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EXECUTIVE SUMMARY 

Ecosystem change detection is an essential part of restoration.  As the Comprehensive 

Everglades Restoration Plan reformulates the Greater Everglades ecosystem in an attempt to 

restore more historical processes, metrics of recovery are paramount, both for status reporting 

and adaptive management.  In many respects, soils are a useful ecosystem performance measure: 

soils change at time scales well suited to large area diagnostic surveillance (i.e., not too rapidly 

and not too slowly), are sensitive and specific to numerous stressors, are ubiquitous and simple 

to sample, and integrate ecological process.  However, soil properties cannot be reliably inferred 

remotely where vegetation cover is high; consequently, to understand ecosystem changes over 

large areas requires massive sampling campaigns, with enormous sample analysis costs to 

provide spatially informative estimates of system status, and high temporal density to infer 

system trends.  The recent emergence of optical methods for sample analysis offer promise for 

alleviating some of the sample cost constraints on monitoring.  Specifically, high-resolution 

diffuse reflectance spectroscopy (DRS) has been shown in numerous settings to offer tremendous 

accuracy for sample analysis at greatly reduced costs.  This work explores the feasibility of using 

this technique for ecosystem monitoring of soils from the Greater Everglades. 

We collected high resolution (1-nm band) spectra in the visible and near infrared regions 

of the electromagnetic spectrum from over 4000 samples from throughout the Greater 

Everglades.  The samples had previously been analyzed for a suite of informative 

biogeochemical properties, and we used these as a library from which we statistically trained the 

spectra to predict the soil properties.  This approach, referred to as chemometric modeling, lays 

the foundation for future application in the region by establishing which parameters can be 

reliably inferred in this manner, and deducing the algorithms for that prediction from samples for 

which only spectral information is collected.  The library not only includes continuous metrics of 

soil quality (n = 10; e.g., total P, total Ca), but also categorical properties such as vegetative 

community type and soil-floc distinctions; we evaluated spectral prediction of this categorical 

properties also.  Moreover, we expanded the library of soil properties by additionally measuring 

soil C quality (using a functional fractionation scheme) and total mercury (THg) concentrations.   

Overall, the results strongly support the utility of this method for future ecosystem 

monitoring efforts.  Using a hold-out validation data set to maximally represent the operational 

accuracy that we might expect applying the predictive models to new data, we observe prediction 
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error rates that compare favorably with laboratory accuracy, and extremely high precision (one 

of the hallmarks of this method).  Further, we show high prediction accuracy for routine analytes, 

categorical targets (particularly between soil and floc) and, most importantly, for both THg and 

C quality.  Our primary diagnostic for model efficiency for continuous parameters is the relative 

performance determinant (RPD), which is a unitless measure of the scale of mean prediction 

errors finding significant favor in the spectroscopy literature.  A summary of RPD is provided 

below (Fig. I-A); validation values greater than 2.0 are considered excellent, while values greater 

than 1.5 are generally considered useful for mapping applications.  Similarly, our metric of 

categorical model efficiency is the model odds ratio (OR).  A summary of the model OR value 

for all categorical models is presented in Fig. I-B; typically, validation values > 10.0 indicate 

effective diagnostic models.  As shown, almost all parameters selected show ample promise of 

routine spectral prediction. 

 
Fig. I-A.  Relative performance determinant (RPD) for all continuous spectral models developed 
in this work.  Threshold values of 2.0 (excellent) and 1.5 (useful for mapping) are depicted. 
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Fig. I-B.  Model Odds Ratio (OR) for all categorical spectral models developed in this work.  
Threshold value of 10.0 is shown, above which model is generally considered highly useful. 

  

Because spectra are a useful integrator of soil quality, there are compelling reasons to 

want to use them more overtly for ecosystem change detection; that is, rather than simply use 

them to predict soil properties, which themselves have uncertain association with ecological 

processes and condition, make spectral prediction of ecological condition directly.  We use new 

methods for unsupervised classification of soil spectra to cluster samples; these clusters are 

shown to be ecological robust, integrating information about soil chemistry, vegetative 

community composition and hydrologic forcing in ways that support future exploration.  

In all aspects, this report is a first effort to link this new method to the ongoing challenges 

of ecosystem change detection in the Greater Everglades.  There are areas of substantial promise, 

and areas of remaining uncertainty.  Areas in need of further work are: 

1) Characterization of ecological change gradients using spectra.  There is some 

preliminary evidence presented in this report that spectra may be useful for 

mapping change fronts (e.g., TP enrichment).  These methods require further 

and more detailed explication. 
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2) Local spectral library development.  There is strong evidence from this work to 

suggest that prediction errors are not geographically random.  That is, soil 

processes at the local scale confound prediction to a moderate extent, 

suggesting that locally developed calibrations may be more accurate and 

robust.  Further research is required to substantiate this. 

3) Operational accuracies.  As with all models of this type, the observed 

validation accuracies may be an overestimate of operational accuracies because 

of between instrument and between time errors in spectral reflectance.  Efforts 

to quantify and control for these errors are paramount for routine 

implementation.  Newer sensors are capable of much greater between 

instrument precision, which may be one fruitful area of exploration. 

4) Calibration free methods.  Ecosystem surveillance requires performance 

measures that are direct.  While soils in the Everglades represent the total 

integration of ecosystem processes, the particular indicators used as 

performance measures remains uncertain.  A direct approach, whereby spectra 

are calibrated to particular condition classes and/or stressor gradients is likely 

to prove extremely useful based on preliminary evidence presented here.   

5) Additional soil properties and extension to other substrates.  The success of the 

method for soils in the Everglades can measured in units of accuracy, but also 

in units of cost.  We estimate that the comparative costs of the routine analyses 

and spectral methods differ by an order of magnitude ($77 vs. $7/sample).  

Moreover, the cost implications become more pronounced as more analytes are 

predicted.  Given success with indicators of C quality, metal content, and 

ecological stoichiometry, we recommend the inclusion of additional 

informative analytes to the spectral library.  Further, we recommend an 

extension of these methods, applied only to soils in this work, to plant tissues 

as well.  Existing libraries of samples have been identified. 
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1. INTRODUCTION 
1.1 Everglades Assessment 

As the restoration of the Greater Everglades continues, efforts to characterize baseline 

conditions and then monitor conditions in response to restoration are paramount.  Restoration 

goals can only be assessed in a framework of robust performance measures, and management 

can only be adapted given timely feedback from the system on the state of those performance 

measures.  Assessment of a system of the scope and complexity of the Everglades is a multi-

metric challenge; that is, no single performance measure will suffice to provide useful feedback 

to managers and scientists about system status and trends.  However, all performance measures 

that are selected need to possess three critical attributes: 1) the must be sensitive and specific to 

ecosystem change at reasonable time scales, 2) they must be useful across spatial domains of the 

system expected to respond to restoration, and 3) they must be sufficiently rapid and inexpensive 

to allow adequate temporal and spatial sampling density.  Selection of performance metrics is 

therefore subject to important scrutiny.  This report describes the potential of emerging soil 

assessment technology (spectral analysis) to permit inclusion of soils as performance measures 

by addressing the 3rd criteria listed above (cost vs. sampling density in space and time).   

  

1.2 Soil as a Performance Metric 

Changes in ecological processes are manifest in hydrologic, vegetative, faunal and soil 

dynamics, and key attributes of each of these are potential performance measures to assess 

Everglades ecosystem recovery.  While hydrologic, vegetation and faunal studies abound in the 

Greater Everglades, substantially less emphasis has been placed on soil-based indicators of 

system condition.  We suggest that ongoing research to quantify soil-based performance metrics 

of ecosystem condition offers several key advantages: first, soil development effectively 

integrates ecosystem dynamics over time and space, offering measures for which specific 

numeric benchmarks and targets can be set in spite of extant environmental variability; second, 

soil provides a ubiquitous indicator that can be related to changes in all aspects of ecosystem 

performance (hydrology, nutrient enrichment, landscape dynamics); finally, soil responds to 

anthropogenic influence generally, and nutrient enrichment/hydrologic alteration in particular, in 

relatively well understood ways in the Everglades system (Inglett et al. 2004, White and Reddy 
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2003, DeBusk and Reddy 2003, Reddy et al. 1993).  Moreover, methods for measuring the 

properties of soils that may be useful as restoration benchmarks are well developed. 

One reason soil remains relatively under-used as a performance measure for evaluating 

restoration progress in the Everglades is the significant cost associated with large area 

assessment.  In particular, spatial and temporal variability necessitate large sample sizes for 

spatially heterogeneous systems, and the suite of effective non-redundant soil-based performance 

measures is large, ranging from basic indicators of soil biogeochemistry (e.g. total phosphorus, 

pH, cation conc., organic content) to measures of ecological toxicity (e.g., soil total mercury 

content) to complex integrative measures of soil quality (e.g. soil-floc boundaries, soil carbon 

quality).  Comprehensive characterization of samples is necessary for effective integration and 

indication of ecosystem change, but expensive given high temporal and spatial resolution 

requirements.   Sample processing costs increase geometrically with the complexity of analytes, 

spatial variability and temporal variability.  Moreover, while vegetation response metrics in time 

and space can be resolved using airborne and satellite-borne sensing devices, no such remote 

measurement of soils is yet reliable enough to be useful for subtle ecosystem change detection. 

As the diversity and cost of soil analysis grows along with demands on spatial and 

temporal change detection, the constraints on budgets demands examination of alternative soil 

analysis methods.   Emerging methods for sensing soil quality using high resolution diffuse 

reflectance spectroscopy (DRS)  have been validated across a wide range of analytes and 

environments.  The multiple benefits of this technique are germane for large area ecosystem 

assessment: accuracy, high precision, greatly reduced cost and rapid sample throughput.  

 

1.3 VNIR Soil Measurement Technology 

Near infrared (NIR) diffuse reflectance spectroscopy (hereafter referred to as NIRS) is a 

proven technology for the rapid non-destructive assessment of materials, including plastics, 

industrial reagents, minerals and agricultural products.  Spectral reflectance signature libraries of 

numerous material samples and composites have been cataloged (e.g. Clark 1999); from these 

libraries, unknown samples can be interpreted for functional and qualitative properties.  The 

basic application involves collecting high-resolution reflectance signatures (e.g. 1-nm 

bandwidths) from a sample illuminated by a high intensity full spectrum light source; samples 

pre-processing typically involves only removal of water and physical macro-structure.  Light 
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from the visible (350-750 nm) and near-to-mid infrared (750-2500 nm) regions of the 

electromagnetic spectrum is used for NIRS, but longer wavelength sensors (mid infrared – MIR) 

are also available.  Under controlled conditions, reflectance signatures arise due to electronic 

excitation of atoms and vibrational stretching and bending of structural groups of atoms that 

form molecules and crystals.  For example, fundamental vibrational features for organic matter 

(C-O, C-N, C-H, O-H functional groups) are observed in the mid- to thermal-infrared (2.5-25 

μm) portion of the spectrum; however, overtones of these fundamental features occur at fractions 

of the fundamental frequency, which fall within the range typical of NIRS.  Minerals (calcite, 

apatite, clays along weathering sequences) along with common cations also exhibit distinctive 

spectral reflectance characteristics due to light interference, facilitating rudimentary 

mineralogical description.  Indeed, NIRS is among the principal tools for field mapping of 

geologic materials for purposes of mining. 

Most applications depend on spectral matching; that is, a set of diagnostic absorbance 

features for a particular pure sample are noted and an unknown sample compared to that library.  

Quantitative inference of soil quality from spectral reflectance has consequently been severely 

limited by the heterogeneous character of the soil system and the absence of appropriate 

analytical tools for inference from complex, strongly co-linear reflectance spectra.  However, 

with application of powerful statistical data mining tools (e.g. Partial Least Squares [PLS] 

regression, Classification and Regression Trees [CART], neural networks [NN], Multivariate 

Adaptive Regression Splines [MARS]) has allowed researchers to develop efficient correlations 

between spectral response characteristics for heterogeneous soil media and a wide array of 

standard soil and plant functional parameters (Ben- Dor and Banin 1995, Kooistra et al. 1997, 

Foley et al. 1998, Gillon et al. 1999, Chen et al. 2002).  The method continues to be tested in a 

wide array of ecological regions; while no published data have been collected for low ash 

content soils like those typical of the Everglades, recent work (Cohen et al. 2005 – Fig. 1) 

suggests strong functional associations between numerous soil indicators and spectra for hydric 

soils with a wide range of organic content and nutrient concentrations.  Critical reviews of the 

myriad applications of this technology for natural and agro-ecosystems now exist (Foley et al. 

1998, Shepherd and Walsh 2007), and the recent literature points increasingly towards global 

calibrations (Brown et al. 2006) and operationalizing the methods for replacing or augmenting 

routine environmental sample analysis (Cohen et al. in press, Janik et al. 1997).    
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Formal methods for analyzing soil archives for which laboratory evaluations have been 

performed have been developed (Shepherd and Walsh 2002).  This approach is founded on the 

development of Spectral Reflectance Libraries (SRLs).  SRLs consist of soils for which spectral 

response curves and controlled laboratory analyses of functional indicators have been collected.  

From the SRLs, calibrations are developed to correlate reflectance to functional measurements; 

validated models can then be used to infer soil properties in incoming sample soils for the suite 

of laboratory indicators without direct analysis.  Indicator analytes that have exhibited 

association with spectra in other studies include cation concentrations (Ca, Mg, Fe, Al), soil 

organic matter and ash content, soil texture, soil nitrogen and phosphorus.  Moreover, 

preliminary evidence suggests that reliable models can be developed to infer organic carbon 

quality (e.g. lignin content – Shepherd et al. 2003), organic mineralization rates (Bouchard et al. 

2003, Fystro 2002), soil hydraulic properties (Cohen et al. in press), and various measures of 

metal contamination (Kooistra et al. 1997).  Cohen et al. (2005) present evidence that various 

microbial activity indicators (extracellular enzymes - acid phosphatase, β-glucosidase, 

dehydrogenase, peptidase) can be inferred with moderate accuracy from reflectance spectra.  

While for many of these parameters, it is strong co-linearity with readily observable soil 

 
Fig. 1.  Raw relative reflectance across the NIR spectrum versus wavelength for 11 selected end-
member spectra from wetland soils (from Cohen et al. 2005). 
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attributes (e.g. soil carbon, soil clay content) and not direct reflectance effects that are being 

observed, that research showed that spectral information provides more predictive power than 

can explained by co-variance with other primary soil attributes.  Other studies (Cohen et al. 

2006, Vagen et al 2006) suggest that spectral measurements can be used to establish repeatable 

diagnosis of ecosystem condition across a suite of stressors, a result with direct relevance to 

change detection in the Greater Everglades.   

