fax#: (402) 330-7606
Date: 2-5-01
Contact Name: Jon Fanning
Sampler Name: Jon Fanning
Project #: 4001/009
P.O. #:

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Date & Time</th>
<th>Asbestos</th>
<th>Lead</th>
<th>Other Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bulk ID by PLM</td>
<td>Fiber Count (PCM)</td>
<td>TEM Air</td>
</tr>
<tr>
<td>FS-1 & FS-18</td>
<td>2/01/01</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8E-1 & 8E-2</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH-1 & SH-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AME-1 & AME-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-1 & TH-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Released by: Jon Fanning
Received by:
Released by:
Received by:

Signature:
Date/Time: 2/15/01 1:00
Date/Time:

Signature:

Date/Time: 2/18/01 9:00 am
Table 4.0 Hanta Virus Sampling

<table>
<thead>
<tr>
<th>Trap No.</th>
<th>Date</th>
<th>Building</th>
<th>Sample Location</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/30-2/3</td>
<td>Township Hall</td>
<td>Basement, Northeast area</td>
<td>No mice trapped</td>
</tr>
<tr>
<td>2</td>
<td>1/30-2/3</td>
<td>The Flectcher-Switzer Site</td>
<td>Main Floor, Dinning Room</td>
<td>No mice trapped</td>
</tr>
<tr>
<td>3</td>
<td>1/30-2/3</td>
<td>First Baptist Church</td>
<td>Sanctuary, Southwest corner</td>
<td>No mice trapped</td>
</tr>
<tr>
<td>4</td>
<td>1/30-2/3</td>
<td>First Baptist Church</td>
<td>Kitchen, West central wall</td>
<td>No mice trapped</td>
</tr>
<tr>
<td>5</td>
<td>1/30-2/3</td>
<td>District No.1 Schoolhouse</td>
<td>Main room, west central wall</td>
<td>One (1) mouse trapped</td>
</tr>
<tr>
<td>6</td>
<td>1/30-2/3</td>
<td>District No.1 Schoolhouse</td>
<td>Kitchen, West central area</td>
<td>Two (2) mice trapped</td>
</tr>
<tr>
<td>7</td>
<td>1/30-2/3</td>
<td>AME Church</td>
<td>Sanctuary, North central wall</td>
<td>No mice trapped</td>
</tr>
<tr>
<td>8</td>
<td>1/30-2/3</td>
<td>The Flectcher-Switzer Site</td>
<td>Kitchen area, North wall</td>
<td>No mice trapped</td>
</tr>
</tbody>
</table>
INVOICE NUMBER: 01-003274
PURCHASE ORDER NO.: 40011007

RECEIVED: 2/07/2001

CUSTOMER: TERRACON

SPECIES: MOUSE

CONTACT: TREVER TOBIAS

TRAIN: DEER
AGE: F

TRAIN: DEER
AGE: M

DIAGNOSTIC SUMMARY INFORMATION:

BIOLOGY: ALL NEGATIVE

PATHOLOGY: NO GROSS LESIONS

NOTES: Refer to individual report(s) for further detail.
SEROLOGY REPORT

DATE: TERRACON
2211 SOUTH 156TH CIRCLE
OMAHA NE 68130-2506

ACCESSION NUMBER: 01-003274
PURCHASE ORDER NO.: 40011007
DATE SCHEDULED: 2/06/2001
DATE RECEIVED: 2/07/2001
DATE COMPLETED: 2/15/2001

SPECIES: MOUSE STRAIN: DEER

CONTACT: TREVER TOBIAS
PHONE #: 402 330-2202 EXT:

CRPS ID: 001 002 003
CUST ID:

ETHOD AGENT
LISA HANT - - -
FA PHV - - -

SIG. TITER

COMMENTS:
ELISA/IFA Results: - = Negative; +/- = Equivocal; + = Moderate to strong positive; TC = Non-specific reaction with tissue control.

WILLIAM R. SHEK, D.V.M., PH.D.
DIRECTOR, DIAGNOSTIC SERVICES
PATHOLOGY REPORT

2/08/2001

TERRACON

2211 SOUTH 156TH CIRCLE

OMAHA NE 68130-2506

ACCESSION NUMBER: 01-003274

PURCHASE ORDER NO.: 40011007

DATE SCHEDULED: 2/06/2001

DATE RECEIVED: 2/07/2001

DATE COMPLETED: 2/08/2001

SPECIES: MOUSE

STRAIN: DEER

TACT: TREVER TOBIAS

NE #: 402 330-2202 **EXT:**

CRPS ID: 001 002 003

CUST ID:

<table>
<thead>
<tr>
<th>13H/SAMPLE COL</th>
<th>S</th>
<th>S</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIGHT</td>
<td>17 G</td>
<td>20 G</td>
<td>22 G</td>
</tr>
</tbody>
</table>

NOTES:

Sample collection charge: $6.95/sample.
HEALTH MONITORING ACCESSION FORM

To be completed at CRL:
- Accession No: __________________
- Date Received: __________________

Bill to:
- Firm: ________________
- Address: 2211 South 16th Circle
 Omaha, NE 68130-2504
- ATTN: Trevor Tobias
- TEL: (402) 330-2202
- FAX: (402) 330-7606
- Purchase Order No: (402) 330-7606
- Contract No: 40011007

SPECIES (CIRCLE ONE): MOUSE

RAT **HAMSTER** **GUINEA PIG**

Please use ONE FORM PER SPECIES

Total Number of Animals Submitted: (3) THREE

<table>
<thead>
<tr>
<th>PROTOCOL/TEST</th>
<th>ANIMAL GROUP ID</th>
<th>NUMBER PER GROUP</th>
<th>STRAIN</th>
<th>AGE/DOB</th>
<th>WEIGHT</th>
<th>SEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanta Virus</td>
<td>1</td>
<td>3 (DEER MICE) 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Remarks:
Please give us species, weight, and sex on the request.

Thank you for all your help—Trevor Tobias.

PLEASE ATTACH A COPY OF THIS FORM TO THE CONTAINER IN WHICH THE ANIMALS ARE SHIPPED

NALS-HMFM-012-2 EFFECTIVE DATE: 6/21/99
Certificate # 7ME031572021R004

This is to certify that

Jonathan D. Fannon

has on 03/15/00, in OMAHA, NE
completed the requisite training for asbestos accreditation under TSCA Title II,
15 U.S.C. 2646

AHERA Asbestos Inspector Refresher Training

as approved by the U.S.E.P.A. under 40 C.F.R. 763 (AHERA)
on 03/15/00 - 03/15/00 and passed the associated examination on 03/15/00
with a score of 70% or better
CM = .5 PTS

[Signature]
Instructor

[Signature]
President

Soc. Sec #: 479-90-5966
Accreditation Expires: 03/15/01

META — P.O. Box 786 — Lawrence KS 66044 — 800-444-6382
IOWA DEPARTMENT OF PUBLIC HEALTH
LEAD POISONING PREVENTION PROGRAM
Lucas State Office Building, Des Moines, IA 50319-0075
515/281-3479 or 800-972-2026

CERTIFICATE OF TRAINING #11109908
This is to certify that

Jon Fannon
HSE Consulting and Sampling
2211 South 156th Circle
Omaha NE 68130

has successfully completed 40 hours of Lead Inspector* training and 8 hours refresher training course as follows:

<table>
<thead>
<tr>
<th>Date</th>
<th>Length</th>
<th>Test Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/09/97-12/11/97</td>
<td>24 hours</td>
<td>88%</td>
</tr>
<tr>
<td>11/8-11/10/99</td>
<td>24 hours</td>
<td>87%</td>
</tr>
</tbody>
</table>

*This course includes the 24-hour Inspector and 16-hour Risk Assessor training. In Iowa, individuals that complete this course and meet all other requirements may be certified as Lead Inspectors. Iowa-certified Lead Inspectors can perform inspections, risk assessments, lead hazard screens, and clearance inspections.

(Iowa Department of Public Health Approval Number IATRAIN-INSPI-0001)
Certificate of Achievement

This is to certify that

Jon Fannon

of the HSE Consulting & Sampling

on the 13th day of November 1997 successfully completed the factory training for

RMD's LPA-1 Lead Paint Inspection System

including, but not limited to, the topics of Radiation Safety and the Proper Use of the Instrument.

