

National Park Service Fire Ecology Annual Report Northern Great Plains Calendar Year 2004

Synopsis

Great Plains plant communities have a degree of resilience that allows them to rebound from grazing, fire, invasion by non-native species, and drought. This past year we have seen effects of all of these stressors in our fire effects monitoring. In a year characterized by widespread drought, plant diversity and vegetative production declined throughout the Northern Great Plains. However, a cool, moist fall allowed many plants to flower and produce seed after a summer of limited rainfall. This presents a challenge for comparative analysis of areas before and after fire when a dominant driver of the ecosystem is precipitation. Though we would like to primarily address fire and its role in influencing vegetation change, many factors determine the composition of this system and the fire monitoring program assesses the changes in vegetation regardless of the source.

In 2004, in the Northern Great Plains, we monitored 7 prescribed fires (Fig. 1) in 5 parks where 15 long-term monitoring plots burned, installed 19 new plots, and remeasured 70 plots in postburn status which included 22 plots at 5 years postburn. In addition to prescribed fire operations and vegetation monitoring duties, crew members served in a variety of roles on 10 wildfires and 11 fire use fires.

Other accomplishments included the Fire Ecologist and Lead Monitor participating on the working team for the development of the Fire Ecology database software known as FEAT, a bi-weekly fuel moisture sampling program at Wind Cave National Park from late April through early November (Fig. 2), and providing fire monitoring assistance to Ozark National Scenic Riverways and Buffalo National River during the spring prescribed fire season.

Park	Monitoring Unit	Type of Plot	Pre- burn	Immed. Post	Postburn (1-5 yrs)	Total Plots*
Badlanda	Mixed grass prairie	FMH grass plot	3	1	12	25
Daulanus	Smooth Brome	Daubenmire sample			10	10
Devils	Ponderosa Pine	FMH Forest plot			3	8
Tower	Non-native grassland	FMH grass plot			2	5
Fort Union	Non-native grassland	Photo point			1	2
Knife	Non-native grassland	Modified Daubenmire sample			9	9
Kivei	Mixed grass prairie	FMH grass plot			6	6
Scottsbluff	Mixed grass prairie	FMH grass plot			1	8
	Snowberry shrubland	FMH shrub plot			1	3
Theodore Roosevelt	Silver sage shrubland	FMH shrub plot	3		2	10
	Non-native grassland	FMH grass plot			3	4
	Mixed grass prairie	FMH grass plot	4	3	3	10
	Snowberry shrubland	FMH shrub plot			1	1
	Silver sage shrubland	Modified shrub plot	6			6
	River Corridor	Modified tree plot	2			2
Wind Cave	Native grass, cool season	FMH grass plot		3	3	7
	Native grass, warm season	FMH grass plot			2	7
	Non-native grassland	FMH grass plot		1	3	5
	Ponderosa Pine	Seedling mortality		7	7	7
	Ponderosa Pine	FMH Forest plot	1		1	9
Total			19	15	70	

Table 1. Fire Effects Plot Workload 2004

*Total Plots lists the number of plots installed in the monitoring unit over the life of the monitoring program.

Table 2. Fire Ecology Staffing 2004

The Northern Great Plains Fire Ecology program had 3 returning seasonal staff members and filled one new position by welcoming Tyler Schmitt to serve as the Assistant Lead Monitor. He brings experience from Sequoia-Kings Canyon National Park, Ozark Scenic River, and the Nature Conservancy. Three staff members completed the taskbook for Fire Effects Monitor (FEMO) on prescribed fire and fire use assignments this year.

Personnel	Starting	Ending Date	# of Pay	Training and Development
	Date		Periods	
Cody Wienk	1/1/04	12/31/04	26	RX-310
andy thorstenson	1/1/04	12/31/04	22	Plant taxonomy course, online
				Access database training
Tyler Schmitt	4/19/04	12/10/04	17	S-212, S-290, RX-310, completed
				FEMO taskbook
Bob Kobza	4/26/04	9/17/04	11 1/2	S-234
Martha Jakobek	4/26/04	9/17/04	11 1/2	S-260, completed FEMO taskbook
Katie Johnson	4/12/04	11/10/04	14 1/2	GIST training, completed FEMO
				taskbook, online ESRI GIS course

Table 3. Management Objectives and Monitoring Results 2003

As we continue to work with the FEAT database software, data collected in 2004 and stored in FEAT will be combined with previous years' data currently stored in the FMH database. The following Table shows monitoring units where new data was collected in the 2004 field season with results where applicable. Many of the vegetation objectives relate to "percent cover" of a certain class of vegetation. This measure is highly dependent on rainfall and will fluctuate annually making it difficult to link changes in this variable specifically to prescribed fire.