The various cited advantages of NIRS are relevant to the question of ecosystem change 

detection and performance benchmarking within CERP.  High analytical accuracy (i.e., efficient 

prediction of target parameters) is the central metric of utility, and the wealth of applications in 

the literature for which high accuracy has been demonstrated are compelling that the Greater 

Everglades system will be no different.  Other advantages include high precision, which has 

important implications for maintaining between laboratory comparability, as well as 

comparability of results over time.  Indeed, spectrometer precision is so much higher than 

standard analytical techniques that some portion of prediction error (i.e. spectral model accuracy) 

must logically be attributed to laboratory uncertainties.  Yet another advantage of NIRS is the 

sample throughput.  Our experience suggests that, given effective data and sample management 

protocols, more than 200 samples can be processed by a single technician in one day, and soil 

attribute inference can be automated so that results emerge for all parameters almost 

immediately.  Given extremely basic sample pre-processing, this offers tremendous throughput 

potential.  Finally, the advantage of cost is the most widely cited in the current literature.  While 

the capital costs of the spectrometer are large (~$50,000), the per sample costs are minimal labor 

(see above) and electricity.  We formally explore the comparative costs of conventional and 

spectral sample characterization in this work.  With strategic spatial and temporal sampling of 

the environment, high-resolution surveys of soil condition and statistically powerful inference of 

the effects of human activities on soil function can be developed with relative ease.  Most 

importantly, monitoring protocols that quantify restoration responses can be implemented with 

substantially reduced personnel and laboratory requirements.   

Shepherd and Walsh (2002) pose a scheme for large-area diagnostic surveillance of 

ecosystems that are changing in response to anthropogenic forcing.  That scheme (Fig. 2) forces 

formal definitions of “cases”, that is areas that are ecologically distal from their desired 
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condition, from which risk factors and management levers can be extracted, and ecosystem 

performance over time can be monitored.  Spectral methods figure centrally in the screening test 

for the case definition (see Cohen et al. 2005 for a demonstration of the utility of this approach in 

heterogeneous landscapes) and for the direct measurement of incidence (changes through time).  

While spectral methods need not be part of this logical scheme, our intention with this work is to 

demonstrate their enormous capacity for improving monitoring and inference.     

 
 

Fig. 2 – Logical scheme for large area ecosystem change detection and conditional assessment. 
Spectral methods appear to provide utility in the development of screening tests (impairment 
status) and in the estimation through space and time of environmental correlates.   
 

1.4 Objectives 

Our overall objective was to test the feasibility of a new soil sensing technology for 

streamlining the monitoring and assessment of ecosystem change in the Greater Everglades.  The 

scope of work for this project, implemented over two years, had five objectives: 
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1) Develop a spectral reflectance library for soils from the Greater Everglades for the 
purpose of spectral prediction and enhanced sample throughput. 

2) Develop spectral library protocols for screening incoming samples and strategically 
enhancing library representation of landscape variability. 

3) Develop and validate statistical models to relate reflectance spectra to measured soil 
properties. 

4) Sub-sampling of the spectral library population for additional soil measurements, which 
will permit spectral prediction of those measurements across the entire population. 

5) Mapping relevant variables and model residuals to examine spatial patterns at the scale 
of the Greater Everglades ecosystem and/or relevant subsets. 

 
This report synthesizes our findings across a suite of analytes collected on samples 

previously collected (Everglades Soil Mapping – K.R. Reddy, principal investigator), and a set 

of analytes measured and predicted specifically as part of this work.  In particular, we 

demonstrate development of an analysis framework that starts with streamlined integration of 

spectral data collection, quality control and data management.  Once reliable data on spectral and 

soil properties have been assembled, relationships between the data sets can be learned and 

validated.  Incorporation of new measurements into the prediction data set is both useful from the 

perspective of the utility of the spectra (i.e., ability to predict a wider suite of potential 

performance metrics), but also because in so measuring the training data, we obtain data that are 

useful in their own right for monitoring.  For example, our work explores the predictability of 

soil C quality and mercury concentrations using NIRS, but provides the ancillary benefit of 

direct measurements and analysis thereof even if the prediction efficiencies are insufficient for 

monitoring applications.  Analysis of these primary variables (mercury, carbon quality, direct 

spectral inference) is embedded in the analysis of the NIRS prediction of them. 
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2. METHODS 
The methods for this work are numerous, and frequently applied in specific combinations 

for specific analytes or objectives.  We start by outlining the data set that forms the basis of the 

spectral reflectance library and then the derivatives and additions to that made as part of this 

project.  In particular, the laboratory methods for determination of carbon quality (two parallel 

methods) and soil mercury are outlined here.  Following explication of where the continuous 

target data came from, we discuss the origin of functional thresholds to define performance 

categories and those data that are nominal (community type, soil-vs.-floc).  Then we describe the 

techniques for scanning each of the soils, how the data were quality controlled, processed and 

stored.  Finally we discuss the statistical tools used for this work: this includes statistical methods 

for continuous and categorical predictions (chemometrics), methods for unsupervised learning 

from the spectral data, and methods for mapping (model residuals, new analytes). 

 

2.1 Soil Library Development 

2.1.1 Routine Analytes 

This work builds on a comprehensive library of soils collected from throughout the 

Greater Everglades between April and December 2003 (Everglades Soil Mapping, ESM – K.R. 

Reddy, Principal Investigator – sites shown in Fig. 3).  Soil samples from a total of 1405 sites 

from throughout the system were collected utilizing a 10 cm diameter medical grade stainless 

steel coring device. This device was a stainless steel section of tubing (1 mm thickness) with 

stainless steel handles (15 cm long by  2.5 cm diameter) welded 10 cm from the top of the core 

tube.  The bottom end of the 70 cm tube was sharpened to facilitate coring in organic soils.  At 

132 sites, field triplicates were collected to examine analytical replication errors and zero-

separation distance variability.   

Cores were sectioned into floc, 0-10cm, and 10-20 cm increments in the field and 

sections placed into sealed in polyethylene bags and stored in coolers on ice until returned to the 

laboratory. The soil corer was washed in site water before and after each site visit.  In many 

places, shallow to bedrock soils did not contain a 10-20cm profile.  Likewise, a floc sample was 

not present at every site due to environmental or vegetative characteristics. When returned to the 

lab, soil samples were dried at 70 ºC for 3 days in plastic weigh boats and then ground in 20-mL 

HDPE scintillation vials with ceramic grinding balls to powderize the sample for analysis. 
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Samples were analyzed for total carbon (TC), total nitrogen (TN) total phosphorus (TP), total 

calcium (TCa), total magnesium (TMg), total iron (TFe), total aluminum (Tal), organic matter 

content (LOI – loss on ignition), HCl-extractable P (TPi – inorganic P), and bulk density (BD), 

using standard analytical methods at the NELAP-certified Wetland Biogeochemistry Laboratory 

at the University of Florida.  A detailed description of site selection, field methods, analytical 

methods and spatial interpretation can be found in Corstanje et al. (2006), Bruland et al. (2006), 

Rivera et al. (2006) and Osborne et al. (in press).   

A table of the locations of all sites by sampling area is provided (Table 1) to demonstrate 

the coverage of this effort.  One important caveat is essential for assessing the global 

applicability of the maps and spectral models derived from this dataset: all sampling was done in 

areas where a helicopter could be safely set down, which systematically biases against areas 

where trees are a part of the biological assemblage.  This is problematic most clearly in the Big 

Cypress Preserve landscape, where treeless areas are the exception rather than the rule, but also 

in tree islands.  As such, while we refer to all models extracted from this dataset as applicable to 

the Greater Everglades, both mapping and spectral predictions should be treated as statistical 

extrapolations for tree-dominated sites.  Further work to fill in these gaps may be of particular 

future interest.    

 
Table 1.  Summary of sites by geographic area and profile depth. 
Number of Samples Profile  
Geographic Area 1 - Floc 2 3 4 Total 
Big Cypress (Central) 103 121 23  247 
Big Cypress (North) 12 20 4  36 
Big Cypress (South) 99 110 16  225 
East Coast Buffer 13 33 30 3 79 
Everglades National Park 169 373 273  815 
Holey Land 21 68 60  149 
Model Land 35 46 16  97 
Rottenberger 10 54 54  118 
Water Conservation Area 1 142 157 154 91 544 
Water Conservation Area 2B 129 129 128  386 
Water Conservation Area 2A 23 23 23  69 
Water Conservation Area 3A north 40 177 170 29 416 
Water Conservation Area 3A south 83 225 220 18 546 
Water Conservation Area 3B 43 58 58 25 184 
Total 922 1594 1229 166 3911 
Note: 1225 sites with one core, 127 sites with triplicate cores, and 53 sites (incl. 5 with 
multiple cores) from a follow-up study.  
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Fig. 3.  Location of original ESM soil sampling sites and selected subset of sites for further analysis (n = 
348; selection described in end-member characterization subsection). 
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Table 1 also shows the number of sites for which different soil depth profiles were 

included.  Deeper profiles include 0-10 (Depth 2), 10-20 (Depth 3) and 20-30 (Depth 4) sections; 

only those sites where periphyton floc material was present (based on best professional 

judgement) had a Depth 1 sample.  Figure 3 shows the location of all sites throughout the study 

region; a subset of the sites (n = 348) were selected strategically for soil carbon quality 

characterization (see below).  A different subset (n = 600) were selected for total mercury (THg) 

analysis; both methods for selection are described below. 

 

2.1.2 Nutrient Ratios 

Based on measurements of C, N and P, we computed nutrient ratios that are ecologically 

values for interpretation (C:N, N:P).  These were done on a molar basis to conform with existing 

stoichiometric inference.  Calibrations to these nutrient ratios directly, rather than via predictions 

of the nutrient concentrations independently, was done because it eliminated one source of error.  

Indeed, this is emblematic of the potential utility of spectral methods (as described in Fig. 4).  

Much of the emphasis in this work is on the inferred relationship between soil properties and 

ecological condition (Pathway 1 – Fig. 4) which is itself an uncertain association.  Spectral 

prediction of those soil properties (termed “environmental covariates” to illustrate that plant or 

animal tissue properties are also candidates for which literature suggests successful prediction) 

along Pathway 2 assumes first that the measurement of the soil properties is correct (a topic that 

will be addressed in greater detail later) and second that the relationship of the soil property to 

the ultimate target of ecological condition is adequate.  Where a consensus “case-control” 

definition, similar to disease diagnostics in the medical field, can be established, an alternative 

mode of spectral inference is possible.  That is, direct calibration of the spectra to the categories 

of ecosystem condition, obviating the middle step of prediction of environmental covariates 

(Pathway 3A).  (Note: discussion of pathway 3B, which involves the use of unsupervised 

learning from spectral information is discussed later).  This approach, used successfully in Cohen 

et al. (2006) allows a hardened case definition to be defined in a manner that is simple, rapid and 

inexpensive to monitor.  Provided the covariance of Pathway 3A is as strong or stronger as that 

with the more conventional environmental covariates (Pathways 1 – 2), and this is generally 

expected, then there is significant benefit to this approach for surveillance of ecosystem change. 
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Fig. 4 – Conditional assessment using 1) existing environmental covariates, 2) spectral 
prediction of these environmental covariates, 3) direct spectral prediction via a) supervised 
calibration and b) unsupervised methods. Spectral EM classes refer to a priori clusters defined 
from the spectra only using unsupervised machine learning techniques. 

 

2.1.3 Carbon Quality Analytes 

Peat substrate quality is a crucial metric of peat systems because it encapsulates the 

sensitivity of the soil to changes in elevation (slow variable) and the availability of electron 

donors for microbial metabolism (fast variable).  While numerous studies of Everglades soils 

exist, only recently has there been a more concerted effort to link soil quality measurements to 

ecosystem processes.  One candidate metric, nutrient ratios such as C:N or N:P, are an important 

component of vegetative substrate quality, and, the amount and type of organic compounds and 

their recalcitrance (resistance to decomposition) are also important substrate quality components 

regulating decomposition.  Clark and Reddy (2006) showed, for example, that soil development 

rates in ridges were nearly an order of magnitude higher than in sloughs because of both 

differences in production rates, but also in litter lignin content.  They determined lignin content 

using sequential fiber analysis, a technique used in this work as well.   

Characterization of soil organic matter quality (i.e., degree of recalcitrance, with more 

ligning rich, recalcitrant material termed higher quality) is an important potential indicator of 

ecosystem change.  If, due to changes in hydrology, soil carbon is trending towards either more 

labile or more recalcitrant form, the implications for ecosystem C budgets are expected to be 

long-term and significant.  In particular, if rates of peat accretion or the stability of accreted peat 
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change over time, these changes are expected to be extremely durable (long term changes).  The 

mechanisms via which changes in soil organic quality might feedback to affect long term 

ecosystem dynamics are numerous, and include changes in soil pH dynamics (with implications 

for calcite formation/stability), changes in microbial community processing, changes in DOC 

production, and, in the long term, changes in soil elevation which directly effects the 

composition of peat based ecosystems.  For the purposes of this work, there is strong precedent 

that NIRS can adequately approximate soil C quality (e.g., Shepherd et al. 2003, Skjemstad et al. 

2006); given an adequate prediction and the geographic scope and density of the sample library, 

we can, for the first time, provide a spatial estimate of soil lability. 

For measures of soil C quality, we use a nested analysis.  First, we collected 16 sample 

cores from 4 locations (Fig. 5) in the Southern Everglades for high resolution analysis of soil C 

quality with depth.  The objective of this part of the study was to compare different methods for 

indicating C quality (see methods below).  At each site, 2 cores were obtained from the nearest 

ridge, and 2 from the nearest slough (note: all sites were within the ridge-slough mosaic).   Cores 

were collected to 30 cm depth using 10-cm polycarbonate core tubes.  Cores were capped in the 

field and kept below 4 C prior to sectioning.  Cores were sectioned into 9 sections (0-2 cm, 2-4 

cm, 4-6 cm, 6-8 cm, 8-10 cm, 10-15 cm, 15-20 cm, 20-25 cm, and 25-30 cm).  No effort was 

made to distinguish periphyton floc from soil during core sectioning.   

After selecting one method (fiber analysis) we chose a sub-sample (n = 348) from the 

entire dataset (n = 3911) to analyze.  This subsample was obtained by doing a principal 

components analysis (PCA) of the 10 measured soil properties for the ESM dataset, and 

partitioning the first 5 axes into zones (4 zones for axes 1 & 2; 3 zones for axes 3, 4 and 5).  One 

sample was selected from each hypercube zone.  These should, theoretically, most efficiently 

express the diversity of the ESM population; we note here that we did not stratify by geography 

or depth in this effort (though we summarize how well this sampling captured that variability).  

