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I.  Executive Summary 
 
 This project provided for a full-time data analyst to assist in development of 
methods to better use existing databases on aquatic fauna in planning and assessing 
management and restoration of the Everglades.  Charles Goss was hired to assist Joel 
Trexler in these analyses.  A number of advances were made through the help of Mr. 
Goss that are described in this report.  The primary advance was in development of a 
protocol to assess management impacts when no reference sites are available for 
comparison, which is a common situation the Everglades because of its large size with 
open flow of both surface and ground water.  The resulting method was illustrated by 
assessment of impacts by ISOP/IOP  hydrological schedules that were begun in late 
1999.  Comparisons to a pre-ISOP/IOP period with model forecasts of the impact of 
changing management given rainfall in the years 2000 – 2008 indicated that more drying 
events were observed in Taylor Slough, and in some portions of Shark River Slough, than 
would be expected if ISOP/IOP had not be implemented.  This work was reported in a 
peer-reviewed paper published as part of a collection of papers on assessment of 
Everglades restoration.  A Performance Measure documentation sheet elaborating on this 
method was developed with Doug Donalson for use in the DECOMP program and is 
currently under review by RECOVER.  In addition, a presentation was developed for a 
special meeting on management of Taylor Slough that further evaluated the changes in 
management that could account for the observed increase in drying frequency in that 
region of Everglades National Park.  Those analyses suggested that though the annual 
water budget has not been so impacted by ISOP/IOP, the bulk of flow under Taylor 
Slough bridge was pushed to earlier in the dry season, possibly leading to dryer dry 
seasons than would have been experienced without that change.  For aquatic fauna, if a 
‘dryer’ dry season means that marsh surfaces dry that would not have otherwise dried, 
high mortality with multi-year impacts are noted.  For these organisms, annual water 
budgets are not as important as the annual minimum stage relative to ground surface at 
key points in the slough. 
 
 A number of related topics tied to improving statistical modeling of aquatic fauna 
data are covered by sections of this report.  These include evaluation of alternative 
hydrological models (EDEN, 2 mile x 2 mile, 500m x 500m) for use in assessments, 
documentation of multi-year cycles in rainfall that confound analysis of hydrological 
management in the Everglades, development of a new independent variable for 
assessment based on the size of flooded habitat surrounding aquatic animal sampling 
sites, and a discussion of lessons learned in fitting temporal autocorrelation in time series 
models used for these assessments.  Also, we explored seasonality in juvenile and adult 
population dynamics of key fish species and documented how it changes among years.  
Finally, we developed a quality assurance – quality control (QA/QC) protocol for 
management of aquatic fauna data sets.   



 5 

II. Project Management 
 
A. Overview 
 
 During the first year of this project we completed creation of our database, 
including updates through the end of 2006 and assemblage of extensive metadata.  All 
data types (fish, invertebrate, crayfish, vegetation, physical and biomass) were in their 
finished forms and ready for analysis and interpretation.  Additional years were added as 
the project progressed and current assessments use data through the 2007-2008 wateryear 
(May through April). 
    

Using the finalized data sets, we continued to update our analyses to determine 
the effects of the Interim Operating Plan (IOP) on the biota of the Everglades.  To 
illustrate the impacts of IOP, we analyzed time-series of the population dynamics of both 
fish and crayfish before IOP and after IOP.  We used species that vary in their sensitivity 
to hydrology to illustrate how changes in water management practices (i.e. IOP) impact 
Everglades’ animal communities.  These data were then used for presentations at the 
Krome Center and other venues (see presentations list, below).  To accomplish this we 
created models that use rainfall to predict water depths at a given site under pre-IOP 
water management conditions (1992-1999).  These models were then be used to predict 
fish densities in the post-IOP period (2000-2007), assuming that pre-IOP management 
remained with the observed rainfall.  We compared the results from the model simulation 
to the observed data and quantified the differences between the observed data and the 
predicted data.  This analysis yielded insights into the ramifications of IOP with a 
potential to inform future water management decisions.  A version of this description was 
used by Doug Donalson in his DECOMP Performance Measures Documentation Sheet 
produced in September this year, and updated recently (copies of the original are included 
in this report and the most recent draft is included as a file supporting the report). 
 
 
B.  Publications and Presentations 
 
Publications 
Doren, R. F., J. C. Trexler, A. D. Gottlieb, and M. Harwell. 2009. Ecological Indicators 

for System-wide Assessment of the Greater Everglades Ecosystem Restoration 
Program.  Ecological Indicators 9:S2-S16    

Trexler, J. C., and C. W. Goss. 2009. Aquatic Fauna as Indicators for Everglades 
Restoration:  Applying Dynamic Targets in Assessments.  Ecological Indicators 
9S:S108-S119. 

Doren, R.F., Trexler, J.C., Harwell, M., and Best, G.R., Editors, 2008. System-wide 
Indicators for Everglades Restoration 2008 Assessment. So. FL. Everglades 
Restoration Task Force, US Dept. Interior, Technical Report. 39pp. 
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Meetings with So Florida Environmental Managers and Science Coordinators: 
South Florida Natural Resources Center (ENP)   April 16, 2007 
South Florida Natural Resources Center (ENP)   Sept 12, 2007 
Indicator Program (DOI Task Force, led by Bob Doren)  April 9, June 13, Oct 22, 2007 
SCG Meeting, Presentation of Indicator Tool  Oct 18, 2007 
RECOVER Leadership Group (RLG)   Jan 8, 2008 
 
Presentations of Results from this project to professional groups: 
Ecological Society of America, Symposium on setting targets for restoration 
        August 8, 2007 
Estuarine Research Federation    Nov 8, 2007    
Florida Institute of Technology    Oct 11, 2007 
Greater Everglades Ecological Restoration meeting  July, 2008   
  
 
C.  Collaborators 
 
We have sent data to William F. Loftus, Shawn Liston, Jennifer Rehage, Jerry Lorenz.   
Trexler met with Don DeAngelis, Troy Mullins, and Doug Donaldson to discuss 
development of a new fish model for use in evaluation projects.   Don is gave a 
presentation of early aspects of this model at the 2nd National Conference on Ecosystem 
Restoration in April, 2007. 
 
 
D. Future Directions 
 
Synthesis of existing data is an ongoing project because new data are always being added 
to our collection and further improvements are always being made to the existing 
protocols.  Our most immediate future direction will be to use new hydrological scenarios 
that are expected soon, in concert with our current parameters estimates for Performance 
Measure responses to hydrological variation (see DECOMP PM doc sheets), to project a 
wider array of possible restoration futures.  This is a project being undertaken by 
RECOVER with the trophic hypothesis team.  In addition, we hope to add local nutrient 
status to our PM models to expand the range of impacts we assess to include the two 
major drivers affected by management: hydrology and nutrient status.  However, the 
Everglades Landscape Model (ELM) is the only simulation tool that provides both 
hydrological and nutrient scenarios.  This means that development of aquatic fauna 
performance measures that address both hydrology and nutrients, while desirable, will 
not be actionable until future work is completed by modelers of the physical drivers. 
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 VI. PROJECT RESULTS 
 
A. Assessing Management Impacts to Aquatic Fauna in the Everglades (see also 

Trexler and Goss 2009 submitted with this report) 
 

 A key goal for Everglades restoration is to ‘get the water right’ with the 
expectation that other components of the ecosystem will be restored as a result.  An 
implication of ‘getting the water right’ is that operations of the water distribution system 
lead to water-level fluctuation that reflect historical patterns resulting from rainfall, and 
that linking surface-water dynamics to rainfall will recapture historical patterns of 
hydroperiod, including frequency and periodicity of marsh drying.  Ecologists agree that 
frequency and periodicity of drying across the landscape, along with oligotrophic water 
quality, are key elements to restoring ecosystem function in the Everglades. Thus, 
assessing performance measures of Everglades management should include rainfall-based 
targets that adjust expectations for seasonal and inter-annual patterns of regional rainfall. 
In this assessment, we use a protocol that incorporates dynamic targets for performance 
measures of aquatic consumers that are designed to remove variation resulting from 
rainfall and focus evaluation on the residual variation resulting from water management 
choices. 
     
 Aquatic fauna are included as indicators of Everglades management and 
restoration because of their central role in the 
food web, supporting emblematic Everglades 
animals such as wading birds and alligators.  
In Everglades monitoring and assessment, 
aquatic consumers refers to small fish and 
crustaceans that are directly consumed by 
wading birds and juvenile alligators.  The 
linkage of these organisms to water 
management is well established in the 
published literature, permitting evaluation of 
the impact of changing water delivery and 
quality on their numbers (Fig. 1).  Also, their 
life cycles are generally one year or less, 
providing relatively rapid responses to 
changing conditions that can be assessed 
through standard sampling protocols.  Unlike 
flagship species with high visibility and 
public support such as wading birds or 
alligators, aquatic consumers are included in 
ecosystem assessment solely because of their 
place in a chain of causality, linking water 
management and animals of high value to 
society. 
  

Figure 1.  Conceptual model illustrating the 
linkage of environmental drivers controlled by 
managers to aquatic consumer performance 
measures, and their linkage to wading bird 
population dynamics.  
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 We have a relatively good understanding of the linkage of hydrological dynamics 
to aquatic fauna, making target setting based on idealized and realized hydrological 
management feasible.  Exactly how regional patterns of aquatic fauna production is 
linked to nesting success of our apex species (wading birds in this case) is not as well 
established, but is the target of ongoing research.  In this assessment, we ask if 
hydrological operations are producing the expected spatial and temporal patterns of 
aquatic consumers given rainfall and desired hydrological variation.  Future assessments 
should identify targets for aquatic consumers tied to wading bird productivity, which in 
turn will permit identification and resolution of discrepancies, if they exist, between goals 
for hydrological management and restoration of animals that are highly valued by 
society.   

Aquatic Fauna Performance Measures.-  We have identified four patterns of population-
level responses to marsh drying in wading bird prey species of the Everglades.  We 
believe that these responses represent different life-history strategies for coping with 
drought stress (DeAngelis et al. 2005) and have selected indicator species to represent 
groups of species with similar strategies.  Three patterns are found in fish and grass 
shrimp (Trexler et al. 2001; Ruetz et al. 2005; Trexler et al. 2005; DeAngelis et al. 2005).  
These are: 1) slow recovery following marsh drying, possibly taking years to regain pre-
drought density (typical of bluefin killifish Lucania goodei, least killifish Heterandria 
formosa, grass shrimp Palaemonetes paludosus); 2) maximum density attained soon after 
drying events and lower densities a year or longer after drying (typical of flagfish 
Jordanella floridae and marsh killifish Fundulus confluentus); and 3) a moderate 
relationship between density and time since drying at a regional site, presumably because 
of medium-scale movement (10’s of kms) from areas that are drying (unique in the 
Everglades to eastern mosquitofish Gambusia holbrooki).   A fourth relationship is seen 
in crayfish and probably differs from fish and grass shrimp parameters because of their 
ability to burrow and tolerate moderate amounts of marsh drying (Dorn and Trexler 
2007).  Everglades crayfish (Procambarus alleni) display little or no relationship between 
local time since flooding and density, but regional drying and average water depth over 
the past 6 months do explain moderate amounts of variability in their density (Dorn and 
Trexler 2007).  Everglades crayfish are more abundant when recent water depths have 
been shallow or drying is frequent, and slough crayfish (Procambarus fallax) are more 
abundant in deeper water and longer-hydroperiod sites (Dorn and Trexler 2007).  We are 
not currently using slough crayfish as a performance measure because no clear 
relationship has been identified between their numbers and hydrological parameters; their 
density may be most strongly affected by biotic interactions indirectly tied to hydrology 
(Dorn and Trexler, unpublished data).  We have selected bluefin killifish, flagfish, eastern 
mosquitofish, and Everglades crayfish to make assessments because they represent the 
four life-history strategies and are frequent enough in our samples to provide adequate 
statistical power to detect effects we believe are important.  As a fifth performance 
measure, we use the summed density of all fish species.  This is an index of fish 
productivity and is positively correlated with time since a site reflooded after the most 
recent drying event; density is better correlated to hydrological parameters than biomass. 
A sixth performance measure used is the percent of fish that are non-native.  Though the 
direct impacts of non-native fishes on Everglades ecosystem function are not well 
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understood, their presence conflicts with management criteria for Everglades National 
Park and there is ongoing concern about their potential impacts on native taxa.  
 

Hydrological Goals used for this Assessment.-  We used the same hydrological goals for 
this assessment as employed in the IOP Project Evaluation Report (SFNRC 2005).  Those 
goals were to match the relationship between rainfall and water-depth fluctuation 
observed in the period between 1993 and 1999.  These years included several with very 
high regional rainfall (1996, 1997), and some with relatively lower levels (1993 and 
1998). The high rainfall years may have provided high water levels similar to those found 
historically and prior to implementation of water drainage programs in the Everglades.  
Additional hydrological scenarios should be used to construct performance measure 
targets in future assessments.  The Natural System Model (NSM) is a natural choice for 
such a scenario, as are hydrological models used for evaluation exercises and planning, 
for example the D13R (USACOE 1999).  Any applicable hydrological model can be 
used, as long as it is run with rainfall data that includes the years being assessed.  Some 
preliminary examination of NSM output run through 2005 and provided on an 
experimental basis by staff of the South Florida Water Management District indicates that 
it predicted higher water levels and less frequent marsh drying than simulated in the 
1993-1999 goals used in this report.  Thus, impacts identified in this report are probably 
conservative when compared to current thinking about hydrology of the historical 
Everglades.  