Monitoring Unit	Management Objectives	Number of Plots Timeframe	Monitoring Results	Objective Achieved?
Badlands Western wheatgrass grassland	Reduce relative cover of non-native grasses by at least 20%	n=13 plots, 4 fires at 2 yr n=8 plots, 2 fires at 5 year	71% Decrease at year 2	У
	Increase relative cover of native grasses by at least 10%	n=22 plots installed	3% Increase at year 2	n
	Increase relative cover of native forbs by at least 30%		39% increase at year 2	У
Devils Tower	Reduce dead and down fuel loading by 30-70% immediate postburn	n=5 plots, 3 fires at 5 year n=6 plots, 4 fires at 2 year	52% reduction at year 1	У
Ponderosa pine savannah	Maintain density of overstory trees within 30% of preburn at year 5	8 plots installed	unassessed	n/a
	Reduce pole-size ponderosa by 30-70% at year 2		43% Decrease at year 2	У
Non-native Grassland	Increase cover of native grass by at least 10% at year 2	n=2, 2 fires at 5 year n=3, 3 fires at year 2	75% Increase	У
	Decrease cover of non-native grass by at least 20% at year 2	n=5 plots installed	60% decrease	У
	Increase cover of native forbs by at least 20% at year 2		131% increase	У
Knife River Native	Increase cover of native grass by 25% at 2 years	n=6, 2 fires at 5 year n=6 plots installed	5% Decrease at year 2	n
Grassland	Increase cover of native forbs by 25% at 2 years		61% Increase at year 2	n
Riparian	Increase cover of native grass	grass n=9, 2 fires at 2 year	Not assessed	n
Smooth Brome Forest	Decrease cover of non-native grass specifically smooth brome n=9 plots installed		No decrease	n

Monitoring Unit	Management Objectives	Number of Plots Timeframe	Monitoring Results	Objective Achieved?
Theodore	Reduce silver sage by 40-60% at 2	n=2 plots, 1 fire at 5 year	Decrease by 51% at 2 year	Minimum plots not met
Roosevelt	years post burn	n=4 plots, 2 fires at 2 year		-
Silver sage	Reduce non-native cover by at least	n=10 plots installed	Increase by 48% at 2 year	No
shrubland	25% at 2 years post burn			Minimum plots not met
	Increase native herbaceous cover by		Decrease by 13% at 2 year	No
	at least 20% 2 years post burn			Minimum plots not met
Crested	Increase cover of native grass by	n=3 plots, 2 fires at year 2		Not yet assessed
wheatgrass	20% at 2 years post burn	n=4 plots installed		
	Decrease cover of non-native grass			Not yet assessed
	by 20% at 2 year post bur n			
Mixed grass	Increase cover of native grass by 20-	n=6, 2 fires	Decrease by 5% at 2 year	Minimum plots not met
grassland	30% at 2 year	n=6 plots installed	L 1 20/ / 2	
	by 20-30% at 2 year		Increase by 2% at year 2	Minimum plots not met
Cottonwood	Reduce total fuel loading by 60-80%	n=2, 1 fire at 2 years	10% decrease at 1 year	Minimum plots not met
forest	immediate post burn	n=3 plots installed		1
	Limit mortality of deciduous		0% mortality in cottonwood	Minimum plots not met
	overstory trees to 20% 2 years post			
Wind Cave	Increase native grass cover by 50-	(n=4, 2 fires at year 2)	11% Increase at year 2	n
Warm-season	90%			
Grassland	Decrease non-native grass cover by		67% reduction at year 2	У
	Increase native forh cover by 50%		4% Reduction at year 2	n
	Therease native forb cover by 50%		470 Reddenon at year 2	11
Ponderosa	Decrease fuel loading by at least 30%	(n=3, 3 fires at 2 year)	42% Reduction immediate	У
pine savannah	immediate postburn	-	postburn	
	seedling ponderosa pine at year 1		99% Reduction in 7 seeding plots	У
	Achieve at least 50% mortality of		Insufficient sample size	Not yet assessed
	pole-size ponderosa pine at year 2			
	Increase percent cover of native		unassessed	Not yet assessed
	herbaceous species by 25% at year 2			
Non-native	Reduce Kentucky bluegrass to <25%	(n=2, 1 fire at 5 year)	Decrease of 15% from 91%	n
Grassland	of cover	(n=4, 2 fires at 2 year)	preburn to 77% at year 2	
	Increase native grass to \geq 75% cover		78% increase from 55% cover to	У
	in areas of cool-season grass		100% cover of native grass	