Only 348 of the 432 zones contained samples; one was randomly selected from each. 
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Fig. 5 – Locations (yellow circles) and photographs of cores (top – SS1C, bottom, SS2C).   

 

2.1.3.1 Methane Production 

There is no standard method to determine the lability of soil carbon; instead we used to 

complementary methods.  The first examines the rate of methanogenesis under laboratory 

controlled conditions (temperature, moisture, head space gas composition).  Rates of methane 

production, measured using a gas chromatograph (Shimadzu) during 14-day incubations at 

constant temperature was our first method.  Specifically, 3 replicate incubation vials were seeded 

with 2 grams of field-moist soil from each of the core sections; deionized water was added to 

ensure well hydrated conditions.  The head space of the incubation vials were purged with N2 to 

ensure anoxia, and then incubated at 25 C in a dark environment.  Head space gas samples were 

obtained at 0, 3, 5, 7, 10 and 12 days after initiation.  After 7 days, the head space was purged to 

avoid negative feedback on methanogens as methane increases in concentrations.  Cumulative 
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methane production over 12 days was used to estimate production rates in μg/g soil/day.  

Methane production was compared between cores and across depths using two-way ANOVA.   

 

2.1.3.2 Sequential Fiber Analysis 

Lignin is the most abundant aromatic polymer present in soils and is the principal 

regulator of organic matter recalcitrance, particularly under anaerobic conditions (Criquet et al., 

2000).  Lignin is centrally responsible for providing rigidity and structural support to vascular 

plants; lignin is also strongly resistant to bacterial decay because of its complex aromatic 

structure.  The mosaic of vegetation, ranging from ridges (comprised of monotypic sawgrass) 

and tree islands to sloughs (with submerged aquatics) and periphyton provides highly variable 

quality input materials for the formation of soils.  More labile plant tissue components such as 

sugars and starches are likely to be more abundant in vegetation with lower structural 

requirements.  As such, measuring the most recalcitrant organic structural compounds, contained 

within the residual fiber fraction, yields insight into primary regulators of substrate quality. 

While there are standard methods for the determination of lignin in samples (Rowland 

and Roberts, 1999), they are time consuming and labor intensive.  As an alternative, functional 

fractionation schemes (Fig. 6) have high routine precision and strong covariance with more pure 

chemical classifications. Functional fractionation of carbon quality is straightforward 

operationally, and provides nearly synonymous information about recalcitrance to decay.  In this 

scheme, samples are exposed to increasingly intensive detergents intended to remove starches 

(neutral detergent fraction – NDF), then hemi-cellulose (acid detergent fraction – ADF).  The 

remaining material is partitioned into cellulose and lignin by digestion in strong sulfuric acid; the 

mass of sample remaining is the residual fiber, functionally defined herein as lignin.  Sequential 

extraction is recommended Mould and Robbins 1981) because it improves dissolution of cell 

wall proteins and minimizes influence of condensed tannins on detergent fiber residuals (Terrill 

et al. 1994), which may alter recoveries of residual fiber and lignin (Rowland and Roberts 1999).  

Sequential fiber fractionation was done on triplicates of 2-g samples from each core section.  The 

intent was to examine covariance between a functional method (fiber fractionation) and a process 

level measurement (methane production).  Ultimately, we chose one method for application to 

the ESM data.  Precision and simplicity of fiber fractionation led us to conclude that those data 

were more informative.  We selected to use that method as a proxy for C quality. 
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Fig. 6 – Schematic of sequential fiber analysis (after Lewis 2005).  

 

After making that determination, we expanded the scope of our fiber fractionation efforts 

to include the 348 samples selected using Latin hypercube sub-sampling (see above).  Each 

sample was run in triplicate, and the relative fraction of each used as a target for spectral 

prediction.  Our principal interest, however, was not in the spectral characterization of the more 

labile fractions, but in our capacity to estimate the recalcitrant fraction (residual fiber ~ lignin) 

because it is that fraction that holds the most functional significance to long term ecosystem 

dynamics, and might reasonably be expected to act as a useful performance measure. 

 

2.1.4 Total Mercury 

Previous evidence (Kooistra et al. 1997) indicates that some level of metal contamination 

can be resolved using spectral methods.  In the Greater Everglades, the principal metal 

contaminant of concern is mercury, though primarily not in elemental form.  Our intent with the 

following measurements was to determine the total mercury concentrations of a subset of soils, 

and estimate spectral covariance.   
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A subset of 600 samples from the total data set were analyzed for total mercury per unit 

mass (THgM – mg Hg/kg soil).  These samples were selected from the population using a Latin 

hypercube subsampling protocol using principal components axes derived from the basic soil 

biogeochemical factors to define the sampling space.  THgM concentrations in these 600 soil 

samples were determined following an acid digestion of a pre-weighed dry sample (~1 g) with a 

mixture of concentrated HCl/HNO3/HF mixture, in acid-cleaned and marble capped volumetric 

flasks (Hossner 1996, Donkor et al. 2005).  Samples were heated overnight to a refluxing boil on 

a hot plate, and diluted after cooling to a known final volume with Nanopure® water. Hg 

concentrations in the resulting digestate were analyzed by the SnCl2 reduction technique, dual 

gold amalgamation and detection by cold vapor atomic fluorescence spectrometry (CV-AFS) 

(Bloom and Crecilius 1983). QA/QC criteria were met by the use of reagent blanks, standard 

solutions, and a certified reference material (IAEA-405). 

 

2.1.5 Categorical Thresholds 

From the perspective of ecosystem monitoring, conditional classes are often more widely 

used than continuous variables; for example, agronomic testing of soils typically results in 

classes of soil performance rather than continuous predictions (Cohen et al. 2007).  From these 

categorical predictions, management recommendations are made.  As such, spectral prediction of 

performance categories may ultimately be more meaningful than continuous prediction, 

particularly within a probabilistic surveillance framework (i.e., what is the probability of 

observing a degraded condition given risk and recovery factors).  Moreover, where continuous 

spectral prediction of soil chemical properties is of limited efficiency, spectral screening models 

that delineate categories of soil condition are frequently possible.  

There are numerous potential categories to examine; some categories are natural while 

others are assumed.  For example, vegetation community or soil-vs.-floc are naturally nominal 

variables that by necessity need to be evaluated in a categorical modeling framework.  Other 

categories (e.g., TP < 500 mg/kg vs. TP > 500 mg/kg) are functionally defined thresholds in 

otherwise continuous responses.  They are, however, meaningful from an ecological and 

regulatory perspective, and are possibly useful benchmarks for ecosystem change detection.  The 

particular soil properties for which we have selected to explore categorical modeling are total P, 
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total inorganic P, soil-floc (previously developed), ridge-slough, total Al, and the C:N and N:P 

ratios.  The thresholds selected for categorical modeling are defined in Table 2. 

 

Table 2.  Summary of categorical model thresholds. 
Model Target Category Threshold† 
Total P Case > 500 mg/kg 
Total Inorganic P Case > 100 mg/kg 
Total Al Case < 1500 mg/kg 
C:N ratio Case < 13 
N:P ratio Case < 40 
Soil vs.Floc - 
Community Type - 
† - Case (response = 1) definitions.  No definition is necessary for existing 
categorical data (e.g., soil vs. floc). 

 

2.1.6 Nominal Variables 

In addition to continuous properties segmented into functional classes for diagnostic 

assessment, there are several ecosystem properties that may well prove to be useful performance 

measures (or at least measures of process) that might benefit from spectral prediction for 

monitoring and mapping purposes.  While chemometric methods (described below) for nominal 

data are less well developed, several pattern recognition tools allow robust interpretation of 

complex spectral data.  Our effort here was simply to develop first-order inference about 

feasibility of nominal variable prediction.  Further work would be required in each case to refine 

the models for routine implementation. 

 

2.1.6.1 Community Analysis 

We developed spectral prediction models for the community types that were observed 

during ESM sampling.  We note here that this is a strongly unbalanced library because many of 

the communities that are important in the Everglades mosaic were not sampled because of 

logistical and safety constraints (principally related to the ability to land a helicopter proximate 

to areas with trees).  As such, the spectral differences between community types focus almost 

entirely on herbaceous communities (sawgrass ridges, emergent sloughs, wet prairies).  The few 

samples from tree islands and mangrove forests are insufficient to permit robust categorical 

model development.   
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2.1.6.2 Soil-Floc Analysis 

One important performance metric in the Everglades is the prevalence of calcitic 

flocculent material in space, and the extent to which that material is integrated in soil profiles.  

The prevalence question can, and has been addressed, using best professional judgement of what 

constitutes floc; a robust case definition may well be helpful to avoid between analyst errors, and 

also to diagnose areas where the probability of categorical designation to a fluc class is changing 

through time.  As such, a spectral diagnostic model of soil vs. floc is an important component of 

demonstration of methodological feasibility in this work.  Moreover, given a reliable diagnostic 

prediction of soil vs. floc, vertical profiles of class assignment probabilities can be computed.  

Our hypothesis is that, if floc material is being integrated into the soil in areas where floc is 

present at the surface, the class assignment probability to floc will decline gradually with depth.  

If, instead, floc is a surface phenomenon only and is not integrated into soils, the transition of 

class assignment probabilities will be abrupt.  To test this hypothesis, we collected 4 cores from 

WCA2A in areas where floc material was abundant at the surface.  Cores were 30 cm long and 

were sectioned finely (2 cm sections); each section was dried, milled and scanned, and 

assignment probabilities for each were determined from the categorical models developed from 

the spectra.  Plots of assignment probabilities to the floc class vs. depth were used to draw 

inference about incorporation of floc into soil.  The location of the 4 cores is shown in Fig. XX.  

 

2.1.6.3 Soil Depth Analysis 

The ESM sample population is partitioned into soils collected from different depths.  

Because of the dynamic nature of the Everglades ecosystem, particularly with respect to soil 

subsidence and accretion processes, monitoring of soil depth profiles may be an important 

metric.  We used the extant soil depth data to determine if there are significant and systematic 

spectral differences between soils of different depths when evaluated across the ecosystem.  If 

significant variability does exist, then diagnostic spectral models may be helpful in mapping 

areas where significant oxidation has occurred, or, alternatively, where peat soils are accreting 

quickly.  As with many of the arenas explored in this work, positive calibration to soil depth is 

primarily suggestive of avenues of more detailed work; the current study (a feasibility study) was 

of insufficient scope to follow up where strong calibrations were observed. 
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2.1.7 Gradient Measurements 

One of the most innovative developments in the NIR spectroscopy literature is the direct 

covariance between spectra and environmental gradients (see Shepherd and Walsh 2007 for a 

discussion of applications).  In short, spectra integrate environmental conditions and can be 

ordinated to match up to environmental gradients.  One technique (discussed below under 

calibration free methods) is to extract single-metric signals from the spectral data and analyze 

covariance with known gradients.  To examine this technique further, we selected the TP 

gradient well documented in northern WCA2A (Debusk et al 2001, Reddy et al. 1991); we 

sampled every 200 m from areas known to be profoundly enriched with TP down to areas 

designated as background TP concentrations (Fig. 7).  Samples were collected to 10-cm deep 

using a stainless steel coring device, and stored on ice until they could be dried, ground and 

scanned.  No chemical analysis was done on these samples. 

 

 

Fig. 7 – Locations of TP gradient sampling.  Samples were obtained every 200 m along the 
known TP gradient.  Four long cores (collected to examine spectral diagnosis of floc vs. soil with 
depth were also collected in the unimpacted zone. 
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2.2 Soil Spectral Scanning 

All soils were scanned using a post-dispersive spectroradiometer; the instrument, a 

FieldSpec Pro FR manufactured by Analytical Spectral Devices (Boulder CO), collects diffuse 

reflectance information in the visible (350-750 nm) and near infrared (750-2500 nm) regions 

with a spot size of 11 mm (field-of-view).  Integrated fiber optic cables transmit diffuse reflected 

light to three internal spectrometers.  Junctions between the spectrometers as well and the optical 

extremes where the tungsten light source provides low signal are areas of low signal:noise, and 

are omitted from our analyses.  The spectral resolution of the FieldSpec Pro FR instrument (as 

measured using the Full Width at Half Maximum – FWHM) is 3 nm at 700 nm and 10 nm at 

1400 and 2100 nm.  The internal reflectance data are sampled to 1 nm bands for reporting.   

Our optical set-up consists of a high intensity (50 W) halogen land (3000 K) directed 

upwards through borosilicate glass dishes containing soil samples.  The light incidence angle was 

set to 25 degrees to maximize diffuse reflected signal while minimizing specular reflectance, 

with the viewing angle set to nadir.  Borosilicate glass dishes, which have minimal absorbance 

characteristics in the visible and near infrared regions, were filled with 5 to 10 grams of soil 

(sufficient soil to cover the entire 6 cm diameter).  This set-up, described in Shepherd et al. 

(2004) minimizes stray light interference, maximizes sample throughput and also reduces the 

optical effects of differential sample grinding by providing a smooth surface (glass dish) against 

which the sample rests; all of these advantages minimize variability between sample replicates.  

Diffuse reflectance is measured in relative terms, compared with a Spectralon (LabSphere, 

Hutton, NH) acting as white-reference.  Spectralon is a highly lambertian (between 257 and 

10,600 nm) thermoplastic material that provides very high (~99%) and nearly uniform relative 

reflectance properties in the range of our selected sensor.  As with the samples, Spectralon is 

scanned through borosilicate glass, which has nearly perfect optical transmission in the VNIR. 

 

2.2.1 Precision Control 

 Each sample was scanned 4 times, with a 90-degree rotation between each replicate, and 

each replicate itself consists of 25 integrated spectrometer observations.  Multiple observations 

permit examination of analytical precision, which is one of the widely-cited advantages of 

spectroscopy vis a vis conventional laboratory techniques.  Our data storage and retrieval system 
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includes data management algorithms that allow sample precision among replicates to be 

evaluated in real time.  A precision index (PI) was defined as follows: 

N

RMSE

PI N i

i∑
=

μ
*100         [1] 

where N is the number of wavebands (N = 2150), RMSE is the root mean squared error 

across the four replicates for band i, and μ is the mean reflectance in that band. We set the 

threshold for data acceptability to a PI below 3%, meaning that samples where the PI exceeds 

3% are rejected by the database and rescanned.   

 

2.2.2 Data Management 

Accepted scans are entered into a Microsoft SQL Server database hosted by IFAS.  

Middleware software (written in Java) permits on-line data handling, advanced query 

functionality and multiple options for data retrieval (resampling, various transformations, data 

formats).  The database developed for this work can be viewed at 

http://swsd.ifas.ufl.edu/soil/mainwindow.swf); this interface software was developed to link to a 

SQLServer back-end, and permit web-based queries of both spectral and biogeochemical 

properties.   This database set-up was selected for two reasons: first, it permits web accessibility 

to a centralized database, making sharing spectral data easier, and collaboration among 

researchers with spectral data more efficient.  Second, the IFAS servers are routinely backed-up 

and checked for data integrity. 

