Geology Quicklinks

Formation of the Dunes | Hydrology | Singing Sand Phenomenon

Dune Types | Sand System Components | Research Links

Visit our keyboard shortcuts docs for details
9 seconds

The Great Sand Dunes originated from large lakes that once covered portions of the San Luis Valley. This brief animation shows the lakes drying up, and the dunefield emerging in a pocket of the Sangre de Cristo Mountains.

Great Sand Dunes and Sangre de Cristo Mountains
The tallest dunes in North America make a dramatic contrast with the alpine peaks of the Sangre de Cristo Mountains. The full story of their formation is still being discovered.

NPS/Patrick Myers

How were the Great Sand Dunes formed?

The story of how the Great Sand Dunes were formed is continually evolving, as new research discoveries occur each year. Below is a basic summary of what most geologists currently understand to be the broad series of events that took place in the formation of these massive dunes.

The 2016 Geologic Map of the Great Sand Dunes National Park (USGS/Madole, VanSistine, Romig) includes text describing some of the most recent research information.

You may also learn about geological components of the Great Sand Dunes system, hydrology of Great Sand Dunes, and the variety of dune types in the park.

Basic Geological Story

Through the breaking apart and movement (rifting) of large surface plates on Earth's surface, the Sangre de Cristo Mountains were uplifted in the rotation of a large plate. Fossils from the bottom of an ancient sea are now preserved in high layers of rock in the Sangre de Cristos. The San Juan Mountains were created through extended and dramatic volcanic activity. With these two mountain ranges in place, the San Luis Valley was born, covering an area roughly the size of the state of Connecticut.

Sediments from both mountain ranges filled the deep chasm of the valley, along with huge amounts of water from melting glaciers and rain. The presence of larger rocks along Medano Creek at the base of the dunes, elsewhere on the valley floor, and in buried deposits indicates that some of the sediment has been washed down in torrential flash-flood events.

Lake Alamosa diagram

NPS Illustration

In 2002, geologists discovered lakebed deposits on hills in the southern part of the valley, confirming theories of a huge lake that once covered much of the San Luis Valley floor. They named this body of water "Lake Alamosa" after the largest town in the valley. Lake Alamosa suddenly receded after its extreme water pressure broke through volcanic deposits in the southern end of the valley. The water then drained through the Rio Grande River, likely forming the steep Rio Grande Gorge near Taos, New Mexico.
Prehistoric lakes and sand sheet

NPS Illustration

Smaller lakes still covered the valley floor, including two broad lakes in the northeastern side of the valley. Large amounts of sediment from the volcanic San Juan Mountains continued to wash down into these lakes, along with some sand from the Sangre de Cristo Mountains. Dramatic natural climate change later significantly reduced these lakes, leaving behind the sand sheet. Remnants of these lakes are still found today, in the form of sabkha wetlands.

Dunes formation from wind

NPS Illustration

Sand that was left behind after these lakes receded blew with the predominant southwest winds toward a low curve in the Sangre de Cristo Mountains. The wind funnels toward three mountain passes here - Mosca, Medano, and Music Passes - and the sand accumulates in this natural pocket. The winds blow from the valley floor toward the mountains, but during storms the winds blow back toward the valley. These opposing wind directions cause the dunes to grow vertically. See an animation showing how reversing dunes are formed.
Medano Creek, Dunes, and Mount Herard
Medano Creek recycles sand each spring along the southern edge of the dunefield.

NPS/Patrick Myers

Two mountain streams, Medano and Sand Creeks, also capture sand from the mountain side of the dunefield and carry it around the dunes and back to the valley floor. The creeks then disappear into the sand sheet, and the sand blows back into the dunefield. Barchan and transverse dunes form near these creeks. Learn more about the hydrology of Great Sand Dunes.
Aerial view of dunes and sand sheet

NPS Photo

This combination of opposing winds, a huge supply of sand from the valley floor, and the sand recycling action of the creeks, are all part of the reason that these are the tallest dunes in North America. There are other dunes in Colorado, and in most western states in the US, but none as tall (750 feet) and none as dramatic. Here giant dunes rise in front of the alpine Sangre de Cristo Mountains, while streams flow across the sand seasonally, making for an unusual and unexpected sight.

Migrating dune on sand sheet
A small dune migrates toward the main dunefield.

NPS/Scott Hansen

Are the dunes still growing? How much do they change over time?

Currently, there is enough vegetation on the valley floor that there is little sand blowing into the main dunefield from the valley. However, even today there are still some small parabolic dunes that originate in the sand sheet and migrate across grasslands, joining the main dunefield. At other times, some of these migrating dunes become covered by grasses and shrubs and stop migrating. Thus, the dunes system is currently fairly stable.

Compare the two photos below showing the the first ridge of the dunes 138 years apart. While opposing wind directions prevent rapid net movement, research indicates there is some movement of the large dunes over time.

1873-2011 Comparison Photos

William Henry Jackson - 1873
Kris Illenberger - 2011

Dune and Sangre de Cristo Mountains

NPS/Patrick Myers

How old are the dunes?

Scientists don’t yet know a precise age. Many scientists estimate that Lake Alamosa disappeared about 440,000 years ago, but the dunes themselves apparently originate from sand deposits from later, smaller lakes.

A relatively new dating process, Optically-Stimulated Luminescence (OSL), is still in development. This method takes core samples of sand from deep within a dune, and attempts to measure how long quartz grains have been buried in the dark. If the deepest sand deposits can be accurately dated, the age of the dunes could be determined. Samples of sand from deep in the dunes have returned OSL dates varying between a few hundred years to tens of thousands of years old.

Visit our keyboard shortcuts docs for details
19 seconds

Have you ever heard sand sing? Listen to 15 seconds of this bizarre phenomenon! Just as our own voices are made by air moving through vibrating vocal chords, a humming sound is made at Great Sand Dunes as air is pushed through millions of tumbling sand grains during an avalanche. Avalanches occur naturally during storms, but can also be created by people pushing sand down a dune face. In the 1940s, one of Bing Crosby's musical hits was "The Singing Sands of Alamosa" - a love song based on the sounds of Great Sand Dunes. This humming sound continues to inspire people today!

Also available to watch on YouTube:


Selected Research Papers

Geologic Map of Great Sand Dunes National Park (USGS/Madole, VanSistine, Romig; 2016)

Valdez A., Zimbelman J.R. (2020) Great Sand Dunes. In: Lancaster N., Hesp P. (eds) Inland Dunes of North America. Dunes of the World. Springer, Cham.

The Geologic Story of Colorado's Sangre de Cristo Range (USGS/Lindsey; 2010)

2007 Rocky Mountain Section Friends of the Pleistocene Field Trip: Quaternary Geology of the San Luis Basin of Colorado and New Mexico, September 7–9, 2007 (USGS online publication) Michael N. Machette, Mary-Margaret Coates, and Margo L. Johnson

Geoindicator: Dune Formation and Reactivation (web page, Global Change Research and Information Office)

Last updated: December 1, 2021

Contact the Park

Mailing Address:

Visitor Center
11999 State Highway 150

Mosca , CO 81146


719 378-6395
Great Sand Dunes Visitor Center main number

Contact Us

Stay Connected