Assessment Methods 
Overview of Modeling Strategy- We used the years 1993 through 1999 as a baseline to 
establish phenomenological relationships between water depth measured at our study 
sites and rainfall from gauges across three regions:  Shark River Slough (SRS), Taylor 
Slough (TSL), and Water Conservation Areas 3A and 3B (WCA3A and WCA3B).  We 
then used these relationships and the observed rainfall in years 2000 through 2006 to 
project water depths for those years.  The resulting projections simulate water depths 
expected if no change in water management occurred following the baseline period.  We 
used these hydrological projections to forecast performance measures (PM) at each 
monitoring site.  Finally, the PM forecasts were used as targets for comparison to 
observed values for each PM in order to assess how implementation of new water 
management operations may have affected aquatic-system function.  The following 
sections give a methodological overview of the modeling process, and present key 
findings.  Our modeling procedure is divided into three different sections to illustrate the 
steps that we went through to determine our final impact assessments. A step-by-step 
description of the modeling reported here is provided in Appendix A.1, and all programs 
are provided on a CD that accompanies this report. 
 
Modeling Methodology and Key Findings 
Hydrological Models- We used daily rainfall data to derive a statistical relationship 
between rainfall and surface-water depth at a given long-term monitoring plot in the goal 
period (November 1, 1993 – November 1, 1999).  This period was modified from 
assessments requested by personnel from the South Florida Natural Resources Center and 
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corresponds to a range of relatively dry and wet years based on rainfall records for the 
southern Everglades region (Fig. 2).  We generated several different rainfall parameters 
corresponding to the cumulative amount of rainfall over a given period of time.  To select 
parameters to predict field water depths we used two criteria:  1) cross-validation 
predicted residual sums of squares (CVPRESS) and 2) proportion of times we correctly 
classified observed marsh drying events (classification rate).  Marsh drying events are 
particularly important for this modeling effort because drying (defined here as water 
depth less than 5 cm) represents a threshold for many aquatic fauna, especially fish.  
Once our final hydrological model was selected, we used its parameters to predict 
surface-water depth in the assessment period (January 1, 2000 through December 31, 
2006).  This simulates surface water depths if water management operations of the ‘target 
setting period’ were maintained during the ‘assessment period.’ 
   
 Our models predicted wetter marshes and fewer drying events in many areas 
south of the Tamiami Trail than were observed during the assessment period; results were 
mixed for Water Conservation Areas 3A and 3B (Fig. 3).  Additionally, we were able to 
predict the majority of drying events in the goal period, but the same model using rainfall 
in the assessment period predicted less than half of the drying events observed. These 
results indicate that water management operations in the assessment period were 
responsible for the change in surface water when compared to the target period, not 
differences in rainfall.  In the following sections of this report, our assessment of 
consumer performance measures illustrates the impact of this difference on aquatic 
consumer density.
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Fig. 2.  Time series for the daily 5-year cumulative sum of rainfall (inches) from 1993 to 2006 
extract from a time series of running cumulative values starting in 1905 (not shown).  The black 
line corresponds to the average of rainfall record from Forty Mile Bend Ranger Station (FMB) 
and Royal Palm (RPL), and the red line corresponds to the average of rainfall record from SE 
and SW gauges.  Hydrological goals were set from the time highlighted in red (1993-1999), and 
assessments were made for the years highlighted in green (2000-2006). 
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Fig. 3.  Hydrological model predictions in the target (black) and assessment (red) periods.  
Observed depth is plotted on the y-axes and predicted depth is on the x-axes for three 
exemplary monitoring plots (SRS50A is in Shark River Slough near Shark Valley; TS 
CPA is in Taylor Slough at Craighead Pond; WCA 03B is in western WCA 3A, south of 
the L28 Interceptor Canal). Below ground water depths are not well predicted, possibly 
because of inaccuracies in the observed data.  
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Ecological Data and Models- Monitoring programs for aquatic consumers focus on small 
aquatic animals (fish < 8-cm standard length; fish and macroinvertebrates routinely 
retained on 2-mm mesh sieves) and are conducted in the Everglades by use of a 1-m2 
throw trap (Kushlan 1981; Loftus and Eklund 
1994).  Several papers support use of this 
technique based on comparative evaluations 
with alternative methods that examined bias 
and efficiency in sampling fishes (Chick et al. 
1992; Jordan et al. 1997) and 
macroinvertebrates (Turner and Trexler 1997; 
Dorn et al. 2005) in Everglades marshes.  
Wolski et al. (2004) found little impact of 
long-term visitation that accompanies throw-
trap sampling at fixed sites in the Everglades, 
further justifying the technique’s use for 
monitoring.  A history of PM development and 
fish monitoring in Everglades National Park is 
provided in Trexler et al. (2003).  Data used 
for this assessment were obtained from long-
term monitoring of the Modified Water 
Delivery Program (Fig. 4).  Future assessments 
will use data from the Monitoring and 
Assessment Program of CERP; a brief 
discussion and assessment using those data for 
2005 are given at the end of this report.  
 
 We modeled five different performance 
measures: total fish density (all species of fish 
summed), eastern mosquitofish, flagfish, and bluefin killifish, and Everglades crayfish.  
Past work has demonstrated that these fish are representative of the variety of life-history 
responses to drying events (Trexler et al. 2005; DeAngelis et al. 2005).  Flagfish and 
eastern mosquitofish typically recover quickly from marsh drying, while bluefin killifish 
recover more slowly (DeAngelis et al. 2005).  Additionally the Everglades crayfish has 
been shown to survive marsh drying conditions and is typical of short-hydroperiod 
marshes in the southern Everglades (Hendrix and Loftus 2000; Dorn and Trexler, 
unpublished data).  We analyzed these data using hydrological parameters that estimate 
the time passed since re-flooding from most recent drying event.  We define drying as 
water depth dropping below 5 cm and flooding as when previously low water levels rise 
above 5 cm.  To account for ecological responses driven by hydrology operating at 
different spatial scales, we created three different hydrological parameters:  local days 
since flooding (LDSF), local days since flooding adjusted for regional drying (ADSF), 
and regional days since flooding (RDSF).  We used linear regression to capture patterns 
of recovery following marsh flooding and evaluated our models using Akaike’s 
Information Criterion (AIC) to select a preferred model from a hierarchy of models.  Our 
final models generally described the data well, although fit varied across species and 
regions.   

Biological Assessment

All Fish 2006

Caution
Meets target

Does not meet target

Aquatic Fauna
Assessment

Monitoring site

Figure 4.  Map of long-term monitoring 
sites used for this assessment.   
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 Consistent with previous studies, we found that bluefin killifish and total fish 
typically increased in density following marsh flooding (Fig. 5).  In contrast, flagfish and 
eastern mosquitofish decreased with time following marsh flooding at some sites, though 
not at the same rate or to the same extent; eastern mosquitofish are almost always much 
more abundant that flagfish (Fig. 5).  Our models were also consistent with published 
results indicating that Everglades crayfish tend to decrease in density the longer a marsh 
is inundated.  In fact, this species is extremely rare in WCA 3A and 3B, most likely 
because there are several areas that in those regions that rarely dry.  Everglades crayfish 
could not be assessed in these water conservation areas.   
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Fig. 5.  These graphs are quadratic regressions illustrating our model fits for each fish 
species at specific sampling sites.  Starting in the upper left and preceding right the sites 
are as follows:  SRS 08A, TSL CPA, WCA 02B, WCA 05 B, and TSL MDD. 
 
Water Depth and Ecological Synthesis Models- Using the predicted data from our 
hydrological model and the parameter estimates from our ecological model, we projected 
fish densities into the assessment period.  This gives us an estimate of aquatic consumer 
densities if water management were consistent with the goals and targets as defined for 
this assessment.  We found many instances where there was substantial deviation of the 
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observed fish density when compared to predictions by the hydrological goals (Fig. 6).  
This suggests that the deviation in the relationship between rainfall and water depth in the 
assessment period, translated to a change in aquatic fauna densities that resulted from 
water management activities.   In the next section we describe how to interpret the results 
in Figure 4 and summarize the findings in regional assessments. 
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Fig. 6 (Below and next page). Illustrations from selected sites of observed time series 
data and model predictions (left) and the objective limits and targets (right) for five 
performance measures.  There are 64 plots in our database, so the results are aggregated 
for each performance measure to yield a robust regional assessment using methods 
discussed in the next section.  Upper and lower objective limits are the 95% confidence 
limits from our ecological targets (this captures uncertainty in fit of our assessment 
model); the target confidence intervals are derived from deviations for the observed and 
target data on an annual basis (there are seven groups for the seven annual assessments).  
The widths of those intervals (1.5, 2.0, and 3.0 standard errors) correspond to different 
criteria for assessment discussed in the next section.  Impacts are evaluated based on 
overlap of intervals with the upper and lower bounds of uncertainty for fit of the model 
generating assessment goals (i.e., if the black bars are outside the blue and red bars, we 
judge that as a negative impact; if they overlap, we assess based on the amount of 
overlap). 
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Fig. 6 (continued from last page)  
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Assessing Impacts to Aquatic Consumers.-  In order to assess if management is ‘getting 
the water right’, we identified impacts based on deviation between our observed values 
for each performance measure and goals for hydrological management.  We identified 
two primary sources of uncertainty in this process: uncertainty in the fit of our 
hydrological and ecological models; and uncertainty in our comparison of sampling data 
to the targets. To account for uncertainty in our modeling, including systematic (lack-of-
fit) and random variability in the models, we estimated an objective interval (mean +/- 2 
standard errors) for use as upper and lower limits our targets (blue and red bars in Fig. 4).  
Assessing the magnitude in deviation between our observed data and ecological targets 
requires defining an ‘impact’ based on the magnitude of deviation.  We did this by use of 
estimates of the standard error of deviations between observed and target values 
calculated on an annual basis (black confidence intervals in Fig. 4). Interpretation of 
these confidence intervals was based on criteria from Decision Theory used to evaluate 
time series of data on industrial processes.   

 We defined two classes of impact:  individual years with extreme deviations (type 
A); and runs of consistent deviations from the ecological targets (types B and C).  We 
followed criteria from Allen et. al (1997) using  Shewhart Control Chart Theory and 
define different criteria for defining an impact: 
 

Type A:  one year at least three standard errors above the upper limit of the 
objective interval, or three standard errors below the lower limit of the objective 
interval. 
Type B:  two out of three consecutive years at least two standard errors above the 
upper limit of the objective interval, or two standard errors below the lower limit 
of the objective interval. 
Type C:  four out of five consecutive years with at least 1.5 standard errors above 
the upper limit of the objective interval, or 1.5 standard errors below the lower 
limit of the objective interval. 
 

This method ensures that we take into account any lack of fit of the original model to the 
data when assigning an impact, yielding conservative estimates of impacts that are coded 
as red stoplights (i.e., we have attempted to minimize misclassifying areas without 
impacts by setting a high standard to assign red stoplights).  In contrast, we assign yellow 
stoplights more liberally because they are simply indicative of sites deserving additional 
attention (i.e., we have attempted to minimize misclassifying impacted areas as meeting 
targets by assigning yellow lights with less rigor; see criteria below). 
   
 We selected several monitoring sites to illustrate typical patterns of impact for 
each PM (Fig. 6).  In these time-series graphs (Fig. 6, left panels), we capture 
hydrological variation well in the target setting (or baseline) period.  Following 2000, it is 
clear that our predictions based on the observed hydrology deviate dramatically from our 
predictions based on the projected hydrology.  The graphs on the right panels of Figure 6 
illustrate the objective upper and lower limits of the targets with the three confidence 
intervals representing our three criteria for assessing impacts.  These graphs show that, 
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for the plots reported in this figure, we tended to predict more total fish, eastern 
mosquitofish and bluefin killifish based on our projected hydrology than were observed.  
At these sites the patterns were relatively consistent with the mean typically falling 
outside the objective limits, and several instances where the 3 standard error interval falls 
below the objective limits.  These patterns are typical of Shark River Slough and Taylor 
Slough.  Results for Water Conservation Area 3A are more complex, with impacts 
depending on the species assessed and location within the landscape.  Note that we 
observed more flagfish and Everglades crayfish than predicted, as expected with drier 
conditions. 
   
 We use assigned stoplights at the regional level (Shark River Slough, Taylor 
Slough, Water Conservation Area 3A, Water Conservation Area 3B) to communicate the 
state of aquatic communities in each year beginning in 2000 and ending in 2006 (Table 
1).  Red stoplights indicate that there is an impact and correspond to Type A, Type B, and 
Type C impacts.  Yellow lights indicate caution and correspond to years where our target 
is 1.5 standard errors above or below our objective.  Finally, green stoplights correspond 
to years where there is no impact, and the target falls within 1.5 standard errors of the 
objective.  To obtain a regional assessment for each species, we ranked the stoplights: 
1=Green, 2=Yellow, and 3=Red, and took the means of the yearly ranks for sites within 
regions; we rounded to the nearest integer to get a stoplight estimate for each region in 
each year.  Impacts (red lights) were more common in assessments after 2002 because we 
were able to apply time series criteria with three years of data, and had three ways to 
detect impacts by 2004.  Our ability to assign impacts with confidence increased as more 
years of data were available, with threshold points after 3 and 5 years because of 
cumulative information available to interpret findings.  
 