 

2.2.3 Data Processing 

Each scan with the FieldSpec Pro yields a spectrograph of raw relative reflectance 

consisting of 2150 points in the region between 350 and 2500 nm.  This enormous 

dimensionality and auto-covariance between proximate bands makes statistical analysis of these 

data somewhat problematic. Therefore, perhaps the most important reason for central database 

storage is that almost all of the analyses of spectral data that are done in the literature are 

performed after data pre-processing is performed.  While the algorithms to do much of this pre-

processing are well developed, there are cases where subtle differences led to poor between-

instrument comparability, rendering models derived from the spectra un-usable by other 

machines.  Among the common pre-treatments for the data include resampling, to reduce the 
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dimensionality of the data sets to more realistically reflect the spectrometer capabilities; 

instrument resolution is between 3 and 10 nm while the reported data have a resolution of 1 nm.  

A typical pre-treatment is to resample the raw data to 10-nm windows, a process that results in 

the loss of no predictive information (Shepherd and Walsh 2002).  Further data processing 

includes derivative transformation, which can be done in numerous ways.  Derivative 

transformation with 2nd order smoothing, which is done to reduce the effects of optical set-up, 

grinding, ambient light and power source variability, is an option in the database.  In general, 

much more stable calibrations are obtained when overall albedo (average reflectance) is 

controlled for, which is the result of derivative transformation.  Additional pre-processing steps 

(mean centering, convex hull removal) are either done as a routine part of the statistical 

modeling, or were shown to have no significant effect on the model stability.   

 

2.2.4 Data Visualization 

Visualizing the spectra is of particular value for two reasons.  First, it is often instructive 

to see the spectra from population end-members (selected using statistical subsampling routines 

described below) to appreciate the subtle differences that frequently differentiate samples.  This 

is particularly true when discussing the potential of using a diagnostic feature approach to 

spectral inference rather than the statistical learning approach advocated here.  While it is well 

known that spectra of pure materials can be precisely identified using spectra (particularly from 

the mid-infrared), the very obvious similarities in spectrograph shape between soils with quite 

different chemical properties underscores the need to examine relationships within the spectra 

rather than just identifying spectral diagnostic features.  Fig. 1 shows end-member spectra from a 

data set with much greater mineralogical diversity than would be expected in the Greater 

Everglades, and there is still strong concordance among the spectrographs.   

Second, the operational use of spectroscopy for sample prediction when using statistical 

inference (chemometric models) depends on the complete representation by the reference library.  

Samples with spectra that fall outside the multi-parameter space bounded by the spectral library 

should be considered outside prediction range; subsequent inclusion of these samples in the 

reference library after laboratory analytical evaluation will ensure that the library will grow to be 

more inclusive of extant edaphic diversity.  One way to visualize the properties of the spectral 

reference library is to extract principal components (PCs) from the high dimension spectral data 
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sets.  Plotting the PC scores for the reference library vs. the samples to be predicted from any 

chemometric models will reveal samples that lie outside prediction bounds.  We develop this 

principal components analysis, extracting 5-6 latent variables that can be used to visualize 

characteristics of the population and subsets thereof.  For this particular effort, because all 

samples have both spectral and chemical data, we partition the population into a training set and 

a validation set.  The PC scores permit estimation of whether the partitioning approach used 

yields a sufficiently representative subset of the data to be used for model training.  Similarly, 

where we select a subset of the samples for additional chemical analyses, we can use the PC 

scores to ensure that the selected samples maximally represent the population.  By performing 

this data visualization step at the outset, we maximize the generality of any chemometric models 

that are developed.  

 

2.2.5 Developing Spectral Subsets 

One of the important objectives of visualizing the sample spectra (and indeed 

summarizing the statistical variability in the soil chemical observations) is that it is cost 

prohibitive to run additional laboratory analyses on all 3911 soils that were obtained during field 

sampling.  The costs of developing the existing library, where all samples were analyzed for 10 

analytes were enormous; in order to expand the list of analytes, we required a subset of the 

samples that was optimally representative of the variability in the full population, but 

strategically selected to minimize the requisite sample size.  We used Latin hypercube 

subsampling, a protocol for sampling that ensures representation from each area of a multi-

dimensional sample space, to identify this subsample.  Our target was to select approximately 

350 samples for analysis of organic matter lability (four functional pools of organic C) and 

mercury content.   

We used two approaches for this task.  We first sampled from the multi-dimensional 

sample space defined by the soil chemical observations only; our rationale for this was that the 

soil chemistry are the more accepted analytical techniques.  Operationally this consisted of the 

following 3 steps: 

1) Develop a principal components analysis on all 3911 samples using the 10 soil 

analytes.  Extract only the first 5 axes. 
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2) Divide the scores for each axis into 4 segments (for axes 1 and 2) or 3 segments 

(axes 3, 4 and 5).   

3) Randomly select 1 samples from each multi-variate segment (e.g., zone 1-1-1-

1-1 represents the first segment for each axis, while zone 1-2-3-3-3 represents 

the first zone for axis 1, the second zone for axis 2 and the third zones of the 

remaining axes).  This results in a total of 432 possible zones, but since only 

348 zones are represented in the data set, our sample size from this approach 

was 348 samples. 

After selected the subset in this way, we evaluated the extent to which the full variability 

of the data set was represented with respect to spectra.  In this way we can confirm that any 

predictive models developed between the spectra and the soil chemistry are selected to most 

efficiently represent the full range extant in the system (as sampled); the application of these 

models to the remaining ~3500 samples is consequently considered much more reliable. 

 

2.3 Chemometrics: Continuous Prediction 

2.3.1 Statistical Tools 

Chemometrics refers to the statistical tools for relating spectral observations to potential 

sample covariates.  Since the spectra are profoundly complex, with overlapping absorbance 

features and harmonic overtones, the so-called soft modeling approach of statistical inference is 

required.  Modern chemometrics are based on advances in machine learning and pattern 

recognition; however, despite the complexity of the model technique, the assessment of model 

efficiency continues to be done using the familiar regression (for continuous data) and 

discriminant (for categorical data) diagnostics.  Here, we summarize the methods that we 

selected for predictive modeling, and then the diagnostics that we used to evaluate their 

performance.  It is not an exhaustive list.  We evaluated several simpler techniques first (in 

particular principal components regression [PCR] which has been used by authors for similar 

purposes – Chang et al. 2001) before concluding that the two methods presented here are by far 

the most reliable.  The primary activity to date has been development of chemometric models 

relating sample spectral responses to measured chemical and physical properties.  This process 

was done using two methods that are gaining primary favor in the developing literature on soil 

prediction from spectra.  These are partial least squares regression (PLS) and stochastic gradient 
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boosted tree regression (SGBT).  While our primary objective was not methodological 

comparison, recent literature (Brown et al. in press) documents the increased efficacy of SGBT 

vs. PLS for prediction.   

Spectral complexity of soils necessitates soft-modeling wherein spectra are related to 

chemical and physical properties via statistical models. A chemometric approach allows entry of 

numerous statistical techniques. We compared two popular techniques, outlined below; both 

were implemented in Statistica 7.1 (StatSoft, Inc. 2005). 

The first and most common is partial least squares regression (PLS). This approach, like 

PCA extracts canonical variables from the data. However, in contrast to PCA, in which linear 

combinations are defined based only on total variance reduction among the co-linear predictors, 

PLS linear combinations are defined based on covariance with a target variable. Decomposition 

of the predictor-by-sample matrix into principal components is conditioned to maximize 

covariance between the PCs and target parameters.  PLS is highly regarded for its simplicity, 

replicability and comparative avoidance of statistical over-fitting. 

Another method gaining favor (Brown et al. 2006) for its flexibility and accuracy is a 

non-parametric data mining tool called stochastic gradient boosted tree regression (SGBT). 

SGBT is analogous to well-known tree-based analytical methods, which are based on recursive 

binary splitting (Breiman et al. 1984).  In basic tree-based regression, the algorithm identifies a 

partitioning variable at each binary split (or parent node), that maximizes the purity or minimizes 

within-node deviance of the resulting two nodes (daughter nodes). This algorithm, applied 

recursively, allows partitioning of the original data into increasingly pure subsets based on 

simple decision rules. In a regression setting, each sample allocated to a particular terminal node 

is given the mean value of that node, and this value is compared to the observed value.  Problems 

with standard tree-based regression include optimality concerns and over-fitting. These are 

addressed in SGBT models, wherein large numbers of smaller trees (nnodes ~ 3; selecting single 

splits from among predictors) are grown, each building on the last by incorporating the previous 

residuals in an additive weighted expansion; observations with larger residuals are preferentially 

weighted in subsequent iterations. This generic algorithm is rapid to implement, allows inclusion 

of predictors for which pair-wise associations are relatively weak, and can be used with non-

normal data and for non-linear responses (Friedman 2002).   
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2.3.2 Model Validation 

For soft-modeling of spectra, or chemometric modeling, one critical requirement is a data 

set large enough to permit separation of the sample data into training and verification sets. Many 

of the statistical tools have a propensity to over-fit to the training data.  To provide a reasonable 

measure of predictive accuracy under implementation conditions, a hold-out validation set is 

retained.  For spectral prediction of properties measured on all 3911 samples, model training was 

performed using 67% of the data (~ 2600 samples); models were evaluated using the remaining ~ 

1300 samples.  For target parameters available for only a fraction of the data set (e.g., total 

mercury, lignin content) we simply maintained the same relative proportion of test samples.   

Method utility is inferred based on model efficiency for these validation data in all cases. 

 

2.3.3 Model Diagnostics 

Model efficacy for continuous prediction is based, in all cases, on standard prediction 

errors, and goodness-of-fit criteria.  In all cases, we rely on model diagnotics from hold-out 

validation for model assessment because of the tendency of the modeling tools to overfit to the 

data when presented with the large number of predictors (n ~ 200) that spectra provide.  We use 

a trio of indicators to permit model comparison: 

1) Coefficient of determination – this familiar model diagnostic (r2) summarizes 

the proportion of the total variance explained by the model. 

2) Standard error of validation – this diagnostic is, in some ways, a more 

meaningful indicator of model efficiency because it evaluates the magnitude of 

residuals.  The SEV is the root mean squared error (RMSE) between predicted 

and observed for the hold-out validation data set.  It is reported in the physical 

units used in model development. 

3) Relative performance determinant –RPD is the ratio of population standard 

deviation for a particular analyte to SEV for that analyte.  The primary purpose 

of computing this statistic is to permit model comparison between analytes 

(where SEV is unit specific, RPD is unitless).  There is also relatively well-

established literature precedent for evaluating model performance on the basis 

of RPD.  Dunn et al. (2002) and Chang et al. (2001) suggest that models with 

RPD values greater than 2 are immediately useful for prediction, while models 
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with RPD values less than 1.5, though potentially useful for some very 

rudimentary information, are of limited prediction utility.  Intermediate values 

are useful for certain applications, particularly those where mapping is 

required.  We use these thresholds to evaluate our model performance. 

 

2.3.4 Analysis of Model Residuals 

Frequently, where a predictive model fails is as informative as where it is successful.  We 

examine model residuals in two ways; first, we examine covariance between model residuals and 

various plausible confounders (other soil analytes, distance from canals).  Second, we can map 

the spatial distribution of errors to determine if there are consistent geographic patterns to the 

error that might suggest some local unmeasured confounder.  Generic methods for mapping are 

described below; in this case, we map the residual error for each of the modeled soil properties. 

 

2.4 Chemometrics: Categorical Diagnostic Prediction 

2.4.1 Statistical Tools 

Categorical chemometrics use the same spectral information, but rather than targeting a 

continuous response, the spectra are used to quantify to probability of class membership.  For 

this task, we make use of gradient boosted tree classification (GBT), a method well suited to 

complex data sets like the spectral libraries employed here, and with the distinct advantage of 

being non-parametric and insensitive to predictor co-linearity.  The method works along the 

same lines as classification trees (CT - Breiman et al. 1986) – which employ binary recursive 

partitioning rules to sequentially allocate samples to target classes based on predictor levels – but 

assembles a large number of small trees in an additive weighted expansion that solves some of 

the fundamental problems of the CT approach.  The GBT method has been used successfully for 

spectral prediction (Brown et al. 2006), and several low-cost statistical packages now provide a 

tool-set for this kind of analysis.  Other methods for categorical discrimination (discriminant 

analysis, logistic regression) have been tried as part of this research as well, and in each case, the 

GBT approach outperforms them when measuring validation model efficiencies, and those 

results are omitted from this report.   

 

2.4.2 Model Validation 
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As with continuous spectral prediction, all models were developed (trained) using 67% of 

the data and evaluated using the remaining 33% of the samples.  Method utility is inferred based 

on model efficiency for these validation data only; as with continuous models there is a strong 

tendency for over-parameterized models to perform well below calibration expectations when 

applied to a hold-out data set. 

 

2.4.3 Model Diagnostics 

For each, we evaluate model efficiency using: 

1) Overall accuracy –number of correctly classified samples over total number. 

2) Specificity – percentage of negatives correctly predicted. 

3) Sensitivity – percentage of positives correctly predicted 

4) Odds ratio –ratio of the odds of correct prediction to odds of incorrect prediction.  

(Agresti 1990).   

The odds ratio (OR) in particular provides insight into model efficiency because it 

balances the sensitivity and specificity metrics; values greater than 10.0 are generally considered 

to be indicative of a useful diagnostic model provided that the prevalance of cases (i.e. 

proportion of total samples meeting one of the threshold criteria in Table XX) is a substantial 

fraction of the total population; where prevalence is low, corrections to the OR are required. 

 

2.4.4 Analysis of Model Error Rates 

Each model provides a classification prediction and a probability of class assignment, 

allowing us to quantify how errors arise.  In particular, we can condition the error on various 

confounding covariates (e.g., soil properties, location, distance from canal) to see if there are 

systematic reasons for misclassification.  Given significant confounders, we can identify 

necessary ancillary information that might improve future classification accuracy.   