Ecologist Accomplishments. It was a very busy year, both professionally and personally, highlighted by the addition of a baby boy to my family and two amazing fire assignments with the Black Hills Fire Use Module. I expect that our program will continue to communicate with the NGP Inventory & Monitoring and Exotic Plant Management Team networks as we develop ways that our programs can collaborate and potentially integrate. Working with parks to develop desired conditions and objectives will also remain a high priority for me.

Planning and Scientific Meetings

- Participated in MWR Fire Ecology Program Review, Wilson's Creek.
- Began discussions with Northern Great Plains Inventory and Monitoring Network Coordinator about collaborating or integrating I&M with Fire Effects.
- Attended Integrated Fire and Resource Management Workshop in Nebraska City, NE.
- Participated in FEAT development meeting in Boise, ID March 2-4, 2004
- Attended Desired Future Conditions Scoping Meeting at KNRI April 5-8, 2004
- Attended FPA meeting at BADL April 20-21, 2004
- Attended a planning meeting at THRO for River Corridor & Jones Creek June 28-29, 2004
- Coordinated 2nd Annual Black Hills Ecologist & Botanist Workshop, with participation from 3 federal agencies, 2 state agencies, 2 universities, & 3 NGOs
- Attended FRCC Reference Condition Workshop in Laramie, WY Sept. 7-10, 2004

Planning Documents Produced

- Completed SCBL Fire Effects Monitoring Plan
- Completed basic monitoring plans for JECA and DETO

Publications and Presentations

- Presented poster 'Monitoring Mechanical Fuel Reduction Projects in Ponderosa Pine Forests of Devils Tower National Monument and Mount Rushmore National Memorial' at the 2nd International Wildland Fire Ecology and Fire Management Congress in Orlando, Florida.
- Manuscript 'Evaluating the role of cutting treatments, fire and soil seed banks in an experimental framework in ponderosa pine forests of the Black Hills, South Dakota' accepted for publication in Forest Ecology and Management (192:375-393)
- Oral presentation at Black Hills Ecologist & Botanist Workshop 'Monitoring Mechanical Fuel Reduction Projects at Mount Rushmore and Devils Tower' – March 11, 2004

Other

- Member of FEAT Software Working Group
- Member of South Dakota Project Learning Tree Board of Directors
- Continued to build and maintain NGP Fire Management website

Final Remarks

In 2004 we continued to collect vegetation data, photograph areas before and after fires, input field data into a computer database, and catalog photos. We hope that this information will serve not just as archival record of fire management activities and vegetation change, but also as a dynamic resource for land managers to utilize for writing management plans, making decisions, and developing realistic alternatives.

We look forward several new challenges in 2005. We plan to begin field data collection or pilot sampling in collaboration with the Inventory and Monitoring program, will produce a poster and/or presentation for the Tall Timbers/Association for Fire Ecology meeting on fire in grassland ecosystems in October 2005, and will begin multi-year analyses of fire monitoring data in the Access-based FEAT software program. With the capabilities of the new software, we hope to complete a comprehensive review of our monitoring program.

Figure 1. Southeast Corner Prescribed Fire. Theodore Roosevelt National Park. April 23, 2004

Figure 2. 2004 fuel moisture. Wind Cave National Park.