 Shark River Slough and Taylor Slough yielded the most striking examples of 
failure to meet our a priori targets (Table 1), with fewer fish and more Everglades 
crayfish than expected (Table 2).  These patterns were most apparent for total fish and 
bluefin killifish, while eastern mosquitofish tended to yield weaker responses.  The only 
two impacts for flagfish in Shark River Slough indicated that we observed more fish than 
predicted by our model.  In Taylor Slough, our hydrological models described flagfish 
population dynamics poorly at most study plots, though they were collected, so we were 
unable to make an assessment.  All impacts for Everglades crayfish resulted from 
observing more specimens than were predicted for the targets (Tables 1 and 2).  This 
suggests that when marshes are drier overall, Everglades crayfish increase their range and 
abundance.  Overall, patterns of impact for bluefin killifish and total fish in WCA 3A 
were more complex.  There were fewer impacts in WCA 3A than in Everglades National 
Park, and the yearly regional assessments were generally all green (total fish), or a 
mixture of green, yellow and red, with the current status of bluefin killifish either yellow 
(WCA 3A) or green (WCA 3B).   For flagfish and eastern mosquitofish, most of the 
impacts resulted because we observed higher density than expected.  We believe this 
resulted from movement of fish from western areas of WCA 3A that dried, and 
concentrated at sites in the southeast.  The current status for either of these species does 
not indicate an impact.  Everglades crayfish is extremely rare in these water conservation 
areas, so we were unable to make an assessment. Water Conservation Area 3B revealed 
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few deviations from expectations, consistent with its status of isolation from other parts 
of the ecosystem and limited capacity for impacts from operations (though ground water 
seepage is a potential mechanism to transfer management impacts to this region from 
upstream). 
 
   
Table 1.  Regional stoplight summary of all PMs. Current status refers to 2006. 
 

Performance Measure  2000 2001 2002 2003 2004 2005 
Current 
status 

Shark River Slough        
 eastern mosquitofish        
 flagfish        
 bluefin killifish        
 total fish        
 Everglades crayfish        
 Non-native fishes        
Taylor Slough        
 eastern mosquitofish        
 flagfish        
 bluefin killifish        
 total fish        
 Everglades crayfish        
 Non-native fishes        
Water Convservation  
Area 3A       

 

 eastern mosquitofish        
 flagfish        
 bluefin killifish        
 total fish        
 Non-native fishes        
Water Convservation  
Area 3B       

 

 eastern mosquitofish        
 flagfish        
 bluefin killifish        
 total fish        
 Non-native fishes        
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Table 2.  Summary of the number of site-level impacts (red stoplights) in a given region 
as a result of observing fewer animals than expected, more animals than expected, or a 
mixture of the two.  Counts of the number of red stoplights between 2000 and 2006 are 
listed, reported by the direction of deviations. 
 

Region Species 
More than 

Expected 

Fewer than 

Expected 
Mixture 

SRS Everglades crayfish 16 0 0 

SRS eastern mosquitofish 0 7 0 

SRS flagfish 2 0 0 

SRS bluefin killifish 0 20 1 

SRS total fish 0 24 0 

     TSL Everglades crayfish 13 0 0 

TSL eastern mosquitofish 0 10 0 

TSL flagfish 0 0 0 

TSL bluefin killifish 0 22 0 

TSL total fish 0 17 0 

     WCA3A eastern mosquitofish 7 0 0 

WCA3A flagfish 3 5 0 

WCA3A bluefin killifish 0 10 0 

WCA3A total fish 0 2 0 

WCA3B eastern mosquitofish 9 0 0 

WCA3B flagfish 6 0 0 

WCA3B bluefin killifish 0 4 0 

WCA3B total fish 0 0 0 
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Non-native Fishes. In the absence of any ecological data on threshold densities for 
biological impacts of non-native fishes on aquatic ecosystem function of the Everglades, 
we used a criterion of relative abundance to assign annual impacts.  If non-native taxa 
comprised at least 2% of all fishes collected in a year at a monitoring site, we assigned a 
value of caution (yellow) to the site for that year.  We also considered evidence of a trend 
of increasing absolute abundance as a source of concern.  Based on unpublished data on 
Mayan cichlid (Cichlassoma uropthalmus) density in the Southern Everglades, we 
assigned a value of exceeds targets (red) if the summed density of non-native fishes 
(including Mayan cichlids) exceeded 10%.  We also assigned ‘exceeds target’ if the 
relative abundance of non-native species exceeded 5% for three or more years in a row.  
 
 These targets are arbitrary in the absence of much-needed experimental studies of 
biotic interactions of these taxa indicating detrimental effects on native taxa or other 
measures of ecosystem function.  At present, one or more non-native fish species can be 
considered present in all areas of the Everglades, and eradication is not currently 
possible.  For this reason, we set a lower boundary greater than zero, though management 
criteria for the Everglades National Park would require this.  Assessing non-native 
species requires careful consideration because of known gear bias in fish collections, and 
impacts of sample size in estimating population parameters (sample size refers to both the 
number of samples AND the total number of animals collected).  Assessments must be 
made with consistent methods for comparisons, either across space or through time, and 
emphasize relative differences.  For example, minnow-trap sampling in Everglades 
marshes by placement of traps on the substrate typically yields a higher relative 
abundance of non-native taxa than throw-trap sampling.  Minnow traps are preferable to 
throw traps to determine if species of non-native fishes are present in an area, but throw 
traps are preferable to obtain a quantitative measure of their relative abundance in the 
community at a location (assuming that other conditions are appropriate for throw-trap 
sampling, such as vegetation cover and water depth).  We anticipate much interest in 
refining this target for future assessments. 
 
 We found that non-native fishes were typically between 2 and 4% of the fishes 
collected by throw trap at all of our monitoring sites over the 7 years of this assessment 
(Fig. 7).  In Shark River Slough, one site produced more than 10% non-native fishes in 
2003, and slightly less in 2004.  This monitoring site is adjacent to the Shark Valley tram 
road and near a borrow pit which appears to serve as a reservoir of non-native taxa.  
However, these two years were also relatively dry at this site and few fish of any species 
were collected.  In fact, the most non-native specimens by far are collected at Rookery 
Branch, a site near the mangrove zone and close to the headwater creeks of the Shark 
River.  However, this site is generally productive for fishes, so the high numbers of non-
native taxa (mostly Mayan cichlids) remains a relatively small proportion of the 
community.  A similar pattern is seen in Taylor Slough, where a short-hydroperiod site 
on the edge of the main slough harbored the highest frequency of non-native fishes, but 
the most specimens were collected at the southern end of the slough in Craighead Pond, 
and at a site near the Madeira Ditch, an artificial permanent water refuge.  There were no 
trends of increasing (or decreasing) frequency or density of non-native taxa at these 
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monitoring sites.  We assigned yellow stoplights throughout for non-native taxa because 
of their persistent low frequency and uncertainty about their impacts.  
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Figure 7.  Proportion of non-native fishes collected at each study site in each 
year, reported separately for regions.  Means and 95% confidence intervals 
were derived by GLM with logit linking function.  High values in Shark 
River Slough and Taylor Slough correspond to site/year combinations when 
relatively few fish were collected.    
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Future Assessments and Lessons 
  
 Future assessments should be made system-wide using data collected for CERP-
MAP.  At present, three system-wide surveys have been completed through wet-season 
sampling (September through November). Assessments reported here indicate that at 
least three years of data are needed to implement a robust analysis accounting for trends, 
and five years is best.  An impediment to applying dynamic targets in assessment with the 
CERP-MAP data is in the lack of landscape-scale hydrological targets for evaluating the 
monitoring data.  Evaluating impacts of hydrological operations requires assessments that 
account for rainfall patterns, particularly for fishes.  
  
 We created a preliminary assessment for 2005 using CERP-MAP data and the 
performance measure total fish (density of all fish summed). To accomplish this, we used 
a trial version of the Natural System Model that has been run using rainfall data through 
the end of 2005.  This permitted calculation of the days since last re-flooding parameter 
for modeling total fish density, in a similar manner used elsewhere in this report.  Note: 
Use of NSM in this case is on a trial basis only as this version has not undergone full 
QA/QC.  We assigned red stoplights by observed fish density at least three standard 
errors beyond the target and yellow when observations were between 2 and 3 standard 
errors from expected.  For these data, we used the relationship between fish density and 
days since the marsh last re-flooded estimate from Shark River Slough as our target.  The 
observed relationship deviates significantly between Shark River Slough, Taylor Slough, 
and Water Conservation 3A, probably because of different histories of drying and access 
to permanently inundated refuges (both of which affect patterns of predation, in addition 
to direct effects of mortality).  We opted to use the Shark River Slough relationship as an 
ecosystem-wide target because it area has less impact of artificial deep-water refuges 
compared to Water Conservation Area 3A, but has not experienced repeated slough-wide 
drying as in Taylor Slough. 
         
 Most of our collections deviated markedly from NSM-derived expectations and 
garnered a red stoplight (Fig. 8).  The direction of deviations is of interest, with fewer 
fish than expected in the south (Shark River Slough and Taylor Slough) and more in the 
north (WCA-2A and Loxahatchee National Wildlife Refuge); there is a mixture of 
directions in Water Conservation Area 3A. Some of the results are odd, such as in WCA 
3A, where we generally caught more fish than were expected at four out of six sampling 
points.  We will not expend more space evaluating this graph because of the tentative 
nature of the hydrological model results.  However, this illustrates that assessments of 
aquatic consumers with application of dynamics targets is feasible at the ecosystem scale 
once appropriate hydrological models are made available. 
    
 Additional ecological studies are needed on impacts of non-native fish species to 
develop targets better linked to ecological impacts, if impacts are documented.  
Experimental studies are of special importance because impacts cannot be effectively 
assessed by abundance alone; abundant non-native species could be benign and rare 
species could act through indirect routes to alter feeding opportunities for wading birds or 
alligators.   



 26 

 

Figure 8.  Map of results of assessment using total fish density from 2005 CERP 
MAP wet-season collections.  Targets were derived from an experimental version 
of NSM used for illustrative purposes. 
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A.1  Appendix: Overview of steps for an Ecological Assessment 
    Prepared by Charles Goss, Mandy Banet, and Joel Trexler 
 
 We use nonlinear models and the program Statistical Analysis System (SAS) to 
assess management impacts for fish Performance Measures.  This is a two-step process 
that begins with setting targets based on hydrological modeling, followed by comparing 
field data to targets for the actual assessment.  In future assessments, the hydrological 
targets will be provided by managers, eliminating a step that is covered here.   
 
 This assessment should be considered an example, and describes the steps 
conducted for the IOP assessment that was included in the deliverables for this project.  
All files described here are included on a CD submitted with this report.  You will need 
to modify the file locations and libraries to match with the organization of your computer, 
or the programs will not run properly.  For example, if you copy the directory 
IOP_CODE from the CD to a D: drive on your computer, you will need to add the D: 
drive address to the file addresses listed below.   
 
Modeling steps:   
 
A. Hydrological model:  dataset creation and cross validation analysis 
 
1. Import rainfall data and concatenate file to create final rainfall data set for use in 
hydrological analyses. 
 
 IOP_CODE\1_datasets\iop_rainfall_data_creation   
 
2. Merge the rainfall data with long-term monitoring hydrological data to produce 
dataset used for the hydrological analyses. 
 
 IOP_CODE\1_datasets\iop_hydrology_dataset_creation program 
 
3. Use cross-validation methods to determine relationship between rainfall and 
observed water depths.   
 
 IOP_CODE\1_datasets\iop_hydro_cross_validation 
 
 Dataset created: iop_hydr.pred_hydrology_dsd_final  
 
4. Merge predicted hydrology dataset with NSM hydrology data. The dataset that 
results will be merged with fish data for assessment. 
 
 IOP_CODE \1_datasets\iop_hydro_nsm_merge  
 
Dataset created: iop_hydr.hydro_nsm_rainpred_merge 
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B.  Ecological dataset and nonlinear modeling of fish data 
 
1. Calculate the predicted fish and crayfish density at each plot based on 
hydrological targets.  Open and run the following SAS program to create a dataset for 
analysis. 
 
 IOP_CODE\1_datasets\iop_fishcray_data_creation_nsm     
 
2. The 2_analyses folder contains programs that estimate fish and crayfish 
parameters based on the relationship between fish/crayfish and DSD. The program then 
creates a file with the fish predictions using the nonlinear parameters to predict the 
expected fish density using both observed and predicted hydrology.   Run the following 
SAS programs: 
 
IOP_CODE\2_analyses\1_jorflo_nlin_analyses 
IOP_CODE\2_analyses\1_lucgoo_nlin_analyses 
IOP_CODE\2_analyses\1_proall_nlin_analyses  
IOP_CODE\2_analyses\1_totfish_nlin_analyses 
 
3. Finally we use mixed model analysis (modeling covariance structure) to do a 
Before-After-Control-Impact (BACI) analysis of the residuals of the analyses from the 
last step.  In this analysis we test whether there is evidence of an impact in the before 
period vs. the after period. 
 
 In species that are found less frequently, such as flagfish, the number of zeros in 
the dataset leads to heterogeneity of variance.  In these cases, a permutation test is 
performed on a random subset of the data in order to assess the legitimacy of the results.  
A macro for this test is in the wrapper_macro program. 
 
 Run the following SAS programs: 
 
 IOP_CODE\2_analyses\Wrapper_Macro 
 IOP_CODE\2_analyses\2_Autocorr_model_jor    *uses permutation test 
 IOP_CODE\2_analyses\2_Autocorr_model_proall   *uses permutation test 
 IOP_CODE\2_analyses\2_Autocorr_model_luc 
 IOP_CODE\2_analyses\2_Autocorr_model_tot 
 
4. To create summary stats of our analyses for publication, run the appropriate SAS 
programs for the hydrological analyses and the nonlinear analyses in the 3_summstats 
folder:  
 
IOP_CODE\3_summstats\hydrology_summary_stats 
IOP_CODE\3_summstats\IOP_fish_nonlin_graphs 
IOP_CODE\3_summstats\ IOP_fish_nonlin_summstats 
IOP_CODE\3_summstats\ IOP_hydro_nsm_graphs 
IOP_CODE\3_summstats\ IOP_hydro_val_summ_stats_final 
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B. Fish Performance Measure Document Sheet 

For final see:  Donalson, D., J. Trexler, D. Deangelis, A. Logalbo. 2009. Small-Sized 
Freshwater Fish Density Performance Measure. Draft DECOMP Performance 
Measure, Greater Everglades Aquatic Trophic Levels. Documentation Sheet. 
14pp. 