 

2.5 Calibration Free (Unsupervised) Methods 

2.5.1 Rationale 

All discussion of spectral technique to date has focused on prediction of existing 

environmental indicators.  In particular, we focus on attributes of soil nutrition (total P) or 

quality (organic content and lability, Ca/Fe/Al/Mg content).  Despite observed success at 
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predicting these environmental covariates that are used as proxies for multi-attribute 

environmental quality, we contend that spectra may be useful in a more fundamental way.  In 

previous work (Cohen et al. 2006) we showed that spectra may actually out-perform 

biogeochemical measurements in diagnosing environmental condition with respect to accuracy 

and repeatability.  While spectra alone won’t provide a degradation mechanism, which is clearly 

a critical part of environmental diagnosis, the ability to reliably map and monitor environmental 

condition using an indicator that, in principle, integrates across the soil environment is appealing 

for adaptive management.  Figure 4 underscores the need for effective diagnosis in order to 

reliably identify management sensitive covariates; here we explore the feasibility of using 

spectra directly (i.e., not calibrated to proxy variables for assessing environmental condition). 

 

2.5.2 Statistical Tools 

Techniques for this are two-fold.  First, there is the possibility of direct supervised 

classifications.  Figure 4 summarizes the difference between indirect spectral models and direct 

spectral models.  The direct calibration to ecological condition is not trivial, primarily because it 

relies of some scientifically acceptable benchmark that can provide a calibration target.  In the 

past, total P has been used as one proxy for environmental quality (particularly along the 

WCA2A nutrient gradient); other proxies include plant community composition, extracellular 

alkaline phosphatase activity (which is moderately predictable using spectral models), 

invertebrate community composition, and uptake pathways of nitrogen that result in differential 

isotopic fractionation.  Our work here is a preliminary investigation on the utility of spectra as a 

direct indicator for conditional assessment (Pathway 3A in Fig. 4).  We focus on categorical 

prediction of phosphorus because no reliable benchmark for ecological condition exists.  

Specifically, we develop categorical models using spectral reflectance as the predictor set and TP 

> 500 mg/kg as the case (response = “1”) and TP < 500 mg/kg as the control (response = “0”); 

we used standard binomial model diagnostics to evaluate effectiveness, including the validation 

odds ratio, model sensitivity and specificity, in addition to the overall prediction accuracy.  We 

use spectrally extracted distance measures between samples based on principal components 

analysis as a measure of similarity between cores at the center of WCA2A in areas designated as 

minimally ecologically impaired and cores at the ecologically degraded edges.  Our goal is to 

understand where, in the sequence of ecological indicators that includes P enrichment, macro-
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invertebrate community changes, periphyton floc changes and vegetative community changes we 

observe concomitant changes in soil spectra.  We use spectral similarity analysis in WCA2A as a 

tool to screen spectral features; these results are presented here, while the more detailed analysis 

of the WCA2A gradient using calibration-free methods remains an ongoing effort. 

In Figure 4 there is an additional under-studied relationship.  Pathway 3B links 

unsupervised categories of spectra to ecological condition.  Again, because there is no agreed 

upon definition of an ecological case (i.e., degradation) vs. control (i.e., intact), concordance 

between a priori classes and estimated condition are not immediately possible.  However, we 

pursue this technique because of its appeal in taking advantage of extremely high analytical 

precision for spectral measurements.  Various unsupervised classification techniques exist, 

including the well known k-mean clustering algorithm.  However, nearly all standard tools force 

a user-specified number of clusters, and class assignment is based on some distance metric from 

self-organizing cluster centroids.  This both limits the ecological specificity of the technique 

because the number of clusters is generally unknown, and provides a deterministic answer to 

what is more realistically a probabilistic question (i.e., allocating sample to class Y rather than 

evaluating the probability of various class memberships).  A modern alternative to the k-means 

approach uses a maximum likelihood approach to determine the probability of class membership; 

samples are assigned to the class with the highest probability, but these probabilities are retained 

for more in-depth examination.  This process, called expectation maximization (Witten and 

Frank 2000), has several important advantages for this application.  First, the number of classes 

does not need to be specified a priori as with k-means clustering.  Rather, a v-fold cross 

validation procedure helps determine the degree of evidential support for different numbers of 

classes, selecting the categorical resolution that is best supported.  As such, EM is a much more 

powerful data mining/machine learning tool, similar in pattern recognition potential to self-

organizing feature maps (Kohonen maps) but more scalable.  Second, the EM approach can be 

scaled easily to large numbers of co-linear predictors, which is the situation faced with spectral 

data.  Third, EM permits entry of categorical predictors which maximizes the generality of the 

application for situations where there are known ordinal and nominal confounders.  Finally, as 

mentioned above, the algorithm provides classification probabilities instead of just class 

assignments, which can be useful where the physical basis of assignments is unknown, or where 

there is observed discordance between a priori spectral classes and environmental categories.  
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This approach was implemented using the data-mining tools in Statistica v. 7.0 (StatSoft, Inc. 

Tulsa, OK). 

 

2.5.3 Metrics of Utility 

Absent an agreed upon case definition, assessment of pure spectral classes is limited to 

the degree to which soils cluster in meaningful ways according to biogeochemical properties.  

After identifying the most statistically defensible number of EM classes from spectra, we revisit 

associations with soil measurements.  We use ANOVA to evaluate soil differences between 

inferred EM classes as a means of understanding the functional implications. 

Moreover, it is possible to map locations of spectral cluster membership to see if clusters 

group spatially, or by depth.  To the extent that they do, changes in class membership 

probabilities through time may be useful for quantitative ecosystem change detection. 

 

2.6 Mapping 

One of the objectives of this work is to explore the spatial patterns that emerge from our 

consideration of point-level data.  Interpolation-based mapping using the tools of geostatistics is 

applied to only a subset of the analytes that have been spectrally analyzed.  Specifically, only 

those analytes measured under this contract are mapped; maps of the original measured data are 

not.  However, we do provide maps of chemometric model residuals (error term between 

predicted and observed values) as a means of visualizing prediction errors in space and 

determining the universality of spectral predictions for the Greater Everglades system.  In 

addition, we provide maps of residual fiber content of soils, expectation maximization classes, 

and total mercury concentrations.  While it would be advantageous to examine spatial pattern in 

each ecosystem partition area (i.e., WCA1, ENP) separately because of the strong delimiting 

effect of canals, for the purposes of this visualization effort, we selected to examine the data as a 

whole.  Further, all maps developed herein are for the top layer of soil (0-10 cm); we omit 

mapping the floc layer because it is discontinuous, and also deeper soil layers because we are 

most interested in soils of recent origin nearer the surface. 

In all mapping efforts, we compared two methods: ordinary kriging and local spline 

interpolation.  Kriging, which is a well-known interpolation technique based on development of 

a semi-variogram, honors the observed data and develops a statistical prediction of unsampled 
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points based on nearby samples; the influence of nearby samples is quantified using semi-

variance analysis.  Kriging follows three steps.  First, we develop a semi-variogram at the scale 

of the entire dataset that determines the extent and magnitude of spatial autocorrelation.    The 

output of each semi-variance analysis is a measure of the range (spatial length of significant 

autocorrelation), nugget variance (semi-variance at zero separation distance), sill variance (semi-

variance beyond the range) and the relative structure (nugget-to-sill ratio).  Second, we use the 

geometric properties of the model semi-variogram (fit to the experimental semi-variance data at 

different separation distances) to predict values at unsampled locations; the model semi-

variogram can take several forms, be isotropic or directional, and can be a composite of multiple 

model structures.  The parameters of the best-fit semi-variogram model describe the distance and 

degree of influence that measured points have on unmeasured points; the interpolation process is 

then simply the application of those parameters to unsampled locations. 

Finally, we examine cross-validation efficiency of the kriging model to observational 

data.  This cross-validation procedure iteratively predicts the level of sampled points based only 

on the points in their vicinity, and compares that prediction with the observed level.  In this way, 

all samples are used to evaluate the efficiency of the interpolation algorithm so that some 

estimate of prediction uncertainty can accompany the map.   As part of the prediction error 

evaluation, we report the root-mean-squared error (RMSE) as a quantitative measure of residual 

variability, and the r2 between predicted and observed as a measure of variance reduction. 

In general, we follow the described protocol for all maps that produced.  However, for 

mapping soil mercury, we explored options for more sophisticated mapping in some detail to 

ensure that resulting map products take fuller stock of the spatial patterns observed. 

 

2.6.1 Mapping Model Error Rates 

Maps of model residuals were made using ordinary kriging; spatial statistics (nugget 

variance, sill:nugget, range) were reported for all parameters as well as metrics of spatial 

autocovariance of the residuals.  Where significant autocovariance exists, we infer that local 

conditions (geochemical, biological) lead to low-incidence spectral differences that are missed 

by a global chemometric model.  As such, areas where there are locally elevated residuals may 

be candidates for more local calibration models, as data permit.  Development of these local 

calibrations was not possible in the scope of this work. 
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2.6.2 Mapping Soil Total Mercury 

Geostatistical methods were used to characterize spatial variation and map total mercury 

per unit mass (THgM) and per unit area (THgA) across the Everglades.  Mercury variation was 

analyzed for spatial pattern across the Greater Everglades, among hydrologic partitions, with 

distance from canals (as evidence for surface hydrologic Hg delivery), and by vegetative 

community type (as evidence for differential enrichment).  Because P enrichment is a primary 

anthropogenic influence impacting ecosystem structure and function in the Everglades (Noe et 

al. 2001) and because P distribution is relatively well understood (Bruland et al. 2006, Reddy et 

al. 1991), we were particularly interested in associations between THgM and TP concentrations.  

In particular, we examine global covariance between the two, and also compared concentration 

profiles with increasing distance from the canals. We expected TP to decrease with distance from 

canals; if THgM follows the same pattern, it would suggest that surface water delivery was active.  

Finally, THgM, TP and TC concentrations were contrasted among sub-regions of the Everglades, 

and between impacted and un-impacted areas of the Everglades.  All exploratory data analyses 

were done using Statistica 6.0 (Statsoft, Inc. Tulsa, OK).  All interpolations, correlations, semi-

variances and cross semi-variances were computed per unit mass (THgM) and per area (THgA). 

Semivariance analysis quantifies spatial dependence among observations of a particular 

variable, measured as the degree of similarity of paired observations as a function of sample 

spacing or lag (h).  Spatial dependence was analyzed using semivariograms, which plot 

semivariance against lag spacing (Webster and Oliver 2001):  

 γ̂  (h) = 
n2
1

 ∑
=

n

i 1

{z (xi) – z(xi + h)}2       Eq 1.  

where, n is the number of sample point pairs separated by a distance h, and z(xi), z(xi + h) are the 

sample measurements at points within that lag distance.  Because semivariograms are sensitive to 

the presence of spatial outliers, observations identified as such using Anselin’s Local Moran’s 

Index (z-score < -1.96; Anselin 1995) were omitted from semi-variance analyses (though not 

from exploratory analyses).  In order to identify spatial autocorrelation structure at different 

scales, semi-variograms were computed for regular lag spacings ranging from 100 to 1000 m.  

The optimal lag spacing (500 m) was selected based on the stability of the semi-variances, and 

the minimum number of sample pairs within each lag (all were > 30). 
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Spatial interpolation was performed using Ordinary Kriging (OK), the most common 

kriging method.  OK provides a Best Linear Unbiased Estimator (BLUE) because error variance 

is minimized, predictions are linear combinations of available data, and mean error is reduced to 

zero (Isaaks and Srivastava, 1989).  Detailed methodology is described in Isaaks and Srivastava 

(1989), Goovaerts (1997) and Webster and Oliver (2001).  After exploratory spatial data analysis 

(trend surface detection) in ArcGIS 9.0 (ESRI, Redlands, CA), semivariograms were modeled in 

Variowin (Pannatier 1996).  OK was done in Geostatistical Environment Modeling Software – 

GEMS (Remy 2004), and final OK predictions were developed on a 200 x 200m grid.  

To estimate model error at unsampled points a validation procedure comparing model 

results with cross-validation observations was performed.  Given the sample size (n = 600) and 

spatial extent (8220 km2), cross-validation was employed, wherein estimation of prediction error 

is made by interpolating using all the samples except one, and comparing predicted and 

observed; iterative application of this process until all sites have been “held-out” and predicted 

permits representation of prediction errors without sacrificing data density (Goovaerts 1997).  

Prediction quality was assessed by the fit between observed and predicted values at validation 

sites using the mean error (ME), root mean squared error (RMSE) and Pearson correlation 

coefficient (r).  ME measures systematic bias in predictions and indicates whether the model is, 

on average, over- or under-estimating.  RMSE measures prediction accuracy, while r quantifies 

covariance between predicted and observed. 

Because of the spatial extent of the study area and range in THgM concentrations 

observed, we contrasted spatial patterns among the sub-regions of the Everglades. However, 

sample sizes within each of the sub-regions fall short of recommended minimum samples size (n 

= 100) for estimating semivariograms (Webster and Oliver 1992).  Based on geographic 

proximity and ecological similarities, the landscape was clustered into five agglomerated regions 

(Fig. 1): Big Cypress National Preserve (BCNP – lumping three sub-regions); Everglades 

National Park (ENP – lumped with the Model Lands); Water Conservation Areas 1, 2A and 2B 

(WCA1/2); Water Conservation Area 3A North, Holeyland, and Rotenberger (WCA3AN); and 

Water Conservation Areas 3A South and 3B (WCA3AS/B).  

Spatial structure of THg (per mass and area) within each sub-region was identified using 

semivariograms computed using Eq. (1). We contrasted spatial correlation of THgM with other 

soil properties (TP and TC) using cross-variograms between sub-regions that represent impacted 
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(WCA3AN) and unimpacted (ENP) parts of the Everglades; site impact status was based on a TP 

threshold of 500 mg/kg (DeBusk et al. 2001).  Cross-semivariogram analysis quantifies spatial 

correlation between two variables such that using information about one can enhance 

interpolation accuracy for the other (Webster and Oliver 2001):   

 uvγ̂  (h) = 
)(2

1
hm

 ∑
=

)(

1

hm

i

{zu (xi) – zu (xi + h)}{zv (xi) – zv (xi + h)}     Eq 2 

where, zu and zv are variable measurements, xi and xi + h are sampling locations separated by a 

distance h, and m is the number of sample point pairs separated by a distance h.  The structural 

variance (Q), computed as the ratio of partial sill to total sill (= nugget variance + partial sill) was 

used to evaluate the spatial variance explained by the semivariogram (Morris 1999).  Values 

approaching 1.0 indicate strong spatial structure while values near 0.0 indicate either low spatial 

structure or structure at spatial scales larger or smaller than those observed.  

 

2.6.3 Mapping Soil Carbon Quality 

Ordinary kriging was applied to spectrally estimated soil carbon quality.  The measured 

data were spatially sparse; only 348 samples were analyzed, and these were obtained at different 

depths to ensure full representation of the biogeochemical diversity of the ESM population.  As 

such, interpolation of the direct observations was not considered feasible for this work.  