Jacob Paster, Vice President, RMD
44 Hunt St, Watertown, Massachusetts
Certificate # 7ME01187301NIR004

This is to certify that

Trevor P. Tobias

has on 01/18/01, in OMAHA, NE
completed the requirements for asbestos accreditation under Section 206 of TSCA, Title II, 15 U.S.C. 2646

EPA/AHERA Nebraska Inspector Refresher Course

as approved by the U.S.E.P.A. under 40 C.F.R. 763 (AHERA)
on 01/18/01 - 01/18/01 and passed the associated examination on 01/18/01
with a score of 70% or better

CM =

[Signature]
Instructor

[Signature]
President

Soc. Sec #: 481-13-4734
Accreditation Expires: 01/18/02

META - P.O. Box 786 - Lawrence KS 66044 - 800-444-6382
Certificate # 7ME08237203D1001

This is to certify that

Trevor P. Tobias
7152 County Road 27
Blair, Ne 68008

has on 08/23/00, in OMAHA, NE
completed an

EPA Model Lead Inspector Initial Course

on 08/21/00 - 08/23/00 and passed the associated examination
with a score of 70% or better

Instructor

President

Soc. Sec #: 481-13-4734
Interim Certification Expires: 02/23/01

META - P.O. Box 786 - Lawrence KS 66044 - 800-444-6382
Certificate of Achievement

This is to certify that

Trevor Tobias
AMI Group, Inc.
on the 26th day of March 1999
successfully completed the factory training for

RMD's LPA-1 Lead Paint Inspection System

including, but not limited to, the topics of Radiation Safety and the Proper Use of the Instrument.

Jacob H. Paster, Vice President, RMD, Inc.
44 Hunt St., Watertown, Massachusetts
May 22, 2001

Mr. Dan Worth
Bahrt, VerMeer, and Haecker, Architects
121 South Thirteenth Street Suite 200
Lincoln, Nebraska 68508

Dear Dan:

Enclosed, please find paint reports for the five buildings (Township Hall, St. Francis Hotel/Fletcher-Switzer Residence, Old First Baptist Church, A.M.E. Church, and Nicodemus School District No. 1 Building) at Nicodemus National Historic Site, marked-up drawing prints showing sample locations, and an invoice for the same. Under separate cover I am returning the samples.

As anticipated, the paint analysis did not reveal original finishes for any of the buildings except the school which I believe was quite successful. However, I was surprised to find in several cases enough evidence to construct not merely the present surviving paint scheme but an earlier one, as well. Given the condition of the buildings I believe the paint study was as successful as could possible be expected.

As always, feel free to call me if you have any questions or comments.

Sincerely,

David Arboagast

Enclosures
On Wednesday, May 16, 2001, David Arbogast, architectural conservator, of Iowa City, Iowa, collected a set of fifteen exterior paint samples from the Township Hall in Nicodemus, Kansas. These were collected in conjunction with a larger paint analysis of five buildings (Township Hall, St. Francis Hotel/Fletcher-Switzer Residence, Old First Baptist Church, A.M.E. Church, and Nicodemus School District No. 1 Building) in conjunction with a Historic Structures Report prepared by Bahr, VerMeer, and Hackler, Architects of Lincoln, Nebraska. The analysis of the samples was undertaken to determine historic finishes of the exterior of the Township Hall. Each sample was collected in a manila coin envelope with sample location information written on the face of the envelope.

Laboratory analysis of the samples was completed by May 22 in the laboratory of Mr. Arbogast in Iowa City. The samples were visually examined under an optical Olympus microscope having magnification between 14 and 80 power. Each layer observed was color-matched to the Munsell System of Color utilizing natural north light. Only opaque, pigmented layers (i.e. paint layers) were matched. It is impossible to color-match finishes such as varnishes, glazes, and metallic finishes because their color is directly affected by their translucency and reflectance. Only those layers which could be positively identified are listed.

The Munsell System of Color is a scientific system in which colors have been ranged into a color fan based upon three attributes: hue or color, the chroma or color saturation, and the value or neutral lightness or darkness. Unlike color systems developed by paint manufacturers, the Munsell system provides an unchanging standard of reference which is unaffected by the marketplace and changing tastes in colors.

The hue notation, the color, indicates the relation of the sample to a visually equally spaced scale of 100 hues. There are ten major hues, five principal and five intermediate within this scale. The hues are identified by initials indicating the central member of the group: red R, yellow-red YR, yellow Y, yellow-green GY, green G, blue-green BG, blue B, purple-blue PB, purple P, and red-purple RP. The hues in each group are identified by the number 1 to 10. The most purplish of the red hues, 1 on the scale of 100, is designated as 1R, the most yellowish as 10R, and the central hue as 5R. The hue 10R can also be expressed as 10, 5Y as 25, and so forth - if a notation of the hue as a number is desired.

Chroma indicates the degree of departure of a given hue from the neutral gray axis of the same value. It is the strength or saturation of color from neutral gray, written /0 to /14 or further for maximum color saturation.

Value, or lightness, makes up the neutral gray axis of the color wheel, ranging from black, number 1, to white at the top of the axis, number 10. A visual value can be approximated by the help of the neutral gray chips of the Rock or Soil Color Chart with ten intervals. The color parameters can be expressed with figures semi-quantitatively as: hue, value/chroma (H, V/C). The color “medium red” should serve as an example for presentation with the three color attributes, 5R 5.5/6. This means that 5R is located in the middle of the red hue, 5.5 is the lightness of the Munsell value near the middle between light and dark, and 6 is the degree of the Munsell chroma, or the color saturation, which is about in the middle of the saturation scale.

The samples are discussed individually according to the numerical order in which they were collected. A conclusions and recommendations section closes the report, summarizing the findings. The layers are listed with the most recent at the top to the oldest at the bottom. Sample substrates were typically steel and wood and are given with each sample discussion. Sample quality was good to excellent.
Sample 1 Munsell
Red 2.5R 3/8
Black N 1.5/

The first sample was removed from the steel muntin of the second window from the north of the east elevation. It revealed two layers of paint - red over black. The black is probably an older finish coat and not a prime coat for the red paint. Given the fact that the building was constructed in 1939 it is very unlikely that it was only paint twice in its history. It is likely that earlier paint coats either weathered away or were stripped prior to repainting it with black.

Sample 2 Munsell
Off-white 10YR 8.5/1
Tan 10YR 7/3

The second sample was collected from the concrete sill of the southernmost window of the east elevation. Like sample one, it retained two layers of paint - a recent off-white coat and an older tan coat apparently simulating the color of the native limestone masonry of the building. It is possible that the concrete sills of the window were originally unpainted.

Sample 3 Munsell
Red 2.5R 3/8
Black N 1.5/

The third sample was taken from the steel head of the northernmost window of the west elevation. It proved to be identical to sample one.

Sample 4 Munsell
Off-white 10YR 8.5/1
Tan 10YR 7/3

The fourth sample came from the sill of the southernmost window of the west elevation. It was identical to its counterpart, sample two.

Sample 5 Munsell
White N 9.5/
White 5Y 9/1

The fifth sample was removed from the wooden west frame of the main doorway centered in the south elevation. It retained two layers of white paint. The newest layer was latex paint and the older layer was oil-based paint which had yellowed slightly.

Sample 6 Munsell
Off-white 10YR 8.5/1
White N 9.5/
White 5Y 9/1

The sixth sample was collected from the wood door of the east elevation. It retained a top layer of off-white matching that of samples 2 and 4 in addition to the two white layers seen in sample 5.
Sample 7 Munsell
Off-white 10YR 8.5/1
White N 9.5/
White 5Y 9/1

The seventh sample was taken from the wood lintel of the north door of the east elevation. It was identical to sample 6.

Sample 8 Munsell
Off-white 10YR 8.5/1
White N 9.5/
White 5Y 9/1

The eighth sample came from the wood door of the of the west elevation. It was identical to samples 6 and 7.

Sample 9 Munsell
Off-white 10YR 8.5/1
White N 9.5/
White 5Y 9/1

The ninth sample was removed from the wood lintel of the door of the west elevation. It was identical to samples 6, 7 and 8.

Sample 10 Munsell
Off-white 10YR 8.5/1
White N 9.5/
White 5Y 9/1

The tenth sample was collected from the wood lintel of the door of the north elevation. It was identical to samples 6 - 9.

Sample 11 Munsell
Off-white 10YR 8.5/1
White N 9.5/
White 5Y 9/1

The eleventh sample was taken from the east fascia of the south elevation of the entrance gable. It was identical to samples 6 - 10.

Sample 12 Munsell
Off-white 10YR 8.5/1
White N 9.5/
White 5Y 9/1

The twelfth sample came from the east eaves of the south elevation of the entrance gable. It was identical to samples 6 - 11.
Sample 13 Munsell
Off-white 10YR 8.5/1
White N 9.5/

The thirteenth sample was removed from the west fascia of the south elevation of the main roof gable. It lacked the oldest white oil layer seen in previous samples. Given the exposed location, it is likely that this layer weathered away prior to application of the surviving layers.

Sample 14 Munsell
Off-white 10YR 8.5/1
White N 9.5/

The fourteenth sample was collected from the west eaves of the south elevation of the main roof gable. It was identical to its counterpart, sample 14.