 

DRAFT 

Greater  Everglades Aquatic Trophic Levels 
Small Fishes Density Sub-unit 

 

Last Date Revised:  08-31-07 

Acceptance Status: draft performance measure 

Desired Restoration Condition 
The desired restoration conditions for small fish density are to achieve late wet season 
population densities and taxonomic compositions consistent with pre-drainage hydrologic 
patterns in the Everglades wetlands and to provide high-density patches of prey-
availability so that wading birds can feed effectively as water levels recede during the dry 
/ nesting season. 

1.1 Predictive Metric and Target 
Two spatially explicit predictive metrics will be included in this performance measure.  
The first is an updated version of the Trexler et. al. fish habitat suitability index (HSI) 
model 
(http://my.sfwmd.gov/pls/portal/docs/PAGE/PG_GRP_SFWMD_HESM/PORTLET_HA
BITAT/PORTLET_HSI_SUBTABS_2/TAB1392141/HSI_DEC_2004_CHAPTER6.PD
F) .  This model represents fish density as a function of days since last dry-down for three 
different landscape dry-down frequencies, short, medium, and long.  The second is a new 
model presently in development that is a true trophic food chain model.  Both models will 
be spatially explicit and will be driven by 500 meter resolution hydrology.  The same 
simulation “engine” that is used for the NPS’s Hydrologic Impact Evaluator (HIE) will 
also be used to drive these two models. 
 
1.1.1 The Trexler fish density model 
Dr. Joel Trexler’s lab used a 10-year time series (1996-2006) of aquatic consumer data to 
identify relationships between performance measures indicative of aquatic food-web 
dynamics and hydrological management.  The data were gathered with a 1-m2 throw trap 
and standard sampling protocol carried out at 20 monitoring sites in Taylor Slough, Shark 
River Slough, and Water Conservation Areas 3A and 3B (map of sites in Trexler et al. 
2001).  Samples were collected at each study site in five months of each year (February, 
April, July, October, December), yielding over 17,000 community samples with over 

http://my.sfwmd.gov/pls/portal/docs/PAGE/PG_GRP_SFWMD_HESM/PORTLET_HABITAT/PORTLET_HSI_SUBTABS_2/TAB1392141/HSI_DEC_2004_CHAPTER6.PDF�
http://my.sfwmd.gov/pls/portal/docs/PAGE/PG_GRP_SFWMD_HESM/PORTLET_HABITAT/PORTLET_HSI_SUBTABS_2/TAB1392141/HSI_DEC_2004_CHAPTER6.PDF�
http://my.sfwmd.gov/pls/portal/docs/PAGE/PG_GRP_SFWMD_HESM/PORTLET_HABITAT/PORTLET_HSI_SUBTABS_2/TAB1392141/HSI_DEC_2004_CHAPTER6.PDF�
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250,000 fish records for establishing relationships between biota and hydrological 
conditions.  Quantitative data on fish and aquatic invertebrates (crayfish, shrimp, snails, 
and aquatic insects) were recorded from all samples, along with environmental data on 
emergent-plant stem density, floating mat volume (periphyton and floating vascular 
plants and macroalgae), and water depth.  The methods, including estimates of sampling 
efficiency and evaluation of sources of bias, are described in several papers (Jordan et al. 
1997; Wolski et al. 2002; and papers cited therein).  The study sites and sample design 
are also described in detail in other publications (Trexler et al. 2001, 2003, 2005).  
  
Trexler et al have been working on approaches using monitoring data to derive statistical 
relationships between biotic performance measures and hydrological parameters for 
ecological assessments of management.  At present, models have been developed for 
several aquatic consumers indicative of Everglades trophic dynamics.  Two are discussed 
here: total fish density (all species summed, number per meter square) and Bluefin 
Killifish (number per meter square).  Both of these indicators display strong monotonic 
relationships with the number of days between the time of sampling and re-wetting of the 
site after the most recent drying event.  Certainly, other factors also influence the values 
of these indicators (e.g., Trexler et al. 2005; Chick et al. 2004), but generally more than 
60% of the sampling variation (and often more than 70%) can be explained by this single 
parameter (hereafter, days since dry down [DSDD]).   
  
A logistic equation has been used to model this relationship; separate parameterization is 
desirable for data from Taylor Slough, Shark River Slough, and Water Conservation 
Areas 3A and 3B.  Separate parameterization was not needed for the data gathered within 
these areas.  Further discussion of the biology of these fits is beyond the scope of this 
document, however, a key caveat is that caution should be exercised in using these 
relationships at sites with a history of substantially shorter hydroperiods than those where 
the data were gathered (Table 1).  There is no particular reason to use a logistic model to 
describe these relationships, though this and related non-linear models better described 
the data than simple polynomials.  Ecologists have often used the logistic equation to 
describe population growth and the parameters have traditional interpretations (r and K).  
Possibly an argument against using such a model is the temptation to interpret parameter 
estimates in this way when caution is necessary because immigration and emigration 
have not been independently accounted for and are certainly important factors 
influencing aquatic animals in the Everglades.  However, excellent data descriptions from 
a phenomenological fit of this model have been found.  Future work may lead to 
replacing the logistic model with a Gompertz model, because of limitations in the former 
(assumes symmetrical population growth at low and high ends of the relationship), but 
current work has revealed only minor benefit to the latter and only in some data sets. 
    
 
 
 
Table 1.  Range of average hydroperiod in days between 1996 and 2006 at Trexler’s 

long-term monitoring sites.  There were 6 sites in Shark River Slough, 3 in Taylor 
Slough, and 11 in Water Conservation Areas 3A and 3B.  Averages are over the 
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10-year interval and minimum and maximum are the shortest and longest average 
annual hydroperiods at the sites where aquatic consumer data were collected.  

 

 
 
The data were fit to three distinct areas with different frequencies of dry down, Taylor 
Slough (high), Shark River Slough (intermediate), and Water Conservation Areas 3A and 
3B (low).  There are presently six sets of parameters, total densities of fish in the three 
regions and density of Bluefin Killifish (a species that is especially sensitive to 
hydrologic conditions) in each of the three regions.  We will also look into the possibility 
of separating WCA 3A and 3B into two separate regions. 
 
The logistic equations will be embedded into the same model infrastructure that drives 
the HIE constraint. The field sites may be classified as three different indicator regions 
representing three different dry down frequencies or various individual cells in the 
landscape may be classified according to dry down frequency.  At least initially, both the 
Total Fish and the Killifish will be computed. 
 
The Trexler Equation follows. Table 2 provides the initial parameterization for the three 
areas and two different indicators. 
 
LOG(TOTFISH +1)=K/(1+((K-Y0)/Y0)*EXP((-r*DSLDD))) 
 
Where: 

DLSDD is days since last dry down 
r is the growth constant 
TOTFISH is the total fish density (number) per meter2   
K=asymptotic density 
Y0=Y intercept 

Maximum  

Areas 3A & 3B 
Shark River  
  Slough 

Taylor  
Slough 

Water  
Conservation  

Minimum 306 244 318 
362 357 365 

Region 
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Table 2.  Parameters from Trexler Logistic Regression for 3 spatially distinct regions for 
both total fish density and density of Bluefin Killifish. 
 Taylor Slough Shark Slough WCA 3A/B 
Parameter Total 

Fish 
Killifish Total Fish Killifish Total Fish Killifish 

K 2.625 1.582 2.757 1.644 2.901 1.491 
R 0.003 0.010 0.006 0.007 0.097 0.006 

D0 1.08 0.077 1.486 0.232 0.300 0.401 
 
 
 
Figure 1 shows the positions of the Trexler monitoring sites.  Figure 2 shows the cells 
used by the older Fish HSI for comparison.  Figures 3a-c shows recovery since last dry 
down over time for total fish in all three areas (Table 1).  Figure 4 is a demonstration run 
of the new Trexler model.  The range is 3.4-7.4 fish/m2 where greens are low values and 
reds are high values.  It is not meant as a scientific report by any stretch, it is simply a 
proof of concept and speed test.  The HIE Landscape was seeded by the Trexler logistic 
equations using the parameters representing total fish in Shark River Slough.  The code 
does just two things, calculate the days since last dry down, and thereby fish density, and 
the sum over time of the fish density.  This was the simplest implementation for a quick 
demo.  The map shows the result from the SFWMM Verification run 1996-1997. 
Approximately 77,000 cells are processed per day and the one year run took 15 seconds. 
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Figure 1 Trexler monitoring sites 
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Figure 2 Cells (shaded) used by Fish HSI 
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Figure 3a Total Fish recovery since last dry down in Taylor Slough 
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Figure 3b Total Fish recovery since last dry down in Shark Slough 
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WCA 3A/B
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Figure 3c Total Fish recovery since last dry down in WCA 3A/3B 

 
 

 
Figure 4 Demonstration of Trexler model – red tones represent the highest values, green 
the lowest 
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1.1.1 DeAngelis, Donalson, Trexler  (DDT) trophic food web model 
 
This model is presently in development.  Unlike the previous model, DDT is a process 
driven model.  Biomass moves up and down the food chain from predation and deaths.  
Also, movement of all represented species/guilds is explicit with changes in water depth.  
This represents a sort of rescue effect, where dried out cells do not start barren when 
reflooded, but rather new colonists arrive with the increasing water. 
 
 

 
Figure 5  Conceptual Ecological Model of the DDT model.  N=Nutrients, D=Detritus, 
P=Periphyton, I=Invertebrates, Cray=Crayfish, F1=Periphyton feeding fish, F2 and 
F3=Invertebrate feeding fish, Pisc= Piscivorous fish.  A (work in progress) document 
that describes the present version of the equations and parameters comprising the model 
is available by request. 

 

1.2 Assessment Parameter and Target 
Continued field work by Dr. Joel Trexler’s FIU research group will provide assessments 
and comparisons of model results and aid in the refinement of both models being used for 

N 

P D 

I 

F1 

Pisc 

F2 F3 Cray 
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this performance measure.  Funding for Dr. Trexler’s research was provided under 
Cooperative Agreement J5284060020, "Synthesis of Existing Data on Aquatic 
Communities in Everglades National Park in a Framework for Ecosystem Assessment 
and Evaluation” through the CESI program.   
 
Justification 
Fishes are the most abundant vertebrates in the Everglades and Big Cypress ecosystems 
of southern Florida.  The small-bodied species, particularly livebearers and killifishes, 
dominate the community by numbers.  They constitute an ecosystem component whose 
biomass is the major energy resource for higher trophic levels, especially wintering and 
breeding wading birds (Ogden 1994, Crozier and Gawlik 2003).  Systematic, human-
induced changes in hydrology over the last several decades have altered hydroperiods in 
most wetland areas, thereby diminishing this fish forage-base or changing the pattern of 
its availability.  Lack of sufficient biomass and availability of prey is thought to be a 
major cause in the decline of wading bird nesting at traditional Everglades' rookeries 
(Ogden 1994), and recovery of historic fish productivity is a primary goal for restoration 
of southern Florida wetlands (Ogden et al. 2003).   
 
The strongly seasonal rainfall pattern of this region creates a cycle of wet and dry 
seasons.  Because of the flat landscape, relatively small differences in mean water level 
amplify into large differences in the amount of wetted area and flooding duration, which 
affect many plant and animal communities.  The wetland small-fish community is 
strongly influenced by seasonal hydrologic fluctuations (Loftus and Kushlan 1987, 
Trexler et al 2002).   
 

3.1 Relationship to Conceptual Ecological Models 
Abundant large vertebrates and aquatic prey bases are listed as a defining ecosystem 
characteristic in the Total System Model (Ogden et al 2005) and marsh fishes are 
identified as key ecological attributes of that defining characteristic.  A number of aquatic 
trophic levels are included as ecological attributes in the Everglades Ridge and Slough 
Conceptual Ecological Model (Ogden 2005).  This performance measure is currently 
focused on a subset of both the Total System and Ridge and Slough models  (marsh 
fishes). 

3.2 Relationship to Adaptive Assessment Hypothesis Clusters   
3.2.1 Greater Everglades Hypothesis Cluster – Predator-Prey Interactions of Wading 
Birds and Aquatic Fauna Forage Base 
The collapse of wading bird nesting colonies in the southern Everglades is attributed to 
declines in population densities and seasonal concentrations of marsh fishes and other 
aquatic prey organisms. Restoration of natural hydrologic conditions will re-establish 
distributions of prey densities and concentrations across the landscape that in turn will 
support the return of large, successful wading bird nesting colonies to the southern 
Everglades. 
 
Hypothesis 1 – Aquatic Fauna Wet Season Prey Population 
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The wet-season density, size structure, and relative abundance of marsh fishes and other 
aquatic wading bird prey are directly related to the time since the last dry-down and the 
length of time the marsh was dry. Aquatic prey populations are further affected by 
salinity in coastal ecotones and by site nutrient status. Responses are non-linear and 
species specific. 
 
Hypothesis 2 – Aquatic Fauna Dry Season Prey Concentration 
The concentration of marsh fishes and other wading bird prey into high-density patches 
where wading birds can feed effectively is controlled by the rate of dry-season water 
level recession and local topography/habitat heterogeneity. 

Evaluation Application 

4.1 Evaluation Protocol 
The Everglades is a system adapted to constant flooding followed by dry-downs, and 
many of the species are dependent upon that cycle, including the wading birds that 
depend on the fish populations.  Therefore, fish density alone is not sufficient to define an 
evaluation protocol for aquatic species in the Greater Everglades system.  Instead, it must 
be a combination of fish density, water timing, and water depth. 
Fish Density: Fish density should be maximized given the constraints on water timing. 
Timing:  The changes in water should be synchronized with the nesting season of the 
wading birds.  Initially this will be January 1 to July 15, as is the default in the ATLSS 
SESI Wading Bird model. 
 