Contingent on observing strong spectral prediction, maps can be developed of spectrally inferred 

soil C quality since predictions can be made at all locations and depths for which spectra were 

available.  We examined standard geostatistical metrics (sill:nugget, range) of autocorrelation as 

well spatial pattern and estimated error from the interpolation. 
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3. RESULTS 
3.1 Routine Analyte Summary 

3.1.1 Summary Statistics 

Soil analyses were performed during 2003-2004.  For each site, between 3 and 4 depths 

were sectioned, and each depth section was analyzed for bulk density, organic matter content 

(LOI), total N, total C, total P, total inorganic P, total Ca, total Mg, total Fe, and total Al.  Mean 

and standard deviation data for each of the measured parameters are provided in Table 3.  What 

is clear from the table is the extreme range of soil properties present in this work; organic matter 

contents range from less than 1% to over 99%, total P concentrations range from 18 to nearly 

2000 mg/kg, and iron and calcium concentrations vary over 3 orders of magnitude.  This 

variation is essential for spectral modeling; datasets where samples are homogeneous with 

respect to functional attributes tend to be more sensitive to over-fitting and poor generality. 

 

Table 3.  Summary data for ESM reference library. 

 Average
Std. 
Dev. Max Min 

Bulk Density 0.23 0.23 1.88 0.00
Organic Matter (%) 64.01 30.88 99.51 0.91
Total C (g/kg) 337.27 139.44 544.48 3.88
Total N (g/kg) 23.01 10.92 46.25 0.26
Total Aluminum (mg/kg) 6328 9453 125455 150
Total Calcium (mg/kg) 89136 107989 499776 414
Total Iron (mg/kg) 6559 6750 137045 19
Total Magnesium (mg/kg) 2261 1743 21902 0
Total Phosphorus (mg/kg) 346.16 249.36 1953.40 17.90
Total Inorganic Phosphorus (mg/kg) 84.28 102.98 1428.03 2.29

 

3.1.2 Correlations 

There were strong correlations between the parameters; Table 4 summarizes these 

correlations.  Several of the variables (bulk density, total P, total inorganic P, total Ca, total Mg, 

total Fe and total Al) required log transformation prior to analysis; this transformed data was 

used for correlations and for subsequent chemometric development.  Also shown in Table 4 

(along the main diagonal) are the r2 values for multiple regression prediction of each parameter.  

That is, a model was developed to predict each parameter based on all the others; this value 

provides a useful benchmark for later analysis of spectral prediction models because it 
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conceptually quantifies the degree to which the spectra are acquiring information about a 

particular parameter that is independent of the suite of chemical measurements.    

 

Table 4.  Summary of correlations between ESM soil analytes.  Along the main diagonal (shaded 
grey) is the r2 for predicting each analyte from other analytes.  This is a useful benchmark to 
assess spectral models. Note that moment calculations are for untransformed data; correlations 
use transformed data. 
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Organic Matter (%) 0.87‡          

Total N (g/kg) 0.93 0.90         

Total C (g/kg) 0.98 0.92 0.86‡        

Bulk Density† -0.71 -0.70 -0.70 0.66       

Total P (mg/kg) † 0.63 0.60 0.56 -0.52 0.58‡      

Total Pinorg. (mg/kg) † 0.41 0.39 0.36 -0.46 0.86 0.33‡     

Total Ca (mg/kg) † -0.60 -0.60 -0.50 0.31 -0.34 -0.09 0.69    

Total Mg (mg/kg) † 0.21 0.08 0.22 -0.17 0.30 0.31 0.23 0.37   

Total Fe (mg/kg) † -0.13 -0.06 -0.16 0.22 0.10 0.12 0.09 -0.02 0.54  

Total Al (mg/kg) † -0.24 -0.18 -0.32 0.44 0.09 0.03 -0.02 0.01 0.69 0.69 
† - Parameters natural log transformed to meet normality assumptions. 
‡ - These r2 values are for prediction without using the most obvious correlate (for TC = LOI, for TP = 
TPi).   

 

Figure 8 shows the soil attribute correlations graphically.  For many of the relationships, 

the low correlation coefficients in Table 4 may be due to more complex inter-relationships.  For 

example, the relationship between organic matter and calcium appears to be non-linear, with 

both low and high calcium values covariant with low organic matter; this is presumably a 

function of calcite (high Ca) and sand (low Ca) end-members, both of which have low carbon 

contents.  Similarly, the association between P and Ca appears to be non-linear; this result is 

surprising given well known associations between Ca and P sorption.  We surmise that, 

generally, TP increases with Ca until extreme levels, at which point insufficient P is available for 

sequestration.  A spatial analysis of the locations where Ca and P are inversely correlated would 

illustrate this potential mechanism; such analyses are beyond the scope of this work. 

There is evidence of some outliers.  None were removed from this preliminary spectral 

modeling effort, but subsequent iterations of the predictions might warrant their removal. 
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Fig. 8.  Scatter plots for each of the analytes.  Along the main diagonal is a histogram.  Units are 
excluded from this plot for clarity.  Refer to Table XX for units and magnitude.  
 

3.1.3  Sub-Sampling 

We used the measured soil attributes to extract latent factors from a principal components 

analysis.  Our rationale is that many of the observed attributes are correlated, and a smaller 

number of variables formed by linear combinations of the original data can explain the variance 

in the data set.  This reduced dimensionality allows us to sub-sample the population of soils into 

representative subsets; this is useful for two reasons.  First, the development of chemometric 

models requires separation of the training data into calibration and validation subsets.  While 

random sampling is typically effective at ensuring that the calibration data set is representative of 

the whole population when the calibration set is large, we anticipate requiring much smaller 

calibration sets for certain portions of this work.  To ensure that data subset selected to train the 

model (which relates spectra to soil properties) is representative of the population, we used Latin 

Hypercube subsampling (LHS); this technique draws samples in a stratified random manner, 
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with the strata defined by the principal components axes.  Operationally, we divided each of the 

first 2 PC axes into 4 zones, and an additional 3 PC axes in 3 zones.  This creates 42x33 (n=432) 

zones in PC space; one sample is selected at random from each zone with at least 1 sample to 

develop a subset with maximal probability of adequately representing the population.  Overall, 

348 sites were selected (84 zones had no samples).  The selected samples (drawn from the entire 

population over space and depth) are shown in Fig. 9; Table 5 summarizes the soil properties if 

the population and the subset.  Clearly the subset spans the variance contained in the first 6 

principal components axes (PCA was run on soil chemical properties, not soil spectra), which 

cumulatively account for more than 85% of the original dataset variance. 

 
Table 5.  Summary of soil properties for sub-sample 
 Mean Value    

 Population Sample 
Population 

SD Δ/SD† p-value 
Bulk Density 0.20 0.23 0.22 12.2% 0.03 
Organic Matter (% LOI) 64.74 61.11 30.87 11.8% 0.04 
Total Aluminum (mg/kg) 6.21E+03 6.06E+03 9.12E+03 1.7% 0.76 
Total Calcium (mg/kg) 8.75E+04 9.35E+04 1.08E+05 5.5% 0.33 
Total Carbon (mg/kg) 342.4 325.6 139.0 12.1% 0.03 
Inorg. Phosphorus (mg/kg) 86.4 79.5 110.0 6.2% 0.27 
Total Iron (mg/kg) 6.52E+03 6.12E+03 6.66E+03 6.0% 0.28 
Total Magnesium (mg/kg) 2.25E+03 2.21E+03 1.71E+03 2.5% 0.63 
Total Nitrogen (mg/kg) 23.25 21.86 10.92 12.7% 0.02 
Total Phosphorus (mg/kg) 351.4 331.9 253.4 7.7% 0.17 
† - Δ = difference between population and sample mean; SD = population standard deviation 

 
3.2 Spectral Library Visualization 

3.2.1 Spectral Precision 

Instrument precision for post-dispersive spectrometers like the one used for this work are 

extremely high, particularly in comparison to typical laboratory methods.  As such, we defined 

an unacceptable replicate (n = 4) variance to be 3%, averaged across the entire spectrum.  This 

quantity was termed the precision index; Fig. 10 summarizes precision indices of accepted scans 

for the entire ESM database (n = 3911).  We conclude that, overall, the instrument selected 

performs at a precision level sufficient to support subsequent modeling.  We note, however, that 

roughly 1 in 20 samples were rejected and rescanned, underscoring the need for real-time 

precision evaluation.  Fig. 11 shows spectra from two samples, one which was written to the 

database (PI = 0.95) and one that was not (PI = 3.45). 
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Fig. 9 – Principal components space for ESM population (grey circles) and a Latin hypercube 
sub-sample thereof (n = 348; black squares).   These 6 PC axes account for over 85% of the 
total population variance. 
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Fig. 10 – Spectral precision indices (PI - %) for all samples from the ESM spectral library. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11 – Spectrographs from two samples (n = 4 replicates) with associated precision index values.  As 
shown, Sample 1(lower albedo spectra) would pass our precision criterion and be written to the 
database; Sample 2 (higher albedo spectra) would be rejected and rescanned. 
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3.2.2 Spectral Variance 

End-member samples from the entire ESM library were selected based on the Latin 

hypercube sampling described above.  Their respective spectra (1st derivative transformed for 

analysis) are displayed in Fig. 12.  Notably, there are numerous regions with high spectral 

variability.  Diagnostic regions for prediction of soil functional attributes are, however, 

frequently found in areas with comparatively low but systematic variability.  As such, 

mechanistic interpretation of complex spectrographs has not proven a particularly effective 

approach.  That is, the location and intensity of particular absorbance features is not directly 

mapped to prediction of functional attributes.  Indeed, many of the statistically robust models 

developed in this work (described below) are comprised of pairwise correlations between a 

particular waveband and a particular attribute that are fairly weak; it is in a multi-variate setting 

where associations are conditional that prediction efficiency is obtained. 

 
Fig. 12 – End-member spectra from the ESM data set.  Spectra are derivative transformed with 
2nd order smoothing. 
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A key feature of chemometric modeling is that statistics for processing high dimensional 

datasets like spectra are sensitive to over-fitting.  Consequently, model efficiency for the training 

data may be an overestimate of actual performance when applied to new data.  As such, a hold-

out validation data set is selected to assess expected performance for new samples more 

realistically.  To do this we partitioned the ESM population into training (67%) and validation 

(33%) based on the Latin hypercube sampling regimen previously described (choosing 33% of 

the data in each zone for validation).  A visualization of the calibration and validation data sets is 

given in Fig. 13, demonstrating that they both capture the variability of the total population. 

                    
Fig.  13 – Calibration and validation data sets in spectral principal components space.  This 
figure illustrates how well both sets represent to total population. 
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3.2.3 New Sample Projections   

One stated advantage of NIRS approach to soil analysis for large-area ecosystem 

monitoring is that the quality and representation of the spectral reference library can grow with 

additional sampling efforts.  In our case, there were over 200 additional samples collected as part 

of project activities beyond the original ESM library, and these provide a useful benchmark for 

both the representation of the system provided by the ESM dataset (n = 3911 samples from 

throughout the Greater Everglades used as our reference library), and the protocols that we’ve 

put in place to screen new samples for their concordance with that reference library.  Figure 14 

summarizes the results of this examination, which applied the loadings from a principal 

components analysis of the reference library spectra to the new samples.  What we show there is 

that all samples except 1 collected for project activities (black squares) fall within the bounds of 

the spectral library (grey circles).  The sample that falls outside of the reference bounds is a very 

deep core section (25-30 cm) which was not well represented in the reference library.  The 

observation of reference library adequacy holds true for all of the principal components (1 

through 6, which explain over 85% of the original variance).  Further, we are able to apply the 

linear combinations that comprise the PCA extremely rapidly to new samples, which, in 

principle, allows us to identify samples falling outside the library bounds that require full 

laboratory analysis and subsequent inclusion in the library.  Ordinarily, project would not start 

with as comprehensive a library as we have here; we fully expected that very few new samples 

will fall outside the calibration bounds.  However, if this technique becomes more widely used, 

we foresee samples from tree islands, STAs, lake sediments and Florida Bay sediments being 

outside the current bounds.  As spectral prediction of these kinds of samples becomes necessary, 

it will be increasingly important for the library to grow in a systematic, efficient way; protocols 

put in place in this work permit that future enhancement. 

Another observation from the bi-plots in Figure 14 are obvious clusters of the new 

samples into two clouds in each plot.  In Fig. 14A, the clouds delineate perfectly (accuracy = 

100%) between marl soils and peat soils (an obvious spectral distinction).  In Fig. 14B and 14C, 

the cloud corresponds dramatically to ridge and slough (separation accuracy is 94.5% on this 

basis alone), suggesting strongly spectrally distinctive peats between the two.  The cloud in Fig. 

14C corresponds almost perfectly (accuracy = 98.4%) to an aspect of sample preparation that we 

have not discussed: the process of grinding.  At each site, three cores were collected in each 
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ridge and each slough, and two cores (Core 1 and Core 2) were hand ground using a mortar-and-

pestle, followed by ball-milling to pulverize the samples.  The third core was only hand ground 

to preserve texture for the methane digestion work.  Spectral separation between these two 

methods underscores the need for standardized protocols if spectral methods are to be widely 

employed. 

 
Fig. 14 – Results of introducing new spectra to reference library.  Only one sample (circled) falls 
outside the multi-dimensional hull defined by the PC spectral space and would be incorporated 
into the library after full laboratory analysis.  The distinct clouds evident in each bi-plot 
discriminate between a) peat and marl, b) ridge and slough, and c) sample grinding protocol.  

A 

B C
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3.3 Continuous Predictions 

3.3.1 Comparison of Methods 

Fig. 15 summarizes the comparison of two measures of model efficiency between two 

chemometric prediction methods (PLS and SGBT – see methods) across all of the parameters 

modeled in this study; Fig. 15A summarizes the coefficient of determination (r2) between 

predicted and observed, and Fig. 15B summarizes the RPD, which is a measure of error 

(population standard deviation divided by the standard error of prediction).  Note that the r2 

values can be compared with the values along the main diagonal in Table 4 for a proximate 

measure of the efficacy of spectra vis-à-vis inter-correlations between measured parameters. 

Both the r2
 and RPD values are for the holdout validation data set (33% of the data retained from 

algorithm training for more realistic estimation of predictive accuracy).  What is clear from both 

comparisons is that there is limited difference in predictive power.  In general, the SGBT appears 

to outperform PLS, but not for all parameters (total C and total Al are more effectively predicted 

using PLS).  Overall, the degree of difference in predicting each parameter is so minor as to be 

functionally irrelevant.  In this situation, the ability to extract information efficiently and apply 

the algorithms to new data easily are perhaps more important for deciding which method to use.  