Sample 15 Munsell
Off-white 10YR 8.5/1
White N 9.5/
White 5Y 9/1

The fifteenth sample was taken from the bottom edge of the south side of the fourth rafter end from the south of the west elevation. It was identical to samples 6 - 12.

A number of conclusions can be drawn from this paint analysis, as follow:

1. The sample quality was more than sufficient to reveal all surviving layers of the samples.
2. The number of layers revealed was insufficient to establish any as dating from construction of the building.
3. Two apparent paint schemes were revealed. The present scheme of red window sash and off-white sills and woodwork was preceded by black window sash, limestone-colored sills and white woodwork. Nothing is known of any earlier schemes.
Paint Analysis
St. Francis Hotel/Fletcher-Switzer Residence
Nicodemus National Historic Site
Nicodemus, Kansas
May 22, 2001

On Wednesday, May 16, 2001, David Arbogast, architectural conservator, of Iowa City, Iowa, collected a set of fifteen exterior paint samples from the St. Francis Hotel/Fletcher-Switzer Residence in Nicodemus, Kansas. These were collected in conjunction with a larger paint analysis of five buildings (Township Hall, St. Francis Hotel/Fletcher-Switzer Residence, Old First Baptist Church, A.M.E. Church, and Nicodemus School District No. 1 Building) in conjunction with a Historic Structure Report prepared by Bahr, VerMeer, and Haecker, Architects of Lincoln, Nebraska. The analysis of the samples was undertaken to determine historic finishes of the exterior of the St. Francis Hotel/Fletcher-Switzer Residence. Each sample was collected in a manila envelope with sample location information written on the face of the envelope.

Laboratory analysis of the samples was completed by May 22 in the laboratory of Mr. Arbogast in Iowa City. The samples were visually examined under an optical Olympus microscope having magnification between 14 and 80 power. Each layer observed was color-matched to the Munsell System of Color utilizing natural north light. Only opaque, pigmented layers (i.e. paint layers) were matched. It is impossible to color-match finishes such as varnishes, glazes, and metallic finishes because their color is directly affected by their translucency and reflectance. Only those layers which could be positively identified are listed.

The Munsell System of Color is a scientific system in which colors have been ranged into a color fan based upon three attributes: hue or color, the chroma or color saturation, and the value or neutral lightness or darkness. Unlike color systems developed by paint manufacturers, the Munsell system provides an unchanging standard of reference which is unaffected by the marketplace and changing tastes in colors.

The hue notation, the color, indicates the relation of the sample to a visually equally spaced scale of 100 hues. There are ten major hues, five principal and five intermediate within this scale. The hues are identified by initials indicating the central member of the group: red R, yellow-red YR, yellow Y, yellow-green GY, green G, blue-green BG, blue B, purple-blue PB, purple P, and red-purple RP. The hues in each group are identified by the number 1 to 10. The most purplish of the red hues, 1 on the scale of 100, is designated as 1R, the most yellowish as 10Y, and the central hue as 5R. The hue 10R can also be expressed as 10, 5Y as 25, and so forth - if a notation of the hue as a number is desired.

Chroma indicates the degree of departure of a given hue from the neutral gray axis of the same value. It is the strength or saturation of color from neutral gray, written /0 to /14 or further for maximum color saturation.

Value, or lightness, makes up the neutral gray axis of the color wheel, ranging from black, number 1, to white at the top of the axis, number 10. A visual value can be approximated by the help of the neutral gray chips of the Rock or Soil Color Chart with ten intervals. The color parameters can be expressed with figures semi-quantitatively as: hue, value/chroma (H, V/C). The color “medium red” should serve as an example with the three color attributes, 5R 5.5/6. This means 5R is located in the middle of the red hue, 5.5 is the lightness of the Munsell value near the middle between light and dark, and 6 is the degree of the Munsell chroma, or the color saturation, which is about in the middle of the saturation scale.

The samples are discussed individually according to the numerical order in which they were collected. A conclusions and recommendations section closes the report, summarizing the findings. The layers are listed with the most recent at the top to the oldest at the bottom. Sample substrates were typically wood and stucco with on Masonite substrate and are given with each sample discussion. Sample quality was good to excellent.
Sample 16
Warm gray 2.5Y 6/2
White N 9.5/
Light gray 5Y 7/1

Sample 16 was removed from the wood trim of the front (north) door inside the enclosed porch. It revealed three layers of latex paint. None of these come remotely close in time to the original construction of the building and the trim itself is of typical late twentieth-century profile.

Sample 17
White N 9.5/
Blue 10B 6/6
White N 9.5/

Sample 17 was collected from the wooden south lower stile of the north window of the east elevation. It retained three layers of latex paint. The blue layer was quite unevenly applied and greatly faded in many areas. The top white layer was very thinly applied, exposing areas of the blue paint.

Sample 18
White N 9.5/
Blue 10B 6/6
White N 9.5/

Sample 18 came from the wooden south lower stile of the north window of the east elevation. It matched sample 18 in its layering.

Sample 19
White N 9.5/
Blue 10B 6/6
White N 9.5/

Sample 19 was taken from the wooden top rail of the north window of the east elevation. It matched its counterpart, sample 18, exactly.

Sample 20
White N 9.5/

Sample 20 was removed from the wooden south window frame of the east elevation. It retained only the most recent white latex layer on its surface.

Sample 21
White N 9.5/
White N 9.5/

Sample 21 was collected from the wooden east frame of the east window pair inside the porch of the north elevation. It retained the two white latex layers, but not the blue layer seen in other samples.
Sample 22
White
Munsell
N 9.5/

Sample 22 was taken from the wooden east frame of the central pair of windows of the north elevation. It retained only the most recent layer of white latex paint.

Sample 23
White
Munsell
N 9.5/

Sample 23 was removed from the Masonite siding of the north elevation. It retained only the most recent layer of white latex paint.

Sample 24
White
Munsell
N 9.5/

Sample 24 was collected from the wood siding above the east elevation of the north porch. It revealed only the two layers of white latex paint seen in other samples.

Sample 25
White
Munsell
N 9.5/

Sample 25 was taken from the wooden fascia of the north porch. It revealed the two white latex paint layers seen in other, typical samples.

Sample 26
White
Munsell
N 9.5/
Blue
10B 6/6
White
N 9.5/

Sample 26 came from the wooden porch rafter end of the north elevation. It revealed a standard set of latex paint layers.

Sample 27
White
Munsell
N 9.5/
Blue
10B 6/6

Sample 28 was taken from the wooden soffit of the north porch. It revealed the two most recent white and blue latex paint layers seen in other samples.

Sample 28
Varnish
Munsell

Sample 28 was removed from the wooden ceiling of the north porch. It retained a very thin and very degraded layer of varnish on its surface.
Sample 29 Munsell
 White N 9.5/
 Blue 10B 6/6

Sample 29 was collected from the stucco surface of the east elevation. It revealed the most recent white and blue latex layers seen on other, wooden samples.

Sample 30 Munsell
 White N 9.5/
 Blue 10B 6/6
 Light gray 5Y 7/1

Sample 30 was taken from the stucco surface of the west elevation. It matched its counterpart, sample 29, with the addition of an earlier layer of light gray paint which was seen also in sample 16.

A number of conclusions can be drawn from this paint analysis, as follow:

1. The deterioration of the building fabric adversely affect many of the samples. However, all surviving layers appear to have been observed.
2. The number and type (latex) of paint layers revealed that no original paint survived on the exterior.
3. Some areas, such as the rear dormer, had lost whatever finishes they may have once had. The net result appears that nothing can be ascertained regarding original exterior finishes.
Paint Analysis
Old First Baptist Church
Nicodemus National Historic Site
Nicodemus, Kansas
May 22, 2001

On Wednesday, May 16, 2001, David Arbogast, architectural conservator, of Iowa City, Iowa, collected a set of fifteen exterior paint samples from the Old First Baptist Church in Nicodemus, Kansas. These were collected in conjunction with a larger paint analysis of five buildings (Township Hall, St. Francis Hotel/Fletcher-Switzer Residence, Old First Baptist Church, A.M.E. Church, and Nicodemus School District No. 1 Building) in conjunction with a Historic Structures Report prepared by Bahr, VerMeer, and Haecker, Architects of Lincoln, Nebraska. The analysis of the samples was undertaken to determine historic finishes of the exterior of the Old First Baptist Church. Each sample was collected in a manila envelope with sample location information written on the face of the envelope.

Laboratory analysis of the samples was completed by May 22 in the laboratory of Mr. Arbogast in Iowa City. The samples were visually examined under an optical Olympus microscope having magnification between 14 and 80 power. Each layer observed was color-matched to the Munsell System of Color utilizing natural north light. Only opaque, pigmented layers (i.e. paint layers) were matched. It is impossible to color-match finishes such as varnishes, glazes, and metallic finishes because their color is directly affected by their translucency and reflectance. Only those layers which could be positively identified are listed.