Water Depth: Although hydroperiod is a favored evaluation parameter for many 
Everglades performance measures, it is not appropriate for fish evaluation.  Deeper water 
provides more total fish biomass with the same density.  The measure of fish density is 
two dimensional, but the deeper water in the wet season water provides much higher 
densities of fish for wading birds during dry downs.  Therefore, water depth will be used 
as one of the evaluation protocols.  Water in a range of 5-35 cm. during the nesting 
season is the initial target.  However, this may be updated as more work is done on the 
Wading Bird performance measure.  

4.2 Normalized Performance Output 
The exact format of the output has yet to be developed.  However, the final output will be 
done by post processing the data.  In addition, triggers will be included in both the model 
and the post processing tools to flag any large discrepancies either in space or time.  This 
will ensure that scientists are aware of any critical differences across space or time that 
might be lost during later averaging. 

4.3 Model Output 
Both models will provide output at a 500 meter2 over a subset of the SFWMM cells.  One 
possible choice is the same set of cells used in the present Fish HSI.  Another is to 
categorize all the cells as either high, intermediate, or low frequency dry down and then 
assign the appropriate parameters accordingly.  As much data as is reasonable will be 
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provided as model output because this provides better input for post processing efforts 
and makes data mining much easier in the event of anomalous output. 
4.3.1 Trexler Model 
Daily fish density/m2. 
4.3.2 DDT Model 
Daily biomass estimations of the components shown in Figure 5.  

4.4 Uncertainty 
The growth dynamics of small fish populations under static conditions is relatively well 
understood. However, under the seasonally varying hydrology of the Everglades, where 
the amount of flooded area can change drastically with time, and where both the resource 
base of small fishes and the effects of interactions of small fishes with pisciverous fishes 
is difficult to assess, there is a high level of uncertainty in the predicting absolute values 
of fish population and biomass densities.  The fish dynamics are also sensitive to the 
errors in both the water elevation and the reference elevation.  This uncertainty is reduced 
and the performance measure provides very useful information when different scenarios 
are compared, the metrics aggregated into averages and when the general spatial patterns 
are considered.   
 

MAP Module and Section 
Greater Everglades Module Section 3.1.3.11 

Assessment Approach 
The strategy for the integrated assessment of wading bird/aquatic fauna predator prey 
relationships is to annually track the production of aquatic fauna populations during the 
wet season, the concentration of those populations during the subsequent dry season, and 
distribution and size of wading bird nesting colonies in response to the prey populations 
(RECOVER 2007). 
 

Evaluation Tools Needed 
Two evaluation tools are proposed, as detailed in section 1.1, the Trexler Fish 
model and the DDT aquatic food web model.  In addition, software for post-
processing the raw data will be developed.  

Assessment Tools Needed 
None have been identified. 
 
 
Working Group Members 
Douglas D. Donalson 
NPS South Florida Ecosystem Office 
950 N. Krome Avenue 
Homestead, Fl 33030   
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U. S. Geological Survey, Florida Integrated Science Centers 
Address:  Department of Biology, University of Miami 
P. O. Box 249118, Coral Gables, FL  33124 
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C. Hydrological cycles, management and assessment 

To investigate the patterns and periodicity in the rainfall cycles, we analyzed time 
series of rainfall data (1895-2006) from four rainfall gauges in Everglades National Park.  
Two of the gauges, Forty Mile Bend (FMB) and Royal Palm (RPL), capture daily rainfall 
estimates from 1949 to 2006.  The other two gauges, regional estimates for Southeast 
Everglades (SE) and the Southwest Everglades (SW), are cumulative monthly rainfall 
data from 1895 through 2004.  We took the average of the rainfall gauges that were 
collected on the same timescale (avg. daily estimate for FMB and RPL, and the avg. 
monthly for SE and SW) to get two estimates of the regional monthly rainfall for the 
Everglades.  In previous analyses we found that interpretable temporal patterns in rainfall 
do not emerge until the data are aggregated across multi-year temporal scales.  In this 
analysis, patterns in rainfall tended to stabilize at cumulative daily/monthly rainfall over 
the previous 5 years.  These patterns are illustrated in Figs 1 and 2.  Because there are 
only a few readily apparent rainfall cycles in this time series, indicated by a trough-peak-
trough sequence, we deemed that qualitative assessments were adequate to describe these 
data.  In this time series, the general trend in rainfall cycles vary from about 7 to >14 year 
cycles.  This suggests that our target period (1993-1999) was shorter than historical 
rainfall cycles, and may have captured only one part of the rainfall cycle that is currently 
underway.  Additionally we found that in the assessment period there is a marked 
departure in our two rainfall estimates.  This departure is most likely because there are 
numerous missing rainfall gauges in this analysis.   

 
Our results from this analysis should be interpreted with caution because we did 

not have long term rainfall data for all of the gauges used.  Also, we left out rainfall 
estimates from 1 of the regions in our study (Water Conservation Areas 3A and 3B) 
because we did not have long-term rainfall data from immediately upstream.  Our goal 
here is to illustrate general trends in natural processes and relate them to the 
implementation of water management actions. 
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Fig. 1.  Time series for the daily 5-year cumulative sum of rainfall (inches) from 1905 to 
2006.  The black line corresponds to the average of FMB and RPL, and the red line 
corresponds to the average of SE and SW. The Target period labeled TAR (1993-1999), 
and assessment period is labeled ASSE (2000-2006). 
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Fig. 2.  Time series for the daily 5 year cumulative sum of rainfall (inches) from 1905 to 
2006.  The black line corresponds to the average of FMB and RPL, and the red line 
corresponds to the average of SE and SW. The Target period is highlighted in red (1993-
1999), and assessment period is highlighted in green (2000-2006). 
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D. Modeling Temporal Autocorrelation in Time-Series Data:  A Cautionary Note 
 
Overview and Methodology 
 In time-series analysis it is generally the case that observations taken across time 
are correlated to some degree (samples taken close in time tend to be more similar than 
those taken further apart in time).  This phenomenon is described as serial autocorrelation 
and is thought to be an indication of a missing predictor correlated with the dependent 
variable that varies through time (Neter, Wasserman, and Kutner 1990).  An indication of 
serial autocorrelation is when there are systematic patterns in the residuals through time, 
suggesting either positive (more runs of consecutive residuals above or below zero than 
expected due to chance) or negative autocorrelation (too many alternating positive and 
negative fluctuations about zero than expected due to chance).  When present, this 
phenomenon presents a problem because it violates assumptions of traditional statistical 
theory [Ordinary Least Squares (OLS)] that observations are independent of each other 
[i.e., off-diagonal estimates (covariance among observations) in the variance-covariance 
matrix are assumed to be zero].  A solution to this problem is to take into account serial 
autocorrelation by estimating the covariance of observations through time.  This solution 
generally requires the use of maximum likelihood methodology to estimate the model 
parameters.  The maximum likelihood approach to estimating population parameters is an 
iterative technique that can solve for fixed (and random) effects by explicitly modeling 
the structure of the variance-covariance matrix, and the probability distribution.  There 
are a variety of statistical programs that allow practitioners to model their data and 
correct their estimates for autocorrelation in time-series data.  Unfortunately, this 
methodology, while simple to implement, is subject to assumptions of the algorithms 
employed and may lead to unexpected and possibly misleading results. 
  
 An assumption underlying the theory for estimating autocorrelation parameters is 
that the observed data are a function of previous error terms in addition to a “disturbance” 
term.  Failure to account for lags in a response variable because of autocorrelation may 
create a situation where ordinary least squares (OLS) regression under-estimates 
variance, leading to biased parameter estimates.  When measures are taken to control for 
autocorrelation in an analysis the results can appear to exacerbate the problem (i.e., the 
residuals appear even more correlated through time), however the underlying theory 
assumes that adjusting for autocorrelation will provide more accurate estimates of the 
“true” population parameters.  Our analyses focus on dependent variable that could be 
expected to demonstrate temporal autocorrelation because of resampling the same 
population of aquatic animals over time.  Thus, modeling temporal autocorrelation is an 
important part of our statistical analysis.  In this section we report a potential source of 
bias created by use of a commonly employed statistical method to model autocorrelation.  
We report analysis with a commonly used program (SAS mixed procedure), though we 
expect that other programs (R, for example) are likely to demonstrate the same problem 
we illustrate.  We are not aware of any documentation alerting data analysts of the 
problem we illustrate, though SAS does include options that can overcome it.  Probably, 
very experienced statisticians would not be led astray by the particular issues we report, 
but non-statisticians analyzing data very well could be. 
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 To explore the effects of different options to model temporal autocorrelation in 
ecological data, we modeled the net replacement rate (Ro) for several species of fish with 
three covariance structures:  1) constant variance-covariance structure that is estimated 
assuming that covariance among observations decrease as a function of time;  2) 
heterogeneous variance-covariance structure that estimates different variance and 
covariance parameters for different groupings of data, and assumes that covariance 
decreases as a function of time; and 3) observations are independent across time (i.e., 
covariance is zero).  For option 2, we had two groups:  prior to a region-wide drought and 
after the drought.  We estimated the covariance parameters (1 and 2) using a spatial 
power law function:  Covariance [Yt1, Yt2] = σ2 x ρ|t1-t2|, where ρ = autoregressive 
parameter (|ρ|<1) and σ2 = variance.  This function is a generalization of the first-order 
autoregressive (AR1) model, and permits modeling of autocorrelation in time-series that 
have unequally spaced observations (Littell et. al 2006).  Using these model structures, 
we estimated the following parameters to describe Ro: 
 

a) Response variable (natural log transformed):  Ro=Nt/Nt-1  
b) Endogenous factors (natural log transformed):  Nt-1, Nt-2, Nt-3 
c) Exogenous factors:  the number of days since marsh flooding (DSF, DSF2), and 

rate of marsh expansion/recession (EXP/REC) 
 
 Our model was Ro= βo + βNt-1 + βNt-2 + βNt-3 + βDSF + βDSF

2 + βEXP/REC, with the 
variance-covariance matrix (Σ) equal to:  Σ= σ2 x ρ|t1-t2|; Σ= σ2

i x ρi 
|t1-t2|, where i=1 in the 

pre-drought period, and i=2 in the post-drought period; or Σ= σ2I.   We used the Akaike’s 
Information Criterionc (AICc; AIC adjusted for small sample sizes) as an indication of 
overall model fit (models within 7 AICc’s of the best model have equal empirical 
support).  As an additional measure of model fit we estimated the amount of variance 
explained by the linear regression relationship between the observed data and the model 
predictions (Ad hoc R2).    
  
Results and Discussion 
 Overall, there were similar levels of empirical support for all model structures.  
According to the AICc fitstatistic, models with a Spatial Power parameter using a 
separate covariance structure for both the pre-and post-drought period had the most 
empirical support (74 models), followed by the Spatial Power structure assuming 
constant covariance structure across the time-series (64 models) and finally the models 
with no covariance structure (61 total models).  Given that our data are were collected in 
a time-series format, the number of times that models assuming no covariance structure 
had equal or more empirical support as models with explicitly modeled covariance 
support was relatively large.  We concluded that the AICc statistic does not adequately 
discriminate among these models, so we estimated the fit of the model predictions to the 
observed data using linear regression (OLS R2) and compared the R2 among models with 
equal empirical support (i.e., within AICc of the best model). 
 
 We found that among models with equal empirical support, those assuming 
independent covariance structures generally had a much higher R2 than those including 
temporal autocorrelation in the covariance structure.  The overall average difference in R2 
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between independent and dependent autocorrelation models ranged from 0 to 0.26 with 
an average difference of about 0.03.  Some discrepancy in R2 among models is expected 
because the statistical model without explicit covariance structure should have parameter 
estimates that converge on those estimated by OLS; and OLS fits the data by minimizing 
the sums of squared error, thereby maximizing the R2.  However, discrepancies as large 
as 0.26 for models with essentially equal empirical support according to AICc values, 
suggests that there is an apparent lack-of-fit between the data and the model predictions 
for repeated measures models.  While, we appreciate that the statistical theory motivating 
analysis of repeated measures data is generally not focused on minimizing the sums of 
squared deviations of the model predictions from the observations per se (as in OLS), we 
think the sometimes large discrepancy in R2 values among the models suggests that in 
certain circumstances maximum likelihood estimation assuming covariance is a 
decreasing function of time can lead to dramatically different predictions than the 
maximum likelihood estimation (and implicitly OLS) that assumes that observations are 
independent.  This discrepancy indicates a systematic lack-of-fit for models that estimate 
temporal autocorrelation.  To further explore this we plotted the predicted and observed 
values for the different model types. 
 
 When we examined the relationship between the model predictions and the 
observed data through time, it became clear that there were many instances where the 
model predictions diverged greatly.  An example of this phenomenon is illustrated in 
Figures 1 and 2.  These plots illustrate that the independent covariance model matches the 
observed data much more closely than either of the models that explicitly estimate 
parameters for covariance.  In Figure 1, there are the periods both at the beginning of the 
time-series and at the beginning of 2004, where the repeated measures predictions are 
consistently greater than the observed data, indicating a much more biased fit than the 
OLS prediction.  Further we found evidence that there are instances where there may be a 
change in the covariance structure through time.  Figure 2 illustrates an instance, where 
for one of our study species (least killifish) the predictions for the model that assumes a 
constant covariance structure across the time-series clearly has consistently higher 
predictions than the observed data following a 2001 drought.  However, both the model 
assuming observations are independent and the model that has different covariance 
structure for pre- and post drought time periods matched the data much more closely. 
         