Because of the computational intensity of SGBT and the much greater need for customized 

programming to implement the resulting algorithms (methods for PLS implementation are 

already very well developed in the commercial market), there are reasons to select PLS as the 

preferred method.  Despite these considerations, we have selected to report the result of SGBT 

for all further analyses because of the moderate improvement in RPD that is observed for some 

soil properties (LOI, TN, Ca, bulk density).  
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Fig. 15.  Methodological comparison of partial least squares (PLS) regression and stochastic gradient 
boosted tree (SGBT) regression for chemometric prediction of soil properties.  A) coefficient of 
determination (r2) between predicted and observed, B) RPD measure of model efficacy, computed as the 
ratio of the population standard deviation to the standard error of prediction (values above 2 are 
considered directly applicable to routine analysis, values above 1.5 are considered to be of utility in 
certain situations).   
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3.3.2 Model Validation Results 

3.3.2.1 Routine Analytes 

The figures that follow depict the predicted vs. observed values for each of the 10 soil 

analytes measured in the ESM study (Figs. 16 – 25).  In each case, the left figure is the 

calibration result (67% of the full data set) while the right figure is the validation result.  For 

each, 4 measures of model efficacy are reported.  The first is the slope of the fitted regression 

line; values significantly different from 1 illustrate bias in the prediction.  Second is the 

coefficient of determination (r2), which describes the fraction of the total variance in the 

observations described by the predictions.  Third is the standard error (either of calibration or 

validation); this is the root-mean square error (RMSE) between predicted and observed, and can 

be interpreted in the specific units of the attribute being analyzed (note that many of the analytes 

have been natural log transformed prior to model development so the units are not the familiar 

mg/kg or % values in which results are typically reported).  Finally, we report the RPD for each 

model, which is a uniform measure of model fit that can be compared across analytes.  Values 

less than 1.5 are considered to be of limited utility, while values greater than 2 are usually 

indicative of models that have broad utility for a wide array of applications.  In previous work 

(Cohen et al. 2007), we showed that the RPD for replicate laboratory measurements of the same 

parameter was between 1.5 and 2.5; that is, where spectral models exceed this selected 

thresholds, they are possibly as effective as laboratory analytical accuracy.  More detailed 

examination of error sources (spectral vs. laboratory) are critically needed to establish the 

functional accuracy of spectra vis-à-vis labs. 

 
Fig. 16.  Scatter plot of spectrally predicted vs. observed for bulk density observations; A) 
calibration and B) validation. 
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Fig. 17.  Scatter plot of spectrally predicted vs. observed for total carbon observations; A) 
calibration and B) validation. 
 

 
Fig. 18.  Scatter plot of spectrally predicted vs. observed for organic matter observations (via 
loss-of-ignition); A) calibration and B) validation. 
 

 
Fig. 19.  Scatter plot of spectrally predicted vs. observed for total nitrogen observations; A) 
calibration and B) validation. 
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Fig. 20.  Scatter plot of spectrally predicted vs. observed for total phosphorus observations; A) 
calibration and B) validation. 
 

  
Fig. 21.  Scatter plot of spectrally predicted vs. observed for total inorganic phosphorus (HCl-
extractable) observations; A) calibration and B) validation. 

 
Fig. 22.  Scatter plot of spectrally predicted vs. observed for total calcium observations; A) 
calibration and B) validation. 
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Fig. 23.  Scatter plot of spectrally predicted vs. observed for total magnesium observations; A) 
calibration and B) validation. 
 

 
Fig. 24.  Scatter plot of spectrally predicted vs. observed for total iron observations; A) 
calibration and B) validation. 

 
 
Fig. 25.  Scatter plot of spectrally predicted vs. observed for total aluminum observations; A) 
calibration and B) validation. 
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One of the primary concerns with prediction algorithms developed from high dimension 

data sets (e.g., spectral data sets) is that they will be over-fit to the data; that is, models will fail 

to realize the same level of accuracy for a new set of data because they are predicated on 

circumstantial relationships in the training data set.  This is the motivation for partitioning the 

SRL into training and verification subsets, and reporting spectral prediction potential using the 

results obtained for the verification data subset only.  Any over-fitting is assumed to be removed 

when predictions are applied to a new data set.  To determine the extent of overfitting in this data 

set and using these modeling techniques, we compare the RPD (which scales the error rate to the 

parameter standard deviation) for calibration and validation.  We expect a small drop-off in 

accuracy; where the drop-off is large, we infer that the modeling technique is excessively 

sensitive to non-systemmatic variability in the spectral data.  From Fig. 26, we infer that there is 

no evidence of serious overfitting in these models (reported for the SGBT method only).  In all 

cases except for bulk density (where model fit improves in validation because of several outlier 

samples in the calibration set) model accuracy is reduced by less than 7% (max. = Total Al).   

 

  
Fig. 26.  Comparison of model accuracy between training data (calibration) and verification (holdout 
validation).  RPD summarizes model error rates in a manner that is comparable across parameters. 
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Several features of spectral predictability of soil properties can be observed in Figs. 16 – 

25.  First, spectral models do relatively well at predicting all of the measured properties; 

analytical accuracy compares favorably with expected accuracy levels expected for conventional 

laboratory measurements (Fig. 27); typically we expect laboratory analyses (as measured using 

the relative % of standard deviation [RSD]) to be within +/- 15% of the true value 95% of the 

time.  The median value for all analytes is less than 7% RSD; 75% quartiles are less than 15% in 

all cases except bulk density.  Note that the error rates for P, inorganic P, Ca, Mg, Fe and Al are 

for log transformed data.   

Combining this RSD information with the high levels of RPD (Fig. 26) compared with 

typical literature values (e.g., Dunn et al. 2002, Chang et al. 2001) suggest that this application of 

NIR spectroscopy offers significant and immediate application in service of improved restoration 

assessment.  In as much as soil can provide a useful performance measure for ecosystem 

recovery, NIR spectroscopy can provide a viable alternative to conventional chemical analyses, 

and a significant opportunity to increase the spatial and temporal density of sampling. 

  
Fig. 27.  Summary of relative % of standard deviation (RSD) values across analytes. 
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3.3.2.2 Soil Nutrient Ratios 

The ESM dataset permits computation and prediction of key ecological metrics of soil 

quality based on the relative abundance (on a molar basis) of nutrients.  Here we present results 

of prediction of C:N (a metric of soil carbon lability) and N:P (a metric of potential nutrient 

limitation and eutrophication sensitivity) ratios.  For both, we present the overall distribution of 

the ratios across the entire population (Fig. 28 for C:N and Fig. 29 for N:P), and then a plot of 

the spectral prediction applied to validation data via which we assess whether direct prediction 

(that is, vs. prediction of C, N and P separately followed by computation of ratios) is a 

worthwhile endeavor. 

   
Fig.  28 – Distribution of C:N ratios across the Greater Everglades. 
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Fig. 29 – Distribution of N:P ratios across the Greater Everglades. 

 

Spectral prediction of C:N (Fig. 30) shows an extremely strong association, with an RPD 

value of 2.95.  As such, we conclude that this performance metric can be robustly be predicted 

using spectral methods.  Because C:N is informative about the potential lability of soil carbon 

(see soil quality section below), this is extremely encouraging for ecosystem-level monitoring of 

C processes.  We observe a weaker but still useful prediction of N:P (Fig. 31); the RPD value of 

1.51 suggests that spectral prediction may be most useful for mapping broad scale patterns, and 

not for local high-accuracy applications.  However, regional mapping of N:P and inference of 

global trends through time and space are informative, and can be simplified using spectral 

prediction. 
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Fig. 30 – Validation data spectral prediction efficiency for C:N. 

  

  
Fig. 31 – Validation data spectral prediction efficiency for N:P. 
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3.3.3 Spectral Information Content 

One of the primary critiques of soft modeling (i.e., statistical prediction) as opposed to 

direct mechanistic inference (i.e., peak matching) is that elucidation of how prediction occurs is 

left undefined.  In many applications of analytical spectroscopy, mechanistic inference can be 

achieved by comparing observed spectrograph peaks and absorbance features to know 

specimens; simple mixtures can be evaluated in this way as well using simple end-member 

unmixing models.  However, when the media from which reflectance data are being obtained is 

highly heterogeneous, as is the case with soils, plant tissues, animal tissues, and many other 

potential environmental samples, the ability to match particular peaks with particular constituents 

is intractably complex.  Add to this complexity the fact that reflectance information in the NIR 

region is not fundamental frequencies, but overtones and it becomes clear that soft-modeling is 

the only practical manner in which to extract information from the spectra.  The complexity of 

the associations between spectra and the various soil analytes is presented in Fig. 32, which 

shows the relative importance of each waveband in the chemometrics developed using the SGBT 

method.  This illustrates the large number of wavebands that contribute information to the 

statistical prediction, and also the degree to which there is significant variability in waveband 

importance across different analytes.  Notably, the pairwise correlation between particular bands 

and the numerous target variables already examined are generally low.  Indeed, many regions of 

the spectrum that appear to have strong predictive potential based on their importance to the 

SBGT prediction routine have extremely weak marginal correlation with the target variables.  

What is critical to remember is that the conditional correlations (that is, the association when 

controlling for other predictors) are what lead to improved prediction potential, and that these are 

not immediately evident from pairwise correlation.  As such, the ability to make spectral 

predictions is embedded in the entire spectrum, not a particular waveband, because the predictive 

capacity of a particular spectral region is conditioned on spectral responses in other regions. 

Relative importance graphs of this type are also useful for underscoring the utility of 

wide range spectrometers; cheaper instruments often sacrifice spectral range of observation, and 

Fig. 32 illustrates why that may reduce accuracy.   
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Fig. 32. Relative importance of wavebands for prediction of various soil properties. 
 

3.3.4 Analysis of Model Residuals 

Model predictions suggest that the spectral method may be useful and effective in 

Everglades monitoring and process assessment.  However, there remains in all of the models 

some unexplained variance in the target variable that may or may not be due to errors that can be 

controlled.  Since the objective of spectral modeling is not necessarily to use only spectra, but 

any ancillary information that might be available, we examine here covariance between the error 

and other attributes of each sample.  Table 6 shows covariance between the model errors 

(prediction residuals) and 1) observed soil properties, 2) other prediction errors, and 3) distance 

from canals.  We observe significant correlation between the observed errors and the original 

parameter values (e.g., correlation between bulk density model residuals and bulk density 

observations); this suggests some systematic bias in the predictions.  Since the correlation is, in 

each case, positive, we infer that the spectral model generally truncates the range and spread of 

the observed data.  This can be adjusted in the predictions if the degree of truncation is uniform 

across the observed range, which given the evidence for homoscedasticity in Figs. 16 – 25, we 

can safely assume. 
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We observe some modest correlation between the error rates (columns in Table 6) and 

other parameters as well.  In all, however, we conclude that these are latent correlations due to, 

for example, correlation between TP and TPi (Table 4).  Finally, we observe some correlation 

between the observed errors for one parameter and errors observed in other parameters.  This 

error covariance, particularly between parameters whose values are strongly correlated suggests 

that the spectra are keying in on similar properties for each prediction, resulting in similar errors.  

One critique of the NIR method for soils analysis is that it principally sees organic matter, and 

predictions fall from covariance between OM and other properties.  The positive correlation of 

LOI errors with other parameter errors illustrates that this critique holds to a moderate extent.  

However, we also see covariance between TP error and metal concentration errors, suggesting 

that the spectral features mistakenly used for TP prediction are the same as those for metals, 

which are, notably, different from the features used for OM prediction. 

 

Table 6 - Residual error correlation with observational covariates. 
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Bulk Density 0.38     -0.21       -0.21     
Organic Matter  0.31 0.26 0.29       
Total N   0.28 0.35 0.29             
Total C  0.31 0.29 0.35       
Total P -0.21       0.50 0.44 0.21       
Total Inorg. P -0.22    0.52 0.65 0.26    
Total Ca             0.36 0.20     
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We also explore prediction errors as a function of categorical factors.  For example, are 

errors similar across hydrologic partitions, or community types, or depth?   

We observe evidence for significant error differences among hydrologic partitions.  In 

general, the magnitude of that covariance is small compared with the total error, suggesting that 

the operational significance of the observed differences is small.  However, many of the mean 

differences are significantly different than 0, revealing systematic spatial bias in the predictions.  

This bias is quantified in Figs. 33 and 34, and can be visualized in interpolated error maps. 

  

Fig. 33 – Chemometric prediction errors by hydrographic area. 
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Fig. 34 – Chemometric prediction errors for cations by hydrographic area. 

 

Most notably, we observe consistent overestimation for all parameters in Holeyland (HL) 

and nearly universal underestimation in WCA1.  Moreover, nearly all hydrographic areas were 

had error rates significantly different from 0, illustrating that the global calibration is 

geographically confounded.  We hasten to point out that while the error trends are significant, 

they are of small magnitude.  One implication is that local calibrations (i.e., a spectral library 

consisting only of samples from WCA1 or ENP) might be more stable.  This is a research avenue 

warranting further consideration. 

Comparison of error rates across community types indicates no significant variation from 

a mean error.  Large overestimates of total C were observed for wet prairie habitats, but these 

errors were not significant at p < 0.05.   

Total Ca Total Mg 
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Error rates by depth were significant principally for the floc and upper soil profiles; 

prediction errors in the deepest profile were generally smaller (Fig. 35).  The most important 

errors were a general underestimate of bulk density in the flow layer, and an overestimate of the 

total Al content in the upper 10 cm of soil.  As before, despite significant error differences at 

different depths, these differences were small, and likely to be of little operational significance. 

 

 

  
Fig. 35 – Error rates by soil depth. 
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3.3.5 Maps of Prediction Errors 

One of the most important avenues of further inquiry from Year 1 chemometric 

development activities is a deeper understanding of prediction errors.  We are currently 

developing a detailed understanding of the role of confounders on prediction errors; a summary 

of that analysis will be included in the final report.  For this report, we have examined the 

prediction errors in space to better understand any systematic spatial pattern to the observed 

disagreement between observations and associated spectral predictions.    

The first analyte for which we map the prediction errors is total P (Fig. 36).  This map 

reveals that there are areas where the spectral model appears to systematically underestimate the 

observed TP values, and similarly, areas where it appears to overestimate observed values.  In 

this cases, the error rates are quite small, and the structure of the spatial pattern is practically 

non-existent (see Table 4 – relative structure and cross-validation r2).   

In a similar vein, the spatial pattern of error rates for organic matter content prediction 

(Fig. 37) and total calcium prediction (Fig. 38) identify areas where there appears to be 

systematic bias in the predictions.  Notably, northern WCA3A is under predicted for all three 

parameters, and the bulk of southern Shark River Slough is over predicted.  This suggests 

avenues of additional analytical work that are beyond the scope of this project, but might include 

entry of easy-to-measure covariates (like water depth based on the EDEN data product) into the 

chemometric model as a means of decreasing sensitivity to these regional biases. 

