Geology Quicklinks Formation of the Dunes | Hydrology | Singing Sand Phenomenon
Visit our keyboard shortcuts docs for details
The Great Sand Dunes originated from large lakes that once covered portions of the San Luis Valley. This brief animation shows the lakes drying up, and the dunefield emerging in a pocket of the Sangre de Cristo Mountains. ![]() NPS/Patrick Myers How were the Great Sand Dunes formed? The story of how the Great Sand Dunes were formed is continually evolving, as new research discoveries occur each year. Below is a basic summary of what most geologists currently understand to be the broad series of events that took place in the formation of these massive dunes. You may also learn about geological components of the Great Sand Dunes system, hydrology of Great Sand Dunes, and the variety of dune types in the park. Basic Geological Story Through the breaking apart and movement (rifting) of large surface plates on Earth's surface, the Sangre de Cristo Mountains were uplifted in the rotation of a large plate. Fossils from the bottom of an ancient sea are now preserved in high layers of rock in the Sangre de Cristos. The San Juan Mountains were created through extended and dramatic volcanic activity. With these two mountain ranges in place, the San Luis Valley was born, covering an area roughly the size of the state of Connecticut. Sediments from both mountain ranges filled the deep chasm of the valley, along with huge amounts of water from melting glaciers and rain. The presence of larger rocks along Medano Creek at the base of the dunes, elsewhere on the valley floor, and in buried deposits indicates that some of the sediment has been washed down in torrential flash-flood events. ![]() NPS Illustration ![]() NPS Illustration Smaller lakes still covered the valley floor, including two broad lakes in the northeastern side of the valley. Large amounts of sediment from the volcanic San Juan Mountains continued to wash down into these lakes, along with some sand from the Sangre de Cristo Mountains. Dramatic natural climate change later significantly reduced these lakes, leaving behind the sand sheet. Remnants of these lakes are still found today, in the form of sabkha wetlands. ![]() NPS Illustration ![]() NPS/Patrick Myers ![]() NPS Photo This combination of opposing winds, a huge supply of sand from the valley floor, and the sand recycling action of the creeks, are all part of the reason that these are the tallest dunes in North America. There are other dunes in Colorado, and in most western states in the US, but none as tall (750 feet) and none as dramatic. Here giant dunes rise in front of the alpine Sangre de Cristo Mountains, while streams flow across the sand seasonally, making for an unusual and unexpected sight. ![]() NPS/Scott Hansen Are the dunes still growing? How much do they change over time? Currently, there is enough vegetation on the valley floor that there is little sand blowing into the main dunefield from the valley. However, even today there are still some small parabolic dunes that originate in the sand sheet and migrate across grasslands, joining the main dunefield. At other times, some of these migrating dunes become covered by grasses and shrubs and stop migrating. Thus, the dunes system is currently fairly stable. Compare the two photos below showing the Great Sand Dunes' stability over 138 years. Opposing wind directions balance each other out over time. Also, the main dunefield is moist beneath the thin layer of dry surface sand. In windstorms, the top few inches of sand blows around, and the moist sand remains largely in place. ![]() William Henry Jackson - 1873 ![]() NPS/Patrick Myers How old are the dunes? Scientists don’t yet know a precise age. Many scientists estimate that Lake Alamosa disappeared about 440,000 years ago, but the dunes themselves apparently originate from sand deposits from later, smaller lakes. A relatively new dating process, Optically-Stimulated Luminescence (OSL), is still in development. This method takes core samples of sand from deep within a dune, and attempts to measure how long quartz grains have been buried in the dark. If the deepest sand deposits can be accurately dated, the age of the dunes could be determined. Samples of sand from deep in the dunes have returned OSL dates varying between a few hundred years to tens of thousands of years old.
Visit our keyboard shortcuts docs for details
Have you ever heard sand sing? Listen to 15 seconds of this bizarre phenomenon! Just as our own voices are made by air moving through vibrating vocal chords, a humming sound is made at Great Sand Dunes as air is pushed through millions of tumbling sand grains during an avalanche. Avalanches occur naturally during storms, but can also be created by people pushing sand down a dune face. In the 1940s, one of Bing Crosby's musical hits was "The Singing Sands of Alamosa" - a love song based on the sounds of Great Sand Dunes. This humming sound continues to inspire people today! Geologic Map of Great Sand Dunes National Park (USGS/Madole, VanSistine, Romig; 2016) 2007 Rocky Mountain Section Friends of the Pleistocene Field Trip: Quaternary Geology of the San Luis Basin of Colorado and New Mexico, September 7–9, 2007 (USGS online publication) Michael N. Machette, Mary-Margaret Coates, and Margo L. Johnson Geoindicator: Dune Formation and Reactivation (web page, Global Change Research and Information Office) |
Last updated: February 22, 2020