 In this study, we came to two general conclusions about modeling temporal 
autocorrelation in time-series data.  Our first conclusion is that explicitly modeling 
autocorrelation in time-series data is not always necessary, and may actually lead to 
unexpected results.  We found that using models that estimate parameters for 
autocorrelation can generate predictions that systematically predict values that are much 
higher or lower than the observed data.  Further, these model predictions have a poorer fit 
to the observed data than a simpler model assuming independent errors.  It appears as 
though the more complex models are laden with assumptions about the data generating 
process that are not as transparent as one would like when trying to apply statistical 
models in an applied context.  This result may be due to aspects of the way our data were 
gathered and the type of analysis we used.   
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 All of the predictors (5) in our models vary on the same time scale as the 
dependent variable.  We have several variables that correspond to population cycles 
(endogenous variables) and variables that vary across seasons and years (exogenous 
variables).  It is clear that the inclusion of these variables permits an adequate modeling 
of fish population dynamics.  Additionally, our sampling protocol is structured such that 
there are 3 replicates per unit time for each spatial location.  This spreads the replicates 
across space and reduces the chance that unmeasured variables simultaneously affect 
each of the replicates, reducing the risk of serial autocorrelation.  Further, the structure of 
our analyses actually account for autocorrelation by inclusion of time-lagged independent 
variables.   
 
 Our second conclusion was that the structure of the covariance and variance can 
vary through time.  This is clearly illustrated in Figure 2, where the model that has 
constant covariance structure systematically predicted densities that were much greater 
than the observed data, while a covariance structure estimated different parameters for 
pre and post drought was more consistent with the observed data.  While it may not be 
surprising that the covariance structure changed following an extreme event such as a 
region-wide drought, we think that it is important to point out to those of us practitioners 
who commonly assume that the structure of the variance-covariance matrix does not 
change through time (possibly without realizing it because we include the AR1 option as 
a routine).  In this instance, assuming a constant variance-covariance matrix lead to 
misleading predictions, as well as missing an important biological phenomenon of 
changing covariance structure coinciding with an environmental perturbation.  
  
 With the advent of statistical programs that make it easy to model complex 
ecological data with the click of a button, it is easy for practitioners to fit models to data 
that are more complex than are warranted in the data at hand.  We think that this stems 
from a fundamental philosophical difference between OLS methods assuming no 
autocorrelation and methods that assume that population level autocorrelation can be 
detected in sample data.  In our analyses it seems clear that estimating parameters to 
account for autocorrelation can produce predictions that systematically over or under 
predict the observed data.  However, these apparently biased predictions are consistent 
with statistical theory on time-series data, in that the theory assumes that there is an 
unmeasured factor in the data that influences the sample data in such a way that it causes 
OLS to incorrectly estimate parameters and underestimate the overall error.  Oftentimes, 
the default response for a practitioner when confronted with modeling a time-series 
dataset is to always include an estimator of autocorrelation   
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Figure 1.  A) Time-series of observed and predicted data from all of our models for 
eastern mosquitofish at site WCA03A.  Spatial power and spatial power drought refer to 
the repeated measures analyses with a constant covariance structure and a variable 
covariance structure respectively; no repeated measures refers to the model assuming 
independent observations.  B)  Time-series of residuals graph from each model type for 
eastern mosquitofish at site WCA03A. 
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Figure 2.  A) Time-series of observed and predicted data from all of our models for least 
killifish at site SRS06A.  Spatial power and spatial power drought refer to the repeated 
measures analyses with a constant covariance structure and a variable covariance 
structure respectively; no repeated measures refers to the model assuming independent 
observations.  B)  Time-series of residuals graph from each model type for least killifish 
at site SRS06A. 
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E. Regional Pool Size Analyses:  Methods and Results 
 

 To evaluate aquatic animal responses to marsh drying, we asked Troy Mullins, 
South Florida Natural Sciences Center, Everglades National Park, to create a hydrology 
parameter that quantifies the area of marsh that is inundated with water (regional pool 
size).  This parameter is derived from the Everglades Depth Estimation Network (EDEN) 
hydrology data (USGS fact sheet citation).  EDEN hydrology data are estimated from a 
model that divides the Everglades landscape into a grid that is composed of 400 m2 
“cells”.  The regional-pool size is determined by using the locations (cells) of each of our 
monitoring sites and calculating the number of cells within a basin that are above a depth 
threshold (e.g. 0 cm).  If a cell within a basin is linked to a monitoring site by a 
contiguous linkage of cells above the depth threshold, then the cell receives a value of 1, 
otherwise the cell gets a zero (see Figure 1 for a detailed map of each basin).  The cells 
are tallied for each monitoring site to obtain the regional pool size estimate from 2000-
2007 (EDEN begins in 2000).  Unfortunately, this period of time is shorter than the 
records for our long-term aquatic biota and hydrological monitoring database (1996-
present).  Our hydrological data were derived by fitting regression relationships at each of 
our sites between the measured depth and nearby stages to obtain daily water depth 
estimates.  To estimate the regional pool size prior to the onset of EDEN we use our daily 
water depth estimates from 1996 through the present to predict the regional pool size.  
 
 Due to local ground elevation variability at a scale less than 400 m2, EDEN water 
depth estimates are not as accurate as our estimated water depths at our 100 m2 sampling 
sites.  This presents a challenge to our modeling effort because the regional pool size 
parameter is generated from EDEN depths.  To adjust for the difference between EDEN 
water depths and our estimated daily water depths, we calculated the average difference 
between the EDEN water depth prediction and the measured water depths at our sites 
(measured depth-EDEN depth).  We then took this difference and subtracted it from our 
estimates of daily water depths so that they were more similar to the EDEN depths.  This 
new adjusted water depth value was then used to predict regional pool size. 
    
 Because there are a maximum number of possible cells in each basin, and each 
has a minimum of 0, models based on traditional linear least squares theory are 
inadequate to describe the relationship between water depth and regional pool size.  
Logistic regression permits modeling a response variable that is bounded at one and zero.  
To make the regional pool parameter amenable to logistic regression analysis, we 
calculated the proportion of maximum regional pool size response variable by dividing 
regional pool size by the total number of possible cells in each basin; this creates a 
response variable that has a minimum of zero and a maximum of 1.  To predict regional 
pool size we split our data into three regions:  Shark River Slough (SRS), Taylor Slough 
(TSL) and the Water Conservation Areas (WCA); and used the water depths from sites 
within a given region to predict the regional pool parameter at each site.  Many of the 
intra-regional site water depth estimates have very high correlation coefficients (>.98), 
which can yield unstable parameter estimates in multiple regression.  To distill the 
variation among predictors into orthogonal components (axes) we used a Principal 
Components Analysis (PCA).  In turn we used these PCA axes as predictors in the 



 57 

logistic regression analyses.  Once we obtained the logistic regression parameter 
estimates for each axis, we used these parameters to predict the regional pool size across 
the entire time span of our study (1996-2008).  
 

Results 
 
 The PCA analysis revealed that the majority of the variation in the data was well 
described by the first 2 axes:  96.8% (SRS), 99.9% (TSL), and 96.5% (WCA).  However, 
when we used these axes as predictors in the logistic regression, they were not always 
able to capture the rarer occurrences of values close to zero.  In order to more completely 
describe the lower end of the regional pool size gradient we included all axes that 
explained greater than or equal to .01 % of the variance.  This resulted in using 5, 3 and 
10 PCA axes for SRS, TSL and the WCA regions respectively.  We then used these axes 
in the logistic regression analyses to predict the proportion of maximum regional pool 
size. 
 
 Overall the logistic regression analyses aptly described variation in the proportion 
of maximum regional pool size.  The likelihood ratio statistics for the parameters (PCA 
axes) in all regions (SRS (5 parms), TSL (3 parms) and WCA (10 parms)), at our sites 
indicated that almost all of the parameters were different than zero (P<.05).  The 
likelihood ratio statistic for PCA axis 10 at site 09A in WCA, indicated that it was not 
different was zero and was removed from the model.  Diagnostic plots (observed vs. 
predicted and residuals vs. predicted) suggested that, in general, the models captured 
variation in the response variable well; however there were instances on the lower end of 
the gradient (esp. near zero) where the model did not describe the data as well.  As 
illustrated in Figure 2, above zero there is generally close to a one-to-one relationship 
between the observed and predicted data, however the model becomes more positively 
biased when the observed data are close to zero.  While this bias is potential cause for 
concern, examination of the relationship between the observed and predicted values 
across time revealed that the model captures the general decreasing trends in the data as 
the response variable approaches zero (Figure 3).  Further, our interest lies in relating 
aquatic animal density to general trends in regional pool size and we are not as concerned 
with exact predictions.  Therefore the bias exhibited these models is not of great concern 
for our purposes.  Calculation of the strength of the linear relationship between the 
predicted values and the observed values using a linear least squares model further 
supported the adequacy of the model.  The coefficient of determination, on average, 
indicated that the models explained between approximately 86% and 93% of the variation 
in the data (see appendix for R2 estimates for each model).  Although this analysis 
violates some of the assumptions of linear least squares, namely that the independent 
variable is measured without error, we believe that these statistics provide a more 
intuitive metric for measuring model fits than standard fit statistics used for generalized 
linear models. 
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Figure 1.  EDEN basins used to calculate regional habitat area for each day we sampled.  
An algorithm was created that counted contiguous cells with depth greater than 5 or 10 
cm starting with the cell where we sample.  This created a time series of habitat area for 
the duration of our study.
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Figure 2.  Plot of the observed data versus the model predictions at site TSB located in 
the Taylor Slough region.  In this graph we converted the model predictions to the 
original scale of the data (# cells) by multiplying by the maximum number of cells in a 
basin.  The black line corresponds to the expected relationship if the predicted values 
perfectly describe the observed data (i.e. a one-to-one relationship). 
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Figure 3.  Time series plot of the observed data and the model predictions at site TSB 
located in the Taylor Slough region from 2000-2007.  In this graph we converted the 
model predictions to the original scale of the data (# cells) by multiplying by the 
maximum number of cells in a basin. 
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Appendix 1.  Model fits by site. 
 
Region Site Plot R2 Region Site Plot R2 Region Site Plot R2

SRS 06 A 0.896 TSL CP A 0.944 WCA 01 A 0.932
SRS 06 B 0.898 TSL CP B 0.946 WCA 01 B 0.932
SRS 06 C 0.881 TSL MD A 0.904 WCA 01 C 0.932
SRS 07 A 0.876 TSL MD B 0.910 WCA 02 A 0.847
SRS 07 B 0.883 TSL MD C 0.911 WCA 02 B 0.847
SRS 07 C 0.876 TSL MD D 0.927 WCA 02 C 0.847
SRS 08 A 0.857 TSL MD E 0.902 WCA 03 A 0.909
SRS 08 B 0.871 TSL TS A 0.949 WCA 03 B 0.903
SRS 08 C 0.871 TSL TS B 0.942 WCA 03 C 0.909
SRS 23 A 0.865 TSL TS C 0.950 WCA 04 A 0.932
SRS 23 B 0.861 TSL TS D 0.905 WCA 04 B 0.932
SRS 23 C 0.865 TSL TS E 0.945 WCA 04 C 0.932
SRS 37 A 0.832 WCA 05 A 0.932
SRS 37 B 0.849 WCA 05 B 0.932
SRS 37 C 0.812 WCA 05 C 0.932
SRS 50 A 0.801 WCA 06 A 0.845
SRS 50 B 0.799 WCA 06 B 0.845
SRS 50 C 0.799 WCA 06 C 0.845

WCA 07 A 0.772
WCA 07 B 0.767
WCA 07 C 0.784
WCA 08 A 0.693
WCA 08 B 0.818
WCA 08 C 0.872
WCA 09 A 0.923
WCA 09 B 0.917
WCA 09 C 0.917
WCA 10 A 0.930
WCA 10 B 0.925
WCA 10 C 0.925
WCA 11 A 0.887
WCA 11 B 0.887
WCA 11 C 0.897
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F.  Seasonality in Selected Species from the Everglades 

 Our ecological assessments generally focus at inter-year variation before and after 
a change in management.  However, accounting for seasonal patterns of adult population 
dynamics and recruitment of juveniles is obviously important in properly interpreting 
multi-year impacts.   In this section, we focus on changes in fish density across seasons 
by examining consistency of these patterns across years.  We modeled juvenile and adult 
density separately for each species considered.  To explore seasonal and yearly patterns 
we used two different parameters:  1) Wateryear:  May through April; 2) Sampling 
Season:  1=July, 2=October, 3=December, 4=February, and 5=April.  Because of the 
spatial complexity of our data, we analyze temporal trends separately for each spatial unit 
(Sites; replicates=plots, approx. 3 per sampling period).  We used 10 hierarchical 
statistical models to test the questions about fish population dynamics.  For models 1-9 
season is treated as continuous.  In model 10, season is treated as categorical. 
 
1) Intercept:  1 parameter 

2)  Intercept + Season:  2 parameters 

3)  Intercept + Season + Season2:  3 parameters 

4)  Intercept + Wateryear:  12 parameters 

5)  Intercept + Wateryear + Season:  13 parameters 

6)  Intercept + Wateryear + Season + Season2:  14 parameters 

7)  Intercept + Wateryear + Season + Wateryear x Season:  24 parameters   

8)  Intercept + Wateryear + Season + Season2 + Wateryear x Season:  25 parameters 

9)  Intercept + Wateryear + Season + Season2 + Wateryear x Season + Wateryear x 

Season2:  36 parameters  

10)  Intercept + Wateryear + Season(Wateryear):  60 parameters 

 

We used Akaike’s Information Criterion to evaluate the fit of each of these models to the 
data.  We then ranked the models according to this fit statistic and calculated the AICC 
differences:  AICCmodel i - AICCbest model.  We used the AICC differences to derive Akaike 
weights for each of the models.  Akaike weights are calculated as follows: 
 
Model Likelihood=exp(-1/2 x (AICC Difference)), and the Akaike weight=Model 
Likelihoodi/Summation of Model Likelihood for all models in the set (Burnham and 
Anderson 1998).   
 