We present the error spatial patterns for the other parameters in Figs. 39 and 40.  As with 

TP, TCa and LOI, we note that there is significant evidence for strong spatially structured errors.  

This result has never been demonstrated in the literature before, and is the source of some 

important inference: specifically, we interpret the significant geostatistical error patterns to the 

potential utility of local calibration libraries versus global libraries.  Given the propensity in the 

NIRS literature for global models, this finding is crucially important, suggesting that errors in 

global models are expected to be autocovariant (due to local scale differences in the way that 

soils express particular properties).  We note that error maps for TC, TMg and TAl are the most 

strongly patterned, while maps for bulk density and total N are weakly structured. 

Quantification of the degree of spatial structure for both the uppermost soil layer (Profile 

2) and the floc layer (Profile 1 – maps not shown) is provided in Table 7.  Of particular note is 

the relative structure parameter which quantifies to degree to which the data are autocovariant. 
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Fig. 36 – Interpolated error rates for TP chemometric model.  Note the small error magnitude; 
error units are Ln[mg/kg]. 
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Fig. 37 – Interpolated error rates for LOI chemometric model.  Error units are % loss on 
ignition. 
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Fig. 38 – Interpolated error rates for Total Ca chemometric model.  Error units are Ln[mg/kg]. 
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Fig. 39 – Maps of chemometric prediction residuals for ESM soil properties (bulk density – BD, 
total C – TC, total N – TN and total inorganic P – TPi). 
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Fig. 40 – Maps of chemometric prediction residuals for ESM soil properties (total Mg – TMg, 
total Al – TAl and total Fe – TFei).  
 

From Table 7 we infer that all of the properties have substantial spatial structure; none 

exhibits the expected “pure nugget” condition wherein errors are spatially independent.  

Moreover, there is relatively little difference in the relative structure between the parameters 



NIRS Assessment of Restoration Performance Measures 

70 

(from 19% for TP to 36% for total Mg), suggesting that all could possibly benefit for local 

calibration libraries.  We also infer that the range of error autocorrelation is large (23,000 – 

59,000 m) suggesting that what principally structures the error is not fine scale variability.  Error 

geostatistics for the floc layer are slightly different, with both shorter ranges (indicative of more 

local level process variability) and higher relative structure (indicative of more spatially 

structured errors).  As with soil, there are no parameters for which errors are spatially 

independent. Interestingly, the parameter with the lowest relative structure in the upper soil (TPi) 

has the highest relative structure in the floc. 

 
Table 7 – Summary of geostatistical parameters for chemometric prediction errors.  Nugget (short 
range semi-variance), sill (maximum semi-variance) and range (distance over which semi-variance 
increases to sill) are reported along with the relative structure (defined as the ratio of the partial sill to 
the total semi-variance, which equals the partial sill plus nugget semi-variance).   High relative 
structure indicates parameters with strong spatial pattern in their prediction errors.    
  Profile 2 (0 – 10 cm soil) 

Parameter Units 
Nugget Semi-

Variance 
Partial Sill 

Semi-Variance 
Semi-Variance 

Range (m) 
Relative 
Structure 

Bulk Density g/cm3 0.09 0.03 5.93E+04 23.8%
Organic Matter % 62.13 30.32 2.74E+04 32.8%
Total N g/kg 9.69 3.08 1.63E+04 24.1%
Total C g/kg 1535.30 673.89 2.49E+04 30.5%
Total P Ln[mg/kg] 0.10 0.03 5.93E+04 22.3%
Total P (inorg) Ln[mg/kg] 0.27 0.06 5.36E+04 19.0%
Total Ca Ln[mg/kg] 0.13 0.05 2.57E+04 29.3%
Total Mg Ln[mg/kg] 0.11 0.06 5.93E+04 36.2%
Total Fe Ln[mg/kg] 0.17 0.06 4.44E+04 26.2%
Total Al Ln[mg/kg] 0.19 0.05 2.30E+04 20.1%
      
  Profile 1 (Floc) 

Parameter Units 
Nugget Semi-

Variance 
Partial Sill 

Semi-Variance 
Semi-Variance 

Range (m) 
Relative 
Structure 

Bulk Density g/cm3 0.17 0.11 6.03E+04 39.4%
Organic Matter % 45.48 23.61 4.38E+04 34.2%
Total N g/kg 8.67 2.64 3.52E+04 23.3%
Total C g/kg 1067.20 611.35 5.11E+04 36.4%
Total P Ln[mg/kg] 0.09 0.03 1.08E+04 24.7%
Total P (inorg) Ln[mg/kg] 0.15 0.12 6.01E+03 43.4%
Total Ca Ln[mg/kg] 0.13 0.04 9.74E+03 21.3%
Total Mg Ln[mg/kg] 0.09 0.03 2.13E+04 24.9%
Total Fe Ln[mg/kg] 0.21 0.08 1.56E+04 26.8%
Total Al Ln[mg/kg] 0.21 0.05 1.90E+04 19.5%
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3.4 Categorical Predictions 

Chemometric modeling is clearly of significant value for this application, but several 

parameters have weaker than desired accuracy.  Further, some aspects of the soil that might be 

useful if spectral predictions were developed are not continuous variables.  As such, a second 

analytical effort was directed at the development of categorical models, where the target variable 

is either functionally defined into classes from continuous observations (e.g., soil TP > 500 

mg/kg is a broadly useful indicator of enrichment) of is in fact categorical (e.g., soil vs. floc, 

community type, depth in the current data set).   

We developed categorical prediction models using the same SGBT method as previously 

described, but in a mode that permits categorical targets (in fact, the tree-based algorithms that 

underlie the SGBT method are more intuitively suited for categorical targets).  Other methods 

have been explored previously (e.g. canonical discriminant analysis, logistic regression for 

binary or ordinal variables), but the combination of high predictor dimensionality, severe co-

linearity and moderately weak pairwise associations between individual bands and the target 

variables lead to the condition where these methods are significantly less effective at inference.  

No comparative method results are shown here, but typically SGBT outperformed the other 

methods by 10-15% in validation accuracy. 

The first variable that we developed a categorical prediction of is the depth of each soil 

sample.  While this is unlikely to be of immediate value (ascertaining the depth of a sample is a 

field observation not a laboratory one), it may prove to be of significant utility when assessing 

the degree to which soils at the surface deviate from soils at depth.  This may be useful for crude 

community history mapping, surface oxidation studies, or variability in historic peat depositional 

dynamics.  Table 9 summarizes the results.  Overall accuracy levels of 72% in validation are of 

relatively limited utility, but given the variability of soil profiles across the entire system, this 

particular modeling question is worthy of additional attention.  In particular, it will be useful to 

determine if source region (ENP, WCA, Big Cypress) affects the predictive accuracy, and where 

confounded prediction is prevalent (i.e., in areas with significant historic enrichment).   

 

3.4.1 Soil Functional Thresholds 

One of the original objectives of this work was to explore categorical screening models 

where continuous prediction of soil analytes was insufficient.  The results to date (both this 
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report and our previous report) suggest, in general, that continuous spectral prediction of soil 

analytes is sufficiently successful that categorical models may not be needed.  However, despite 

the relative success of continuous prediction, there are still numerous opportunities to explore 

categorical modeling, both by designating functional thresholds in otherwise continuous 

observations (e.g., TP performance threshold of 500 mg/kg) or by examining the spectral 

separability of ecosystem properties that are naturally categorical (e.g., soil vs. floc, dominant 

vegetation).  This section summarizes the success of spectral prediction of categories. 

Table 8 provides a simple comparative summary of all binary spectral models developed 

for this work.  For each model we report the functional threshold that delineates case from 

control (in the case of continuous variables only), the overall calibration and validation accuracy, 

the sensitivity and specificity, and finally the odds ratio for correct classification.  Overall, we 

conclude that spectral screening models have strong potential application.  In some sense, this is 

a method looking for an application; in particular, were there to be an effort to delineate 

ecological condition, perhaps based only on best professional judgment, then the target variable 

for spectral screening would be substantially more interesting.  It is not our objective to provide 

this effort, so we focus on other classification problems to illustrate the method and how the 

efficacy of a predictive model might be evaluated. 

 

Table 8.  Summary of categorical model efficiency. 

Model Target Category Threshold† 

Validation 
Prediction 
Accuracy 

Validation 
Sensitivity‡

Validation 
Specificity‡ 

Validation 
Odds 
Ratio§ 

Total P Case > 500 mg/kg 85.5% 87.9% 74.9% 21.7 
Total Inorganic P Case > 100 mg/kg 84.2% 86.6% 76.4% 21.0 
Total Al Case < 1500 mg/kg 80.4% 81.9% 75.6% 14.1 
C:N ratio Case < 13 83.2% 84.2% 80.0% 21.4 
N:P ratio Case < 40 81.3% 82.2% 75.9% 14.6 
Soil vs.Floc n/a 92.6% 92.1% 92.7% 148.1 
† - Case (response = 1) definitions.  No definition is needed for some categorical data (e.g., soil vs. floc). 
‡ - Sensitivity = correct positives; Specificity = correct negatives 
§ - Typically, OR values greater than 10 indicate effective diagnostic screening models. 
 

3.4.2 Error Rate Analysis 

As with continuous predictions, the incidence of errors as a function of known sample 

attributes (depth, geography, vegetation community) can be informative about how to use these 

models in practice.  We examined error probabilities conditioned on both continuous and 
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categorical variables that might be considered covariates.  In general, error rate differences were 

small; for example, no significant differences in error probabilities were observed for soil depth 

or community type.  As with continuous chemometrics, there were significant differences among 

hydrographic regions, but as before these were of small magnitude. 

 

3.4.3 Nominal Analysis 

3.4.3.1 Soil Depth 

Categorical prediction of soil depth is principally of value if it can aid in peat 

depositional studies.  The existing library is coarsely sectioned, so the calibration is primarily 

suggestive of potential rather that a conclusive demonstration.  The results (Table 9) are fairly 

compelling; overall, nearly 72% of samples are correctly classified from 4 soil depths.  Error 

occurs mostly with proximate depths, suggesting that the model can readily discriminate deep 

from shallow samples.  Moreover, the most confounded class is the deepest (profile 4) which had 

few samples and would not necessarily be expected to be much different from profile 3 samples.  

What is most encouraging about this first-order estimate of spectral prediction of soil horizons is 

that the soil depth prediction is not conditioned on geographic area.  This global model is both  

 

Table 9. Spectral prediction of soil depth (1 – 
floc, 2 – 0 to 10 cm, 3 – 10 to 20 cm, 4 – 20 to 
30 cm)  
Calibration Predicted 
Observed 1 2 3 4

1 513 65 2 17
2 88 752 117 121
3 14 93 616 101
4 1 7 33 80

Overall Accuracy 74.8%   
     
Validation Predicted 
Observed 1 2 3 4

1 270 33 7 15
2 40 367 81 28
3 3 71 261 70
4 1 5 14 25

Overall Accuracy 71.5%   
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stable and, given the expected uncertainty, remarkably accurate.  As such, it is expected that 

localized models (i.e., those from one hydrographic region) would perform better.  Our study of 

finely sectioned cores (see below) is also suggestive of systematic spectral variance with depth.  

Where truncated soil profiles exist (e.g., due to peat subsidence or fire), spectra may be a rapid 

and robust tool for diagnosing and mapping.  Recent evidence from the literature (Skjemstad et 

al. 2006) suggests that NIR spectra can readily discriminate charcoal C from peat C, allowing 

relative inexpensive and spatially explicit reconstructions of fire history in peat systems.   

 

3.4.3.2 Community 

Another application of categorical modeling that may have some immediate utility is the 

prediction of community based on spectra.  The clearest application of such a model would be 

backcasting through cores; if reliable discrimination models could be developed between ridge 

and slough (as an example), soil profiles could be examined to determine whether a given site 

had changed between the two community types during the period represented by that soil profile.  

Table 10 summarizes the spectral separability of 4 major vegetation community assemblages; as 

shown, there is considerable support for spectral screening of ridge and wet-prairie (presumably 

due to the spectral influence of marl sediments), but poorer discrimination between ridge and  

 

Table 10 – Summary of spectral prediction of community type.  Odds ratios > 10.0 
are typically considered useful for diagnostics testing. 
Calibration Predicted   
Observed Wet Ridge Slough Mangrove Accuracy Odds 
Wet Prairie 395 40 16 57 61.4% 54.0 
Ridge 26 949 151 14 70.8% 14.7 
Slough 26 148 261 11 45.8% 5.3 
Mangrove 2 1   64 83.1% 152.9 
Overall Accuracy 64.0%      
       
Validation Predicted   
Observed Wet Ridge Slough Mangrove Accuracy Odds 
Wet Prairie 171 21 11 18 60.9% 61.5 
Ridge 8 385 81 8 70.0% 12.7 
Slough 11 71 110 10 40.7% 3.5 
Mangrove   2   25 71.4% 76.6 
Overall Accuracy 61.0%      
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slough.  A closer examination of ridge-slough soils reveals stronger discrimination when 

considered as a binary classification problem; the validation accuracy and odds ratio for this 

binary model are 79.5% and 12.6, respectively.  This suggests moderate accuracy; the utility of 

this level of accuracy for ecological back-casting is beyond the scope of this work, but would be 

an important component of any follow-up activities. 

 

3.4.3.3 Soil vs. Floc 

Categorical prediction that may have more immediate ramifications is discrimination of 

soil from flocculent material.  Currently there is no repeatable way to define the difference other 

than best professional judgment (which represents the “truth” condition for this model).  Table 

11 summarizes the results of delineating between floc and soil.  We observe high overall 

validation accuracy levels (93%) with a classification odds ratio over nearly 150 (10 is typically 

used for identifying a useful diagnostic model).  We consider this to be of substantial utility for 

objective mapping of the presence and perhaps status of floc development across the area. 

 
Table 11.  Summary of spectral prediction of soil vs. floc.   
Calibration Observed 
Predicted Floc Soil 
Floc 498 29
Soil 113 1980
   
Overall Accuracy 94.6% 
Sensitivity 94.5% 
Specificity 94.6% 
Odds Ratio 300.9 
   
Validation Observed 
Predicted Floc Soil 
Floc 257 22
Soil 74 938
   
Overall Accuracy 92.6% 
Sensitivity 92.1% 
Specificity 92.7% 
Odds Ratio 148.1 

 

3.4.3.4 Floc Probability with Depth 

Given the obvious success at discriminating between soil and floc, we expanded this 

segment of the analysis to test the hypothesis that floc material is not being incorporated in the 
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soil.  Floc is spectrally distinct from soil (at least in the coarse sectioning within the ESM sample 

set); therefore, if floc is being integrated into the upper soil profile, there should be a residual 

spectral signal thereof.  