The Munsell System of Color is a scientific system in which colors have been ranged into a color fan based upon three attributes: hue or color, the chroma or color saturation, and the value or neutral lightness or darkness. Unlike color systems developed by paint manufacturers, the Munsell system provides an unchanging standard of reference which is unaffected by the marketplace and changing tastes in colors.

The hue notation, the color, indicates the relation of the sample to a visually equally spaced scale of 100 hues. There are ten major hues, five principal and five intermediate within this scale. The hues are identified by initials indicating the central member of the group: red R, yellow-red YR, yellow Y, yellow-green GY, green G, blue-green BG, blue B, purple-blue PB, purple P, and red-purple RP. The hues in each group are identified by the number 1 to 10. The most purplish of the red hues, 1 on the scale of 100, is designated as 1R, the most yellowish as 10R, and the central hue as 5R. The hue 10R can also be expressed as 10, 5Y as 25, and so forth - if a notation of the hue as a number is desired.

Chroma indicates the degree of departure of a given hue from the neutral gray axis of the same value. It is the strength or saturation of color from neutral gray, written /0 to /14 or further for maximum color saturation.

Value, or lightness, makes up the neutral gray axis of the color wheel, ranging from black, number 1, to white at the top of the axis, number 10. A visual value can be approximated by the help of the neutral gray chips of the Rock or Soil Color Chart with ten intervals. The color parameters can be expressed with figures semi-quantitatively as: hue, value/chroma (H, V/C). The color "medium red" should serve as an example for presentation with the three color attributes, 5R 5.5/6. This means that 5R is located in the middle of the red hue, 5.5 is the lightness of the Munsell value near the middle between light and dark, and 6 is the degree of the Munsell chroma, or the color saturation, which is about in the middle of the saturation scale.

The samples are discussed individually according to the numerical order in which they were collected. A conclusions and recommendations section closes the report, summarizing the findings. The layers are listed with the most recent at the top to the oldest at the bottom. Sample substrates were typically wood and stucco and are given with each sample discussion. Sample quality was good to excellent.
Sample 31 was removed from the wooden south frame of the main door. It revealed a two layers of white paint - the top layer being latex and the lower layer being oil-based. It is extremely unlikely that only two layers of paint were applied to the exterior of the church since it was first constructed.

Sample 32 was collected from the south edge of the plywood north leaf of the main door. It revealed only the most recent white latex layer seen in sample 31.

Sample 33 sample was taken from the west lower frame of the wooden west window of the south elevation. It retained only the most recent white latex layer seen in the two previous samples.

Sample 34 came from the west lower stile edge of the wooden west window of the south elevation. It revealed a single layer of white latex paint as seen on all previous samples.

Sample 35 was removed from the south lower frame of the wooden south window of the east elevation. It matched sample 31.

Sample 36 was collected from the south lower stile of the wooden south window of the east elevation. It retained only the most recent white latex layer seen in all previous samples.

Sample 37 was taken from the wood fascia of the west return of the main gable of the south elevation. It revealed a layer of gray oil-based paint beneath the recent white latex layer. The gray paint probably is contemporaneous with the oil-based white layer seen in sample 31 and 35.
Sample 38 came from the wood molding between the fascia and the soffit of the west return of the main gable of the south elevation. It matched its counterpart, sample 37.

Sample 39 was removed from the wood eaves of the west return of the main gable of the south elevation. It matched its counterparts, samples 37 and 38.

Sample 40 was collected from the wood fascia of the south return of the main gable of the west elevation. It matched its counterparts, samples 37, 38, and 39.

Sample 41 was taken from the wood molding between the fascia and the soffit of the south return of the main gable of the west elevation. It matched its counterparts, samples 37 - 40.

Sample 42 came from the wood eaves of the south return of the main gable of the west elevation. It matched its counterparts, samples 37 - 41.

Sample 43 was removed from the upper, outer wood molding of the south return of the main gable of the west elevation. In addition to the white and gray layers seen in samples 37 - 42 there was a very thin layer of tan on the surface.
Sample 44 Munsell
Off-white 5Y 8.5/2

Sample 44 was collected from the stucco surface of the bottom west corner of the wall near the main door of the south elevation. It revealed a thin wash of off-white paint which left much of the underlying surface of the stucco exposed.

Sample 45 Munsell
White N 9.5/1

Sample 45 was taken from the bottom eastern surface of the south elevation of the south buttress of the east elevation. The west side of this buttress has the off-white wash seen in sample 44, but this sample revealed an underlying, very thin white wash on its surface.

A number of conclusions can be drawn from this paint analysis, as follow:

1. The sample quality was as good as could be expected given the pronounced lack of maintenance given to the church.
2. The number of layers quite insufficient to draw any conclusions regarding original exterior finishes.
3. Two paint schemes were observed - the most recent scheme being which woodwork with off-white stucco walls and an older scheme being white windows and doors, gray gable trim, and white stucco walls.
Paint Analysis
A.M.E. Church
Nicodemus National Historic Site
Nicodemus, Kansas
May 22, 2001

On Wednesday, May 16, 2001, David Arbogast, architectural conservator, of Iowa City, Iowa, collected a set of fifteen exterior paint samples from the A.M.E. Church in Nicodemus, Kansas. These were collected in conjunction with a larger paint analysis of five buildings (Township Hall, St. Francis Hotel/Fletcher-Switzer Residence, Old First Baptist Church, A.M.E. Church, and Nicodemus School District No. 1 Building) in conjunction with a Historic Structures Report prepared by Bahr, VerMeer, and Haecker, Architects of Lincoln, Nebraska. The analysis of the samples was undertaken to determine historic finishes of the exterior of the A.M.E. Church. Each sample was collected in a manila envelope with sample location information written on the face of the envelope.

Laboratory analysis of the samples was completed by May 22 in the laboratory of Mr. Arbogast in Iowa City. The samples were visually examined under an optical Olympus microscope having magnification between 14 and 80 power. Each layer observed was color-matched to the Munsell System of Color utilizing natural north light. Only opaque, pigmented layers (i.e. paint layers) were matched. It is impossible to color-match finishes such as varnishes, glazes, and metallic finishes because their color is directly affected by their translucency and reflectance. Only those layers which could be positively identified are listed.

The Munsell System of Color is a scientific system in which colors have been ranked into a color fan based upon three attributes: hue or color, the chroma or color saturation, and the value or neutral lightness or darkness. Unlike color systems developed by paint manufacturers, the Munsell system provides an unchanging standard of reference which is unaffected by the marketplace and changing tastes in colors.

The hue notation, the color, indicates the relation of the sample to a visually equally spaced scale of 100 hues. There are ten major hues, five principal and five intermediate within this scale. The hues are identified by initials indicating the central member of the group: red R, yellow-red YR, yellow Y, yellow-green G, green G, blue-green BG, blue B, purple-blue PB, purple P, and red-purple RP. The hues in each group are identified by the number 1 to 10. The most purplish of the red hues, 1 on the scale of 100, is designated as 1R, the most yellowish as 10R, and the central hue as 5R. The hue 10R can also be expressed as 10, 5Y as 25, and so forth - if a notation of the hue as a number is desired.

Chroma indicates the degree of departure of a given hue from the neutral gray axis of the same value. It is the strength or saturation of color from neutral gray, written /0 to /14 or further for maximum color saturation.

Value, or lightness, makes up the neutral gray axis of the color wheel, ranging from black, number 0, to white at the top of the axis, number 10. A visual value can be approximated by the help of the neutral gray chips of the Rock or Soil Color Chart with ten intervals. The color parameters can be expressed with figures semi-quantitatively as: hue, value/chroma (H, V/C). The color "medium red" should serve as an example for presentation with the three color attributes, 5R 5.5/6. This means that 5R is located in the middle of the red hue, 5.5 is the lightness of the Munsell value near the middle between light and dark, and 6 is the degree of the Munsell chroma, or the color saturation, which is about in the middle of the saturation scale.

The samples are discussed individually according to the numerical order in which they were collected. A conclusions and recommendations section closes the report, summarizing the findings. The layers are listed with the most recent at the top to the oldest at the bottom. Sample substrates were typically wood and stucco. Sample quality was good to excellent.
Sample 46	Munsell
White | 5Y 9/1

Sample 46 was removed from the top of the wood astragal of the north leaf of the front door. It revealed a single layer of white paint on top of an extremely weathered wood surface.

Sample 47	Munsell
White | 5Y 9/1
Tan | 10YR 7/2

Sample 47 was collected from the wooden lintel of the front door. In addition to the white paint layer seen in sample 46 an older layer of tan paint was observed.