We used these Akaike weights (w) to compute the weight for each model prediction 
(Theta) according to the strength of evidence for that model, calculate the “model 
average” prediction (Theta*) by summing all of the weighted predictions across models 
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for each species, age-class and location.  The model averaging equation for each of the i 
models is as follows: 
 
Theta*=Summation across all models in the set of wi*Thetai.  We also calculated a 
pseudo-r2 value as an indication of model fit: 1-exp(-2/N*(-2 Log Likelihood of Model-2 
Log Likelihood of Intercept Only Model))/(1-exp(2/N*(-2 Log Likelihood of Intercept 
Only Model/-2))). 
 
 Ecologists commonly use ordinary least squares (OLS) theory to model their data 
and implicitly assume the response variable of interest is distributed normally, and that 
the variance is homoscedastic.  A battery of standard transformation is available to force 
non-normal data into a normal distribution in order to take advantage of the simplicity 
and available software for analysis of normally distributed dependent variables.  These 
analyses are readily interpretable and have a long history of use; however it is not 
uncommon for ecological data to fail meet normality assumptions, even after 
transformation.  Generalized linear models provide a flexible framework for explicit 
modeling of probability distributions, and allow comparison of models with different 
distributional assumptions (McCullagh and Nelder 1989).  Further, generalized linear 
models allow the inclusion of a linking function that links the systematic component 
(e.g., linear equation) to the stochastic component (i.e., the response variable on the 
original scale of the data).  Two important purposes of the linking function are:  1) 
transform additive model components to multiplicative on the original scale of the data, 
2) force the model to meet the assumptions of a given probability distribution.  For 
example, data that follow a binomial probability distribution must fall between zero and 
1; using the logit linking function forces the data to be bounded by 0 and 1.  In this study 
our focus is on count data, i.e., integer data that cannot be below zero.  Because of this 
structure, we chose to use the log linking function; this function prevents estimates from 
being less than zero, which is an impossible outcome for count data.  Using the log 
linking function we assume that fish density is distributed according to a Poisson process. 
   

We used a 12-year time series (1996-2007) of aquatic consumer data to identify 
robust seasonal patterns of juvenile and adult density at our study sites.  The data were 
gathered with a 1-m2 throw trap and standard sampling protocol carried out at 22 
monitoring sites in Taylor Slough (TSL), Shark River Slough (SRS), and Water 
Conservation Areas (WCA) 3A and 3B.  Samples were collected at each study site in five 
months of each year (July, October, December, February, April), yielding over 17,000 
community samples with over 250,000 fish records for describing relationships between 
biota and time.  Quantitative data on fish were recorded from all samples, along with 
environmental data on emergent-plant stem density, floating mat volume (periphyton and 
floating vascular plants and macroalgae), and water depth.  The methods, including 
estimates of sampling efficiency and evaluation of sources of bias, are described in 
several papers (Chick et al. 1992; Jordan et al. 1997; Wolski et al. 2002).  The study sites 
and sampling design are described in detail in other publications (Trexler et al. 2001, 
2003, 2005).  
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Missing data can greatly hamper seasonal analyses because of caps in the time 
sequence.  In Everglades aquatic fauna sampling, there are a variety of circumstances 
yielding missing data, many of which can be compensated for with minimal assumptions.  
For example, there are many instances in these data where the marsh was too dry to 
obtain a sample.  In these instances we used previously derived regression relationships 
to predict water depths at these sites.  If the water depth was <=5 cm we assume that the 
conditions are too stressful for fish and we input a zero for all of the study species.  In 
this case, the entry of zero seems quite reasonable to us.  Alternatively, there were 
instances where the marsh was too deep to sample, or the airboat trail was dry, but we 
know from our hydrological models that the site had water.  In these instances we assume 
that there are fish, but we do not have sampling data (a true missing datum).  In these 
cases and if only one observation from a time series is missing, we can use model 
predictions derived from the rest of the wateryear to predict fish density and avoid 
dropping the entire year of data.  In the latter instances we extrapolated from the 
regression line to predict missing data, therefore we screened data that were obviously 
unrealistic given the intra-year seasonal trends from further analysis.  If missing data 
were at the beginning or end of a time series, we excluded those cases because of the 
inability to interpolate reasonably. 
   
Results 
 
 We found that the pseudo-R2 and Akaike weights revealed marked inter-species 
and inter-age-class variation in the fit of models to the data.  As expected from statistical 
theory, on average, the pseudo-R2 value increased with increasing model complexity (i.e., 
the more parameters in the model the better the fit); it follows that the most complex 
model, fitting a separate parameter for Wateryear and for each season within each 
Wateryear for a total of 60 parameters, consistently yielded the highest mean pseudo-R2 
value across all of the response variables (Fig. 1).  For all of the response variables the 
largest change in pseudo-R2 generally occurred when during the transition from models 
that describe temporal variation using only parameters assuming a multiplicative 
relationship between season and fish density (3 parameter model) to models with a 
separate parameter estimate for each Wateryear (i.e., fitting a dummy variable to each 
year and estimating the intercept; 12 parameter model).  This suggests that fish 
population dynamics vary much more among years than across seasons, ignoring 
differences among years.  Following inclusion of the Wateryear parameters, the increases 
in pseudo-R2 by adding more parameters were generally more modest.  Because Akaike’s 
Information Criterion (AIC) takes into account the number of parameters in the 
estimation of model fit, the patterns in model fit according the Akaike weights were 
much different than those indicated by the pseudo-R2.   
 
 The mean Akaike weights for eastern mosquitofish models (both juveniles and 
adults) generally increased with increasing model complexity until the most complex 
model (60 parameter model), where it strongly declines (Fig.1).  The model with the 
highest mean Akaike weight for eastern mosquitofish adults was the 14 parameter model 
(Wateryear + Season + Season2 + Wateryear x Season) and for juveniles it was the 36 
parameter model (Wateryear + Season + Season2 + Wateryear x Season + Wateryear x 
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Season2).  The models with the highest weight for least killifish adults and juveniles were 
the opposite of those eastern mosquitofish:  the 14 parameter model described juvenile 
dynamics best, while the 36 parameter model best described the adults.  Flagfish 
juveniles were best described by the 13 parameter model, while the adults were best 
described by models ranging from 12 to 14 parameters.  The population dynamics of both 
juvenile and adult bluefin killifish were best described by the 14 parameter model.  When 
we used the Akaike weights to generate the model averaged predicted value we found 
that there was marked temporal, spatial, species and age-class differences in the 
predictions. 
 
 Although there was marked variation among years and sites, we found relatively 
consistent response profiles for all species and age classes.  To illustrate this we plotted 
the response profiles for eastern mosquitofish at one of our sampling sites across years, 
and at one of our sampling regions across sites (averaging across wateryears).  As 
illustrated in figure 2, adult eastern mosquitofish density generally increases as the season 
progresses although the rate of change varies across years and sites.  To estimate the 
general seasonal response profiles of each species and age-class, we calculated the mean 
and uncertainty (mean +/- 2 stdandard error) of the predicted values for each season over 
all years and sites.  Figure 3 illustrates that both eastern mosquitofish and flagfish 
juveniles are relatively high at the beginning of the year (July/October) and decrease 
throughout the rest of the year, while adults for both species increase early on and reach 
an asymptote towards the end of the year (February/April).  Further, eastern mosquitofish 
juveniles are predicted to be less than adults in April, while flagfish juveniles are 
predicted to be less than adults in both February and April.  Bluefin killifish juveniles 
have a hump shaped relationship between season and density increasing from July to 
December, and then decreasing thereafter; alternatively adults increase throughout the 
year.  Juvenile bluefin killifish are predicted to be lower than adults in April.  Of all our 
study species, least killifish have is the only species where throughout the entire year the 
adult catch is greater than the juvenile catch.  Our interpretation of this is that our 
sampling methodology is biased towards catching least killifish adults.  Therefore our 
estimates of juvenile least killifish are not representative of the actual populations of 
juvenile density in the marsh.     
 
 

 



 66 

Figure 1.  Model fit as a function of the number of parameters.  Increasing parameters 
increases model fit in each case, but the gain in complexity plataues around 12 for every 
species.  Blue points indicated Akaike Weights and red are Pseudo-R2.  Circles with solid 
lines are for adults and triangles with dashed lines are for juveniles.  
 

 

    



 67 

Figure 2.  Plot of predicted eastern mosquitofish fish density for each season for site 06 
across wateryears (panel A) and predicted fish density averaged across years for each site 
in the Shark River Slough region (panel B).  
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Figure 3.  Plots of fish density for each species and age-class averaged across sites and 
wateryears ( mean +/- 2 standard errors) for each season. EM = eastern mosquitofish; FF 
= flagfish; BK = bluefin killifish; LK = least killifish. 
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G. Hydrological Model Comparison Summary 
 
Overview 
 Most ecological analyses of aquatic habitats conducted for Everglades 
management and restoration are dependent on estimates of hydrological parameters that 
must be inferred from in situ gauges through a model.  In fact, the availability of high 
quality hydrological data at the proper scale of measurement is a limiting factor for much 
Everglades research.  For our long-term monitoring program, we have measured water 
depth at 64 different locations 5 times per year over a 12 year period. While useful, these 
spot estimates cannot permit estimation of key hydrological parameters, such as ‘days 
since reflooding’.  To get daily water-depth estimates we use observed water depth data 
to estimated regression relationships with depths from nearby hydrological gauges (we 
will refer to these estimates as our Modified Water Model for this report).  These 
regressions generally predict water depth well, most relationships having a R2 of >0.90.  
These predicted values are then used to generate various hydrological parameters that are 
used in our ongoing efforts to study aquatic animal communities.  State and Federal 
agencies have modeled Everglades hydrology at a different scales and time periods that 
are available for use by researchers.  Here, we evaluate the comparability of three such 
alternatives, the 2 mile by 2 mile management model of SFWMD, a 500m x 500m model 
taken from the 2 x 2 by Doug Donalson, and the USGS’s EDEN.  We use our Modified 
Waters model output as a ‘true’ estimate for our study sites and compare the performance 
of these alternatives to see which match most closely.  
  
 The SFWMD’s management model is a well-calibrated and widely used model 
for water management decision making.  It predicts water depth at a 2 mile by 2 mile 
spatial scale (2x2 model – one depth estimate per 2 mile by 2 mile grid cell).  While this 
scale is appropriate in a water management context, it smoothes over topographic 
variation that at the sub 2 mile scale that is widely considered to be ecological relevant.  
For example, discrepancies between the single large-scale estimate and local topographic 
relief can have important implications for aquatic animal communities because a change 
in water depth of a few centimeters can be the difference between persistence and local 
extirpation.  To address these and other concerns related to the coarse spatial scale of the 
2x2 model, Doug Donalson produced a modified version to predict water depths at a 500 
meter scale (500 meter model) by using high resolution topography.  Finally, the USGS 
has developed a new hydrological tool, the Everglades Depth Estimation Network 
(EDEN), which can predict water depths at a 400 meter spatial scale.  Past analyses have 
confirmed that EDEN predictions are within an advertised 10 cm resolution to our 
Modified Waters model predictions (after applying a local correction based on our in situ 
repeated measurements).   
 
 There limitations to use of each of these models in ecological research because of 
the timeframe over which they have been run.  The 2x2 and 500 meter models (here 
collectively referred to as the Donalson Models because he provided the 2x2 data to us) 
provide estimates from 1981 through the end of 2000, while the EDEN model begins in 
2000 and has estimates through the present.  Our monitoring data span from 1996 
through the present, spanning the coverage of both model types.  The first set of models 
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covers the first 4 years of our study, and EDEN covers the last 8 years of our study, with 
only 1 year of overlap between the models.  It has been suggested that the 500 meter 
model can be used to complement the EDEN data and predict depths prior to 2000.  
Because of local topographical variation, we “correct” all of the SFWMD model 
estimates by the difference between the observed and model predictions:  Corrected 
Depth=Model Prediction + {Mean per site (Observed Depth-Model Prediction)}.  This 
correction adjusts for local topographic variation at our monitoring sites. 
   
 In this paper we compare these three hydrological models to our observed data 
and our model to address the following questions: 
 

1.  Is the 500 meter model an improved estimate of water depths at a smaller 
spatial scale? 

2.  How do the predictions from the EDEN models compare with those of the 2x2 
and 500 meter models? 

3.  Do any of these models predict water depths at our monitoring sites as good, or 
better, than our than the Modified Waters model? 

 
Result Summary 
 
 We found that the 500-meter model does not markedly improve the fit of the 2x2 
model to the data from our monitoring sites.  The time series graph in Figure 1 illustrates 
that the 500-meter model and the 2x2 model are very similar throughout our time series; 
further the predictions do not fit the observed data as well as the Modified Waters model.  
When we used all of the hydrological models to predict observed depths from 1996 
through 2000, the overall average R2 was 0.93, 0.82, and 0.82 for the Modified Waters 
Model, the 2x2 model and the 500-meter model, respectively.  When we plotted a graph 
of output from 2x2 against the 500-meter model, there is clearly a very close relationship 
between the two models, with considerable overlap across the entire depth gradient 
(Figure 2).  However, there is increased variation in the correspondence of the predictions 
as the depth approaches zero, indicating that the 500 meter model may diverge from the 
2x2 at lower depths.  
  