Sample 48	Munsell
White | 5Y 9/1

Sample 48 was removed from the wooden west frame of the west window of the south elevation. It retained only a single layer of white paint atop a severely weathered wood surface.

Sample 49	Munsell
White | 5Y 9/1

Sample 49 came from the lower west stile of the wooden west window of the south elevation. As with samples 46 and 48 it revealed a single layer of white paint on an extremely weathered wood surface.

Sample 50	Munsell
White | 5Y 9/1

Sample 50 was removed from the wooden fascia of the entrance gable of the east elevation. It retained the standard white paint layer atop severely weathered wood.

Sample 51	Munsell
White | 5Y 9/1
Dark brown | 10YR 3/1.5

Sample 51 was collected from the wooden soffit of the entrance gable of the east elevation. It matched its counterpart, sample 50, on its surface. However, on the protected inner surface of the board was a very thin layer of very dark brown paint.

Sample 52	Munsell
White | 5Y 9/1

Sample 52 was taken from the wooden dowelled fascia of the main gable of the east elevation. It retained the typical white paint layer on a very weathered wood surface.
Sample 53 Munsell
White 5Y 9/1

Sample 53 came from the wooden wide fascia of the main gable of the east elevation. It matched its counterpart, sample 52.

Sample 54 Munsell
White 5Y 9/1

Sample 54 was removed from the wooden soffit board of the main gable of the east elevation. Its white layer rested on wood that was not heavily weathered.

Sample 55 Munsell
Light gray N 7.0/
Tan 2.5Y 8/2
Gray N 4.5/

Sample 55 was collected from the stucco base at the north end of the east elevation. It retained three layers of paint on its surface.

Sample 56 Munsell
Cream 2.5Y 8.5/2

Sample 56 was taken from the stucco surface of north side of the east elevation above sample 55. It retained a single layer of cream-colored paint.

Sample 57 Munsell
Cream 2.5Y 8.5/2

Sample 57 was taken from the stucco surface of the south elevation. It matched its counterpart, sample 56.

A number of conclusions can be drawn from this paint analysis, as follow:
1. Given the extremely deteriorated condition of the building fabric (e.g. the entire north wall was missing) the samples were the best that could be obtained.
2. The number of layers revealed made it impossible to determine original exterior finishes.
3. Only one paint scheme was consistently uncovered - the surviving surface of white wood trim, cream colored stucco walls and a gray stucco base.
Paint Analysis
Nicodemus School District No. 1 Building
Nicodemus National Historic Site
Nicodemus, Kansas
May 22, 2001

On Wednesday, May 16, 2001, David Arbogast, architectural conservator, of Iowa City, Iowa, collected a set of eighteen exterior paint samples from the Nicodemus School District No. 1 Building in Nicodemus, Kansas. These were collected in conjunction with a larger paint analysis of five buildings (Township Hall, St. Francis Hotel/Fletcher-Switzer Residence, Old First Baptist Church, A.M.E. Church, and Nicodemus School District No. 1 Building) in conjunction with a Historic Structures Report prepared by Bahr, VerMeer, and Haecker, Architects of Lincoln, Nebraska. The analysis of the samples was undertaken to determine historic finishes of the exterior of the Nicodemus School District No. 1 Building. Each sample was collected in a manila envelope with sample location information written on the face of the envelope.

Laboratory analysis of the samples was completed by May 22 in the laboratory of Mr. Arbogast in Iowa City. The samples were visually examined under an optical Olympus microscope having magnification between 14 and 80 power. Each layer observed was color-matched to the Munsell System of Color utilizing natural north light. Only opaque, pigmented layers (i.e. paint layers) were matched. It is impossible to color-match finishes such as varnishes, glazes, and metallic finishes because their color is directly affected by their translucency and reflectance. Only those layers which could be positively identified are listed.

The Munsell System of Color is a scientific system in which colors have been ranged into a color fan based upon three attributes: hue or color, the chroma or color saturation, and the value or neutral lightness or darkness. Unlike color systems developed by paint manufacturers, the Munsell system provides an unchanging standard of reference which is unaffected by the marketplace and changing tastes in colors.

The hue notation, the color, indicates the relation of the sample to a visually equally spaced scale of 100 hues. There are ten major hues, five principal and five intermediate within this scale. The hues are identified by initials indicating the central member of the group: red R, yellow-red YR, yellow Y, yellow-green GY, green G, blue-green BG, blue B, purple-blue PB, purple P, and red-purple RP. The hues in each group are identified by the number 1 to 10. The most purplish of the red hues, 1 on the scale of 100, is designated as 1R, the most yellowish as 10Y, and the central hue as 5R. The hue 10R can also be expressed as 10, 5Y as 25, and so forth - if a notation of the hue as a number is desired.

Chroma indicates the degree of departure of a given hue from the neutral gray axis of the same value. It is the strength or saturation of color from neutral gray, written /0 to /14 or further for maximum color saturation.

Value, or lightness, makes up the neutral gray axis of the color wheel, ranging from black, number 1, to white at the top of the axis, number 10. A visual value can be approximated by the help of the neutral gray chips of the Rock or Soil Color Chart with ten intervals. The color parameters can be expressed with figures semi-quantitatively as: hue, value/chroma (H, V/C). The color "medium red" should serve as an example for presentation with the three color attributes, 5R 5.5/6. This means that 5R is located in the middle of the red hue, 5.5 is the lightness of the Munsell value near the middle between light and dark, and 6 is the degree of the Munsell chroma, or the color saturation, which is about in the middle of the saturation scale.

The samples are discussed individually according to the numerical order in which they were collected. A conclusions and recommendations section closes the report, summarizing the findings. The layers are listed with the most recent at the top to the oldest at the bottom. Sample substrates were wood. Sample quality was good to excellent.
Sample 58 was removed from the south frame of the main door in the east elevation. It proved to be a very complete sample which was not unexpected given the protected location inside the front porch. It revealed no less than twelve layers of which paint, evenly divided between latex paint older oil-based layers. The oldest two layers revealed a very high oil content which considerably yellowed their appearance.

Sample 59 was collected from the top of the lower rail of the top panel of the main door of the east elevation. It retained only the six latex layers of white paint observed in sample 58.

Sample 60 sample was taken from the south frame of the south window of the east elevation. It revealed the latex layers of sample 58 plus two of the oil-based white layers, as well.
<table>
<thead>
<tr>
<th>Sample 61</th>
<th>Munsell</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>N 9.5/</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>5Y 9/1</td>
<td></td>
</tr>
</tbody>
</table>

Sample 61 came from the south stile of the upper sash of the south window of the east elevation. It retained only one layer of white latex paint above four layers of oil-based white paint.

<table>
<thead>
<tr>
<th>Sample 62</th>
<th>Munsell</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>N 9.5/</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>5Y 9/1</td>
<td></td>
</tr>
</tbody>
</table>

Sample 62 was removed from the upper south stile of the screen sash of the north window of the east elevation. It revealed all six white latex layers and a single oil-based white layer of paint at its base.

<table>
<thead>
<tr>
<th>Sample 63</th>
<th>Munsell</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>N 9.5/</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>N 9.5/</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>N 9.5/</td>
<td></td>
</tr>
</tbody>
</table>

Sample 63 was collected from the west frame of the west window of the south elevation. It retained only three layers of white latex paint on top of a very weathered wood surface.

<table>
<thead>
<tr>
<th>Sample 64</th>
<th>Munsell</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>N 9.5/</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>N 9.5/</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>N 9.5/</td>
<td></td>
</tr>
</tbody>
</table>

Sample 64 was taken from the lower west stile of the west window of the south elevation. It matched its counterpart, sample 63.

<table>
<thead>
<tr>
<th>Sample 65</th>
<th>Munsell</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>N 9.5/</td>
<td></td>
</tr>
</tbody>
</table>

Sample 65 came from the lower west stile of the screen sash of the west window of the south elevation. It retained only a single layer of white latex paint on its weathered wood surface.
Sample 66 was removed from the east edge of the west frame of the east window of the bank of windows in the north elevation. It revealed only a single layer of white latex paint on a very weathered wood surface.

<table>
<thead>
<tr>
<th>Sample 67</th>
<th>Munsell</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>N 9.5/</td>
</tr>
<tr>
<td>White</td>
<td>5Y 9/1</td>
</tr>
</tbody>
</table>

Sample 67 was collected from the wood cladding between the main door and the south window of the east elevation. It matched sample 58 layer for layer which is not altogether surprising given their similar location inside the porch.

<table>
<thead>
<tr>
<th>Sample 68</th>
<th>Munsell</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>N 9.5/</td>
</tr>
<tr>
<td>White</td>
<td>N 9.5/</td>
</tr>
<tr>
<td>White</td>
<td>N 9.5/</td>
</tr>
</tbody>
</table>

Sample 68 was taken from the wood cladding east of the bank of windows of the north elevation. It revealed only three layers of white latex paint atop a weathered wood surface.

<table>
<thead>
<tr>
<th>Sample 69</th>
<th>Munsell</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>N 9.5/</td>
</tr>
<tr>
<td>White</td>
<td>5Y 9/1</td>
</tr>
</tbody>
</table>

Sample 69 came from the inner east fascia of the porch of the east elevation. It retained all of the paint layers seen in samples 58 and 67 from the same general area.
Sample 70

<table>
<thead>
<tr>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 9.5/</td>
<td>N 9.5/</td>
<td>N 9.5/</td>
<td>N 9.5/</td>
<td>N 9.5/</td>
<td>N 9.5/</td>
<td>5Y 9/1</td>
<td>5Y 9/1</td>
<td>5Y 9/1</td>
<td>5Y 9/1</td>
</tr>
</tbody>
</table>

Sample 70 was removed from the inner trim above the fascia of the porch of the east elevation. It matched its counterpart, sample 69, layer for layer.

Sample 71

<table>
<thead>
<tr>
<th>White</th>
<th>White</th>
<th>White</th>
<th>White</th>
<th>White</th>
<th>White</th>
<th>White</th>
<th>White</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 9.5/</td>
<td>N 9.5/</td>
<td>N 9.5/</td>
<td>N 9.5/</td>
<td>N 9.5/</td>
<td>N 9.5/</td>
<td>5Y 9/1</td>
<td>5Y 9/1</td>
<td>5Y 9/1</td>
</tr>
</tbody>
</table>

Sample 71 was collected from the ceiling of the porch of the east elevation. It matched its counterparts, samples 69 and 70, layer for layer.

Sample 72

<table>
<thead>
<tr>
<th>White</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 9.5/</td>
<td>N 9.5/</td>
</tr>
</tbody>
</table>

Sample 72 was taken from the fascia at the south end of the main roof of the east elevation. It retained only a pair of white latex layers over weathered wood.
Sample 73
White
N 9.5/
White
5Y 9/1

Sample 73 came from the trim above the fascia at the south end of the main roof of the east elevation. Despite its exposed location it retained a complete set of paint layers as seen in samples 58, 67, 60, 70, and 71.

Sample 74
White
N 9.5/
White
N 9.5/

Sample 74 was removed from the outer fascia of the south end of the main roof of the east elevation. Like its counterpart, sample 73, it revealed only a pair of white latex layers above a weathered wood surface.

Sample 75
White
N 9.5/
White
N 9.5/

Sample 75 was collected from the outer molding of the south end of the east elevation. It matched its counterparts, sample 72 and 74.

A number of conclusions can be drawn from this paint analysis, as follow:

1. The sample quality was more than sufficient to reveal all surviving layers of the samples.
2. Although the number of layers revealed varied considerably from sample to sample the variation can be attributed to exposure and weathering.
3. There was no variation in the color among the samples. The only variation was the type of paint - latex or oil, which served as a useful indicator of relative age.
4. The building exhibited a very consistent history of being paint white on its exterior from its apparent original construction.
KEYED NOTES

1. REMOVE EXISTING ROOF DOWN TO BATTENS. INSTALL NEW ROOF DECKING.

2. REMOVE EXISTING WOOD LUMBER AND PLANKS. ENSURE CONCRETE UNDERLayment.

3. REPLACE WITH MDF SHEETING AND PLANKS. PAINT SURFACE.

4. REPLACE EXISTING FLOOR, PLANT.

5. COMPLETELY REMOVE EXISTING SIDING. SIDING IS CRACKED IN SEVERAL LOCATIONS AND IS NOT MAINTAINABLE.

6. EXISTING LUMBER EAVES ON ROOF. EXISTING EAVES CONSTITUTE A REFERENCE FOR EXISTING CONDITION.

7. REMOVE EXISTING SIDING TO ROOF. EXISTING EAVES CONSTITUTE A REFERENCE FOR EXISTING CONDITION.

8. REMOVE EXISTING SIDING TO ROOF. EXISTING EAVES CONSTITUTE A REFERENCE FOR EXISTING CONDITION.

9. INSTALL DROP CLOTHS. REMOVE DRYWALL, PAINT, AND EXISTING SHEET METAL.

10. INSTALL ALL NEW STRUCTURAL ELEMENTS: CONCRETE, CONCRETE, AND EXISTING SHEET METAL.

11. REMOVE EXISTING INTERIOR SURFACES TO EXISTING CONDITION.

12. REMOVE EXISTING INTERIOR SURFACES TO EXISTING CONDITION.

13. INSTALL DROP CLOTHS. REMOVE DRYWALL, PAINT, AND EXISTING SHEET METAL.

14. INSTALL DRYWALL AND PAINT AT JUNCTION BETWEEN EXISTING INTERIOR WALL AND EXISTING IDENTITY WALL. TYPICAL.

15. INSTALL DRYWALL AND PAINT AT JUNCTION BETWEEN EXISTING INTERIOR WALL AND EXISTING IDENTITY WALL. TYPICAL.
Mortar Analysis
A.M.E. Church of Nicodemus
Nicodemus, Kansas
August 14, 2000

On Friday, August 11, 2000, David Arbogast, architectural conservator, of Iowa City, Iowa, received a set of five mortar samples from Michael M. Ward, Chief of Maintenance at Ulysses S. Grant National Historic Site in St. Louis, Missouri for analysis. The samples were taken from the A.M.E. Church of Nicodemus, Kansas. The purpose of the analysis was to determine the original mixtures of the samples.

The following day the samples were subjected to a standard mortar analysis utilizing the procedure developed by E. Blaine Cliver, former Regional Historical Architect of the North Atlantic Region of the National Park Service.

The first sample analyzed was from the east wall of the church. Its analysis revealed a fairly typical lime mortar. Typical indicators of a lime content were evidenced by the relative softness of the mortar, its fast and foamy reaction, and its rapid filtering. The sample revealed a mixture of almost exactly three parts of sand to each part of lime, by volume. There was a relatively large amount of fines which appeared to have been dirt associated with the original sand, indicating a dirty sand. The sand sieve analysis revealed a coarse sand, of which only slight more than one per cent passed all of the sieves and almost nine per cent failed to pass any of the sieves.

The second sample was from the south wall of the church. Its analysis was very similar to that of the first sample, revealing a lime mortar composed of slightly over three parts of sand to each part of lime, by volume. There was a relatively large amount of fines which appeared to have been dirt associated with the original sand, indicating a dirty sand. The sand sieve analysis revealed a coarse sand, of which only slight more than six per cent passed all of the sieves and over seven per cent failed to pass any of the sieves.

The third sample analyzed was from the west wall of the church. It was the smallest of the set, being about half the ideal size of twenty grams. It also revealed the softest mortar, with approximately six parts of sand to each part of lime, by volume. Here again, the fines represented a significant factor in the sand. The sand sieve analysis revealed a coarse sand, of which only one-thirtieth passed all of the sieves and slightly over seven per cent failed to pass any of the sieves.

The fourth sample was from the north wall of the church. Its analysis was very similar to the first and second samples, revealing a mixture of almost exactly three parts of sand to each part of lime, by volume. Here again the fines content was relatively large. The sand sieve analysis revealed a coarse sand, of which only slight less than four per cent passed all of the sieves and one-eighth failed to pass any of the sieves.

The fifth sample analyzed was from the entrance vestibule wall of the church. Its analysis revealed a very soft lime mortar composed of approximately sixteen parts of sand to three parts of lime, by volume, or, roughly, five parts of sand to each part of lime. Again the fines content was unusually large and the sand sieve analysis revealed a coarse sand, of which equal parts (less than one-thirtieth, both passed all of the sieves and failed to pass any of the sieves.