 Although depth is an important factor shaping Everglades animal communities, a 
more critical parameter influencing their dynamics is the number of days since the marsh 
flooded following a drying event {Days Since Flooding (DSF); Depth<=5cm}.  In 
general we found that the DSF predicted by the 2x2 and 500-meter models were almost 
identical across all sites.  When there was deviation between the 2x2 and 500 meter 
models, there were both cases when the 2x2 matched more closely with the Modified 
Waters models (Figure 3A), and where the 500-meter matched more closely (Figure 3B).  
Further, as illustrated in the Figure 3 graphs, the 2x2 and 500-meter models oftentimes 
did not match well to the Modified Waters, model predicting either too few or too many 
drying events.  These results indicate that the 2x2 and the 500-meter model are usually 
almost indistinguishable from each other after correcting for local topographical 
variation.  Additionally, it is not clear which model would be preferable to modeling 
hydrological dynamics at our monitoring sites. 
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 The time series plots in Figure 4, illustrate the general patterns in the model fits of 
all of the hydrological models to the observed data in 2000.  In general we found a much 
closer match of the Modified Waters model and the EDEN model to the observed data 
than to the Donalson models.  Because there was only one year of data, and the Modified 
Waters model is generally the best predictor of observed water depth, we used the 
Modified Waters model predictions as a surrogate for observed data and derived the 
regression relationship between the Donalson and EDEN models, and the Modified 
Waters model. Consistent with the time series plots, we found that the EDEN models 
were a much better match to the Modified Waters depths than the Donalson models, with 
a mean R2 of 0.93 for EDEN and about 0.80 for both of the Donalson models.   
 
 
 
 
 
 
Figure 1.  Time series plot from 1996-2000 at site TSLCPA of the Modified Waters 
model, 2x2, and the 500 meter depth predictions, overlaid on the observed depth data. 
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Figure 2.  Plot of the 2x2 model predictions versus the 500 meter model depth 
predictions. 
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Figure 3.  Time series plot from 1996-2000 at sites SRS23B (A) SRS37A (B) of the 
Modified Waters model, 2x2, and the 500 meter DSF predictions. 
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Figure 4.  Time series plot of the year 2000 at site SRS50B of the Modified Waters 
model, 2x2, 500 meter, and the EDEN depth predictions overlaid on the observed depth 
data. 
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H. Aquatic fauna monitoring protocol: Data management QAQC 

 
1.  Lab Protocol for Error Checking Data Sets 
 
 Our lab protocol for data checking involves several steps that are aimed at 
minimizing the errors due to the transfer of data from “raw” hand-written data sheets to 
our database.  The first step in entering and checking data is for a technician to enter the 
data.  The data are then double-checked by a different technician and sent to the database 
manager.  The database manager then imports the spreadsheets into the Statistical 
Analysis System (SAS) and runs a series of error-checks to ensure integrity and 
consistency of the data.  Once these checks are completed, the new data are incorporated 
into the long-term database. 
 
 We have six different “data types” that are collected and stored in our long-term 
database.  The data types are as follows:  fish data, crayfish data, invertebrate & other 
vertebrate data, animal wet weight data, vegetation data, and physical data.  These data 
are entered by technicians in a simple format to minimize the inevitable errors that occur 
when transferring information from the raw datasheets to computer spreadsheets.  
Unfortunately, this simple format does not structure the data in a way that is amenable to 
further analysis and interpretation.  SAS offers an interface that permits importing and 
data manipulation via a high-level programming language.  This language has the 
capability to restructure the data into any form we require.  Additionally, SAS has 
analytical techniques that permit us to calculate descriptive statistics, and analyze the data 
in the same program. 
   
 Checking the integrity and consistency of the data in SAS involves a series of 
steps.  Because the datasets are structured differently and contain different information, 
the programs we write for each data type are slightly different.  The following describes 
the programs used for importing, checking and incorporating each data type into our 
database: 
 

2.  Excel Files (all data types) 
 

a) Convert Excel spreadsheets into a .csv file.  To do this click “save as type” 
CSV.   

b) File names should be standardized as follows:  
REGION_DATATYPE_YEAR_SAMPLINGPERIOD; example:  
SRS_FISH_2008_PER3.  This naming standardization should be followed 
when importing the data into SAS. 

c) Fill in blank cells with “.”.   
d) Make sure that all of the column headings are consistent with the SAS 

import template. 
 

3. Import and Error Checking SAS Programs 
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 We have prepared import and error checking SAS programs that provide a general 
framework for importing and error checking files in SAS.   These programs are submitted 
as accompanying electronic materials with this report and the directories listed below 
mirror our directory format; they will have to be modified accordingly for application on 
other computer platforms.  These programs require the user to input information about 
the datasets.  If the dataset is not from Modified Waters project, or if new information is 
added to the data, then the template should be modified accordingly.   
 
Open SAS import templates:  
D:\MONITORING_DATA\PROJECTS\DATA_QAQC\SAS_PROGRAMS\IMPORT_T
EMPLATES 
   
Fish and Crayfish Programs:   
   

a) Import .csv files. 
b) Combine datasets from different sampling periods into one dataset. 
c) Check data for general spatial, temporal and data type specific errors.  

These checks are aimed at detecting misspellings, incorrect dates, and 
impossible values (e.g., crayfish length>1000mm).   

d) Add data to long-term database.  These datasets have information that is 
not contained in the “count” dataset, such as:  length, sex, and form.  
Additionally these files may contain individual specific comments that are 
not relevant to the count dataset. 

e) Create a “count” variable with a value of 1 for each individual caught.  
Then use PROC MEANS to sum the number of individuals for each 
species for a given sample (i.e. how many individuals of a given species 
were caught in a throw trap at a plot on a specific date).  Be sure to keep 
any comments that are relevant to the count dataset in this file and 
eliminate comments that are only appropriate for the individual file (e.g., 
keep comment=TRLDRY, do not keep comment=PRTMIS; see list of 
comments in the metadata for a full list of comments). 

f) Use PROC TRANSPOSE to transpose this dataset so that the species are 
columns and the value for each species is a count for the number of 
individuals caught in a sample.  This dataset should have one row per 
sample.  Transposition of the data will create missing values where a 
species was not caught in a sample.  

g) If there are not unusual circumstances as indicated by a comment (e.g., 
comment=sitdry) then the missing values for each species are filled in 
with zeros.  If no sample was taken, do not fill a missing value in with 
zero.     

h) Check for duplicate entries. 
i) Create a pre-merge count dataset.  This dataset will be used in a merge 

check program to check spatial and temporal consistency among data 
types.   
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Invertebrate & Other Vertebrate and Vegetation Programs:  
 

a) Import .csv files. 
b) Combine datasets from different sampling periods into one dataset. 
c) Check data for general spatial, temporal and data type specific errors.  

These checks are aimed at detecting misspellings, incorrect dates, and 
impossible values.   

d) Use PROC MEANS to sum the number of individuals for each species for 
a given sample (i.e. how many individuals of a given species were caught 
in a throw trap at a plot on a specific date).  Be sure to keep any comments 
that are relevant to the count dataset in this file and eliminate comments 
that are only appropriate for the individual file (e.g., keep 
comment=TRLDRY, do not keep comment=PRTMIS; see list of 
comments in the metadata for a full list of comments). 

e) Use PROC TRANSPOSE to transpose this dataset so that the species are 
columns and the value for each species is a count for the number of 
individuals caught in a sample.  This dataset should have one row per 
sample.  Transposition of the data will create missing values where a 
species was not caught in a sample.  

f) If there are not unusual circumstances as indicated by a comment (e.g., 
comment=sitdry) then the missing values for each species are filled in 
with zeros.  If no sample was taken, do not fill a missing value in with 
zero.     

g) Check for duplicate entries. 
h) Create a pre-merge dataset.  This dataset will be used in a merge check 

program to check spatial and temporal consistency among data types.   
 
Wet Weight Program:   
 

a) Import .csv files. 
b) Combine datasets from different sampling periods into one dataset. 
c) Check data for general spatial, temporal and data type specific errors.  

These checks are aimed at detecting misspellings, incorrect dates, and 
impossible values.   

d) Use PROC TRANSPOSE to transpose this dataset so that the species are 
columns and the value for each wet weight type {FISWGT(Fish), 
CRYWGT(Crayfish), SHPWGT(Shrimp), MOLWGT(Mollusc), 
OITWGT(Other Invertebrate), OVTWGT(Other Vertebrate)} is a wet 
weight value (in grams) a sample.  This dataset should have one row per 
sample.  Transposition of the data will create missing values where a wet 
weight type was not caught in a sample.  

e) If there are not unusual circumstances as indicated by a comment (e.g., 
comment=sitdry) then the missing values for each species are filled in 
with zeros.  If no sample was taken, do not fill a missing value in with 
zero.     

f) Check for duplicate entries. 
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g) Create a pre-merge dataset.  This dataset will be used in a merge check 
program to check spatial and temporal consistency among data types.   

 
Physical Program:   
 

a) Import .csv files. 
b) Combine datasets from different sampling periods into one dataset. 
c) Check data for general spatial, temporal and data type specific errors.  

These checks are aimed at detecting misspellings, incorrect dates, and 
impossible values.    

d) Check for duplicate entries. 
e) Create a pre-merge dataset.  This dataset will be used in a merge check 

program to check spatial and temporal consistency among data types.   
 

4.  Merge Check Program 
 

Open Merge Check Program: 
D:\MONITORING_DATA\PROJECTS\DATA_QAQC\SAS_PROGRAMS\MERGE_C
HK 
 

a) Obtain datasets for each of the different data types (6) and sort in the same 
order using all spatial and temporal variables as by variables. 

b) Do a “match-merge” data step using all spatial and temporal variables as 
by variables.   

c) If any of the temporal or spatial components of any of the datasets do not 
match then create an output dataset that has all instances where this 
occurs.   

d) Once there are no discrepancies among datasets in spatial and temporal 
values, then check for discrepancies between the wet weights and the 
density data. 

e) Once there are no discrepancies among the datasets in either spatial and 
temporal values or between wet weight and density, add each data type to 
the long term database.   

 
5.  Database and Hydrology Merge SAS programs 
 

Open Database and Hydrology Merge Program:  
D:\MONITORING_DATA\PROJECTS\DATA_QAQC\SAS_PROGRAMS\DATABAS
E_AND_HYDROLOGY_MERGE 
 

a) Obtain “new” data from the “merge dataset” according to each specific 
data type. 

b) Obtain the “old” data set; i.e., the data currently in the existing database. 
c) Concatenate the old and new datasets to create the updated database. 
d) Merge updated hydrology data with the database.  
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The following is a list of the directories for each data type.  These directories include all 
of the data and SAS programs needed to (re)create the database.    
Fish directory: D:\MONITORING_DATA\FISH_DATA 
Crayfish directory:  D:\MONITORING_DATA\CRAYFISH_DATA 
Invertebrate & Other Vertebrate Directory:  
D:\MONITORING_DATA\INVERTEBRATES 
Vegetation Directory:  D:\MONITORING_DATA\VEGETATION   
Wet Weight Directory:  D:\MONITORING_DATA\WET_WEIGHTS 
Physical Directory:  D:\MONITORING_DATA\PHYSICAL_DATA 
 
All of the importing/error checking templates are located in the following directory: 
D:\MONITORING_DATA\PROJECTS\DATA_QAQC 
 

6. Tips and Tricks for data management 
 
Excel 
 
Keyboard shortcuts: 
Windows:  ctrl x=cut, ctrl c=copy, ctrl v=paste 
SAS:  ctrl e=clear log window 
 
 
E.  Using SAS 
 
Checking the SAS error log:  use the edit drop down menu to search for the following 
keywords that indicate that there is an error in the program: 

a) error:  there was an error in the SAS program 
b) warning:  something happened in the program that may be a problem, but isn’t 

always a problem.  
c) uninitialized:  Usually the result of performing an operation on a variable that 

does not exist.  
 
The SAS dataset names should have a common format.  Therefore once the import 
template any of the data types is updated with new information for the data at hand, the 
other data types can be substituted into the new template via a search and replace.  Ex:  
fish is the first data type imported; use search and replace to replace all “fish” file names 
with “invt” to create the invertebrate data sets.   
 
Create a list of all of the values of a variable:  sort the SAS dataset by the variable of 
interest.  Use a data step on this sorted dataset and use the same by statement.  Use a put 
statement to print the variable into the log.   
Example:   
________________________________________________________________________ 
PROC SORT DATA==dataset OUT=sorteddata; 
 BY variable; 
RUN; 
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DATA _null_; SET sorteddata; 
 BY variable; 
 IF FIRST.variable THEN PUT variable=; 
RUN; 
________________________________________________________________________ 
 
Create a list of all variables in a dataset: use the contents procedure 
Ex: 
 
PROC CONTENTS DATA=dataset SHORT; 
RUN; 
________________________________________________________________________ 
 
Perform multiple actions using one condition:  use a do loop. 
Ex: 
 
DATA dataset; SET dataset; 
 IF condition THEN DO; 
  x=2; 
  y=1; 
  z=5; 
 END; 
RUN; 
________________________________________________________________________ 
 
Perform an action on multiple variables:  Use an array statement and a do loop.  An array 
statement uses an index(i) to reference multiple variables.  The do loop performs the 
same action for each variable. 
 
DATA dataset; SET dataset; 
 ARRAY NAME(*) variable1 variable2 variable3 variable4; 
 DO I=1 TO DIM(NAME); 
  IF condition THEN NAME(I)=0; 
 END; 
RUN; 
 
If all of the variables are numeric then you can use the “_NUMERIC_” keyword instead 
of naming separate variables in the ARRAY statement. 
________________________________________________________________________ 
 
Extract part of a string:  Use a SUBSTR function. 
 
Ex:  This example extracts the site name from the following composite id variable that 
has region, site and plot combined:  ID=SRS06B. 
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SUBSTR(character value, start, length). 
 
DATA dataset; SET dataset; 
 site=SUBSTR(id, 4, 2); 
RUN; 
________________________________________________________________________ 
 
Combine variables into one variable and remove spaces:  CATS function.   
CATS(variable1, variable2, variable3, ..., variablen) 
________________________________________________________________________ 
 
Create a variable that accumulates:  Use the retain statement.  When SAS creates a new 
dataset the default behavior is to reset all of the variables to missing for each iteration of 
the data step loop.  The retain statement overrides this behavior and retains the value for 
the last observation.  This is a useful statement when we want to calculate variables that 
accumulate through time, e.g., days since flooding.   
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