Several conclusions may be drawn, as follow:

1. It appears that care was taken in the preparation of the mortar in at least three samples with an almost exact mixture of three parts of sand to each part of lime, by volume.
2. The sand was quite dirty and coarser than similar samples from other buildings. It appears less care was taken to clean the sand.
3. In replicating the mortar care should be taken to match both the sand and the fines to create a tan mortar matching the original.
Mortar/Plaster/Stucco Analysis Test Sheet

Building: A.M.E. CHURCH OF NICodemus
Location: NICodemus, KANSAS
Sample Location: EAST WALL
Sample Description: TAN SOFT, FEAT A FORAY REACTION, RAPID FILTERING

Test No. 1 - Soluble Fraction

Data:

1. **844.4** Container A weight
2. **204.4** Container A and sample
3. **765.2** Barometric pressure
4. **28.1** Temperature
5. **0.57** Liters of water displaced
6. **5.794** Filtrate color
7. **82.8** Fines color
8. **64** Hair or fiber type
9. **1.13** Fines and paper weight
10. **2.4** Filter paper weight
11. **19.6** Sand and Container A weight
12. **84** cc. of sand
13. **42.8** Weight of graduated cylinder & sand
14. **28.4** Weight of graduated cylinder

Computations:

15. **20.0** Starting weight of sample: No. 2 - No. 1
16. **1.9** Weight of fines: No. 9 - No. 10
17. **18.4** Weight of sand: No. 11 - No. 1
18. **22.5** Sand density: No. 12 - (No. 13 - No. 14)
19. **3.7** Weight of soluble content: No. 15 - (No. 16 + No. 17)
20. **0.03726** Mols. of CO2: No. 5 x No. 3 x 0.016 ÷ (No. 4 + 273.16 C.)
21. **3.722** Gram weight of CaCO3: 106 x No. 20
22. **1.48** Gram weight of Ca(OH)2: No. 19 - No. 21
23. **0.02** Mols. of Ca(OH)2: No. 22 ÷ 74
24. **3.12** Gram total weight of Ca(OH)2: 74 x (No. 20 + No. 23)
25. **0.78** Gram weight CO2: No. 20 x 44
26. **1.86** Gram weight total possible CO2: 44 x (No. 20 + No. 23)
27. **52.49** %CO2 gain: No. 25 - No. 26

Conclusions:

28. **15.02** Gram weight of sample: No. 15 - No. 25
29. **9.49** Fines parts/volume: No. 16 ÷ No. 28
30. **44.14** Sand parts/volume: (No. 17 ÷ No. 28) x No. 18
31. **18.04** Lime parts/volume: (No. 24 ÷ No. 28) x 1.1

Cement (if present):

32. **Portland-cement parts/volume:** (No. 16 - No. 28) x 0.78
33. **Natural-cement parts/volume:** (No. 16 - No. 28) x 0.86
34. **Cement with sand parts/volume:** ((No. 16 x 0.2) - No. 28) x 1.1

Test No. 2 - Sand Sieve Analysis

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Seive weight</th>
<th>Seive weight</th>
<th>Sand weight</th>
<th>Sand ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 10</td>
<td>112.8</td>
<td>106.2</td>
<td>6.6</td>
<td>8.66</td>
</tr>
<tr>
<td>No. 20</td>
<td>137.9</td>
<td>135.7</td>
<td>32.2</td>
<td>42.26</td>
</tr>
<tr>
<td>No. 30</td>
<td>118.4</td>
<td>98.6</td>
<td>30.7</td>
<td>26.71</td>
</tr>
<tr>
<td>No. 40</td>
<td>112.8</td>
<td>100.6</td>
<td>12.8</td>
<td>16.80</td>
</tr>
<tr>
<td>No. 50</td>
<td>94.0</td>
<td>92.4</td>
<td>3.6</td>
<td>4.72</td>
</tr>
<tr>
<td>Base</td>
<td>71.5</td>
<td>70.7</td>
<td>0.8</td>
<td>1.05</td>
</tr>
</tbody>
</table>
Mortar/Plaster/Stucco Analysis Test Sheet

Building: A.M.S. CHURCH OF MACEDONIA
Location: MACEDONIA, KANSAS
Sample Location: SOUTH WALL
Sample Description: initially soft, carton or foam reacting, rapid filtering.

Test No. 1 - Soluble Fraction

Data:
1. 18.2 Container A weight
2. 27.7 Container A and sample
3. 745.7 Barometric pressure
4. 85.7 Temperature
5. 2.4 Liters of water displaced
6. 10.8 Fertilizer color
7. 9.1 Fertilizer color
8. 10 Hair or fiber type
9. 2.7 Fines and paper weight
10. 2.2 Filter paper weight
11. 195.7 Sand and Container A weight
12. 4.3 cc. of sand
13. 35.9 Weight of graduated cylinder & sand
14. 28.4 Weight of graduated cylinder

Computations:
15. 9.1 Starting weight of sample: No. 2 - No. 1
16. 0.5 Weight of fines: No. 9 - No. 10
17. 7.5 Weight of sand: No. 11 - No. 1
18. 1753.33 Sand density: No. 12 ÷ (No. 13 - No. 14)
19. 15 Weight of soluble content: No. 15 ÷ (No. 16 + No. 17)
20. 24 Mols. of CO2: No. 5 x No. 3 x 0.016 ÷ (No. 4 + 273.16 C.)
21. 0.77 Gram weight of CaCO3: 100 x No. 20
22. 1.22 Gram weight of Ca(OH)2: No. 19 - No. 21
23. 0.428 Mols. of Ca(OH)2: No. 22 ÷ 74
24. 1.9 Total grams Ca(OH)2: 74 x (No. 20 + No. 23)
25. 1.4 Gram weight CO2: No. 20 x 44
26. 83 Gram weight total possible CO2: 44 x (No. 20 + No. 23)
27. 19.28 %CO2 gain: No. 25 - No. 26

Conclusions:
28. 9.54 Gram weight of sample: No. 15 - No. 25
29. 5.4 Fines parts/volume: No. 16 ÷ No. 28
30. 40.89 Sand parts/volume: (No. 17 ÷ No. 28) x No. 18
31. 16.49 Lime parts/volume: (No. 24 ÷ No. 28) x 1.1

Cement (if present)
32. Portland cement parts/volume: (No. 16 - No. 28) x 0.78
33. Natural cement parts/volume: (No. 16 - No. 28) x 0.86
34. Lime with cement parts/volume: ((No. 16 x 0.2) - No. 28) x 1.1

Test No. 2 - Sand Sieve Analysis

<table>
<thead>
<tr>
<th>Seive</th>
<th>Seive w/ sand weight</th>
<th>Seive weight</th>
<th>Sand weight</th>
<th>Sand ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 10</td>
<td>10.4</td>
<td>10.4</td>
<td>0.6</td>
<td>7.4</td>
</tr>
<tr>
<td>No. 20</td>
<td>10.5</td>
<td>10.5</td>
<td>2.3</td>
<td>28.0</td>
</tr>
<tr>
<td>No. 30</td>
<td>9.8</td>
<td>9.8</td>
<td>1.8</td>
<td>21.8</td>
</tr>
<tr>
<td>No. 40</td>
<td>9.4</td>
<td>9.4</td>
<td>1.2</td>
<td>14.6</td>
</tr>
<tr>
<td>No. 50</td>
<td>9.6</td>
<td>9.6</td>
<td>1.0</td>
<td>4.6</td>
</tr>
<tr>
<td>Base</td>
<td>2.8</td>
<td>2.8</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Mortar/Plaster/Stucco Analysis Test Sheet

Building: AME Church of Nicodemus
Location: Nicodemus, Kansas
Sample Location: West Wall
Sample Description: tan, soft, fast and funny reaction, rapid filtering

Test No. 1 - Soluble Fraction

Data:
1. \(184.4\) Container A weight
2. \(264.4\) Container A and sample
3. \(765.7\) Barometric pressure
4. \(270\) Temperature
5. \(0.18\) Liters of water displaced
6. \(10.3\) Fines color
7. \(14.1\) Fines color
8. \(50\) Hair or fiber type
9. \(3.9\) Fines and paper weight
10. \(2.2\) Filter paper weight
11. \(208.6\) Sand and Container A weight
12. \(9.4\) cc. of sand
13. \(5.4\) Weight of graduated cylinder & sand
14. \(28.8\) Weight of graduated cylinder

Computations:
15. \(20.0\) Starting weight of sample: No. 2 - No. 1
16. \(17\) Weight of fines: No. 9 - No. 10
17. \(16.2\) Weight of sand: No. 11 - No. 1
18. \(53.2\) Sand density: No. 12 - (No. 13 - No. 14)
19. \(2.1\) Weight of soluble content: No. 15 - (No. 16 + No. 17)
20. \(0.0186\) Mols. of CO2: No. 5 x No. 3 x 0.016 \(\div\) (No. 4 + 273.16 C.)
21. \(0.59\) Gram weight of CaCO3: 100 x No. 20
22. \(0.0729\) Gram weight of Ca(OH)2: No. 19 - No. 21
23. \(0.09\) Mols. of Ca(OH)2: No. 22 \(\div\) 74
24. \(0.12\) Gram total weight of Ca(OH)2: 74 x (No. 20 + No. 23)
25. \(19\) Gram weight CO2: No. 20 x 44
26. \(18.1\) Gram weight total possible CO2: 44 x (No. 20 + No. 23)
27. \(0.32\) %CO2 gain: No. 25 - No. 26

Conclusions:
28. \(19.31\) Gram weight of sample: No. 15 - No. 25
29. \(8.80\) Fines parts/volume: No. 16 \(\div\) No. 28
30. \(42.69\) Sand parts/volume: (No. 17 \(\div\) No. 28) x No. 18
31. \(9.63\) Lime Parts/volume: (No. 24 \(\div\) No. 28) x 1.1

Cement (if present)
32. Portland-cement-parts/volume: (No. 16 - No. 28) x 0.78
33. Natural-cement parts/volume: (No. 16 - No. 28) x 0.86
34. Lime with cement parts/volume: ((No. 16 x 0.2) - No. 28) x 1.1

Test No. 2 - Sand Sieve Analysis

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Sieve w/ sand weight</th>
<th>Sieve weight</th>
<th>Sand weight</th>
<th>Sand ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 10</td>
<td>109.2</td>
<td>161.4</td>
<td>2.8</td>
<td>7.20</td>
</tr>
<tr>
<td>No. 20</td>
<td>118.5</td>
<td>105.5</td>
<td>12.0</td>
<td>33.72</td>
</tr>
<tr>
<td>No. 30</td>
<td>107.8</td>
<td>98.8</td>
<td>9.0</td>
<td>23.14</td>
</tr>
<tr>
<td>No. 40</td>
<td>100.1</td>
<td>95.5</td>
<td>4.5</td>
<td>24.42</td>
</tr>
<tr>
<td>No. 50</td>
<td>95.7</td>
<td>92.4</td>
<td>3.3</td>
<td>8.98</td>
</tr>
<tr>
<td>Base</td>
<td>92.1</td>
<td>70.8</td>
<td>1.3</td>
<td>3.34</td>
</tr>
</tbody>
</table>
Mortar/Plaster/Stucco Analysis Test Sheet

Building: A.M.E. CHURCH OF NICODEMUS
Location: NICODEMUS, KANSAS
Sample Location: NORTH WALL
Sample Description: SOFT, TAN, FAST AND FOAMY REACTION, RAPID SETTING

Test No. 1 - Soluble Fraction

Data:
1. **197.7** Container A weight
2. **202.7** Container A and sample
3. **245.2** Barometric pressure
4. **34.4** Temperature
5. **46.1** Liters of water displaced
6. **12.6** Filtrate color
7. **14.4** Finer color
8. _nd_ Hair or fiber type
9. **1.9** Fines and paper weight
10. **24.2** Filter paper weight
11. **198.2** Sand and Container A weight
12. **63.3** cc. of sand
13. **19.3** Weight of graduated cylinder & sand
14. **37.4** Weight of graduated cylinder

Computations:
15. **42.4** Starting weight of sample: No. 2 - No. 1
16. **1.7** Weight of fines: No. 9 - No. 10
17. **11.6** Weight of sand: No. 11 - No. 1
18. **272.2** Sand density: No. 12 ÷ (No. 13 - No. 14)
19. **3.8** Weight of soluble content: No. 15 - (No. 16 + No. 17)
20. **0.0167** Mols. of CO2: No. 5 x No. 3 x 0.016 - (No. 4 + 273.16 C.)
21. **1.46** Gram weight of CaCO3: 100 x No. 20
22. **1.44** Gram weight of Ca(OH)2: No. 19 - No. 21
23. **24.9** Mols. of Ca(OH)2: No. 22 ÷ 74
24. **2.37** Gram total weight of Ca(OH)2: 74 x (No. 20 - No. 23)
25. **7.0** Gram weight CO2: No. 20 x 44
26. **1.41** Gram weight total possible CO2: 44 x (No. 20 - No. 23)
27. **51.77** %CO2 gain: No. 25 - No. 26

Conclusions:
28. **14.77** Gram weight of sample: No. 15 - No. 25
29. **1.5** Fines parts/volume: No. 16 ÷ No. 28
30. **42.6** Sand parts/volume: (No. 17 ÷ No. 28) x No. 18
31. **12.65** Lime Parts/volume: (No. 24 ÷ No. 28) x 1.1

Cement (if present)
32. _______ Portland-cement parts/volume: (No. 16 - No. 28) x 0.78
33. _______ Natural-cement parts/volume: (No. 16 - No. 28) x 0.86
34. _______ Lime with cement parts/volume: ((No. 16 x 0.2) - No. 28) x 1.1

Test No. 2 - Sand Sieve Analysis

<table>
<thead>
<tr>
<th>Seive</th>
<th>Seive w/ sand weight</th>
<th>Seive weight</th>
<th>Sand weight</th>
<th>Sand ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 10</td>
<td>107.6</td>
<td>104.3</td>
<td>1.3</td>
<td>12.50</td>
</tr>
<tr>
<td>No. 20</td>
<td>10.9</td>
<td>100.4</td>
<td>3.5</td>
<td>33.45</td>
</tr>
<tr>
<td>No. 30</td>
<td>101.2</td>
<td>98.8</td>
<td>2.4</td>
<td>13.08</td>
</tr>
<tr>
<td>No. 40</td>
<td>102.7</td>
<td>100.1</td>
<td>1.6</td>
<td>15.38</td>
</tr>
<tr>
<td>No. 50</td>
<td>93.6</td>
<td>92.4</td>
<td>1.2</td>
<td>11.54</td>
</tr>
<tr>
<td>Base</td>
<td>74.2</td>
<td>70.8</td>
<td>0.4</td>
<td>3.85</td>
</tr>
</tbody>
</table>
Mortar/Plaster/Stucco Analysis Test Sheet

Building: AME CHURCH OF NICODEMUS
Location: NICODEMUS, KANSAS
Sample Location: ENTRANCE VESTIBULE WALL
Sample Description: TAN, SOFT, FAST AND SUGILY REACTION, RAPID FILTERING

Test No. 1 - Soluble Fraction

Data:
1. \(96.2\) Container A weight
2. \(71.3\) Container A and sample
3. \(765.3\) Barometric pressure
4. \(25^\circ\) Temperature
5. \(35\) Liters of water displaced
6. \(500.0\) Filtrate color
7. \(30.4\) Fines color
8. \(40\) Hair or fiber type
9. \(4.1\) Fines and paper weight
10. \(2.4\) Filter paper weight
11. \(20.7\) Sand and Container A weight
12. \(9.2\) cc of sand
13. \(44.0\) Weight of graduated cylinder & sand
14. \(8.4\) Weight of graduated cylinder

Computations:
15. \(20.0\) Starting weight of sample: No. 2 - No. 1
16. \(17\) Weight of fines: No. 9 - No. 10
17. \(15.9\) Weight of sand: No. 11 - No. 1
18. \(14.73\) Sand density: No. 12 ÷ (No. 13 - No. 14)
19. \(2.34\) Weight of soluble content: No. 15 - (No. 16 + No. 17)
20. \(0.04, 373\) Mols. of C\(_2\)O: No. 5 x No. 3 x 0.016 ÷ (No. 4 + 273.16 C.)
21. \(1.59\) Gram weight of C\(_3\)O\(_3\): 100 x No. 20
22. \(3.96\) Gram weight of C\(_2\)(OH)\(_2\): No. 19 - No. 21
23. \(0.017\) Mols. of C\(_2\)(OH)\(_2\): No. 22 ÷ 74
24. \(2.02\) Gram total weight of C\(_2\)(OH)\(_2\): 74 x (No. 20 + No. 23)
25. \(6.3\) Gram weight CO\(_2\): No. 20 x 44
26. \(12.9\) Gram weight total possible CO\(_2\): 44 x (No. 20 + No. 23)
27. \(52.7\) ZCO\(_2\) gain: No. 25 - No. 26

Conclusions:
28. \(19.37\) Gram weight of sample: No. 15 - No. 25
29. \(3.78\) Fines parts/volume: No. 16 + No. 28
30. \(0.51\) Sand parts/volume: (No. 17 + No. 28) x No. 18
31. \(11.53\) Lime Parts/volume: (No. 24 + No. 28) x 1.1

Cement (if present)
32. Portland-cement parts/volume: (No. 16 - No. 28) x 0.78
33. Natural cement parts/volume: (No. 16 - No. 28) x 0.86
34. Lime with cement parts/volume: ((No. 16 x 0.2) - No. 28) x 1.1

Test No. 2 - Sand Sieve Analysis

Seive Seive w/ sand weight Seive weight Sand weight Sand ratio
No. 10 \(10.6\) \(10.5.9\) \(8.6\) \(3.23\)
No. 20 \(111.0\) \(105.7\) \(8.2\) \(2.84\)
No. 30 \(109.2\) \(98.7\) \(8.1\) \(2.95\)
No. 40 \(106.1\) \(100.1\) \(5.0\) \(2.64\)
No. 50 \(94.0\) \(92.4\) \(5.0\) \(2.64\)
Base \(71.4\) \(70.8\) \(5.1\) \(3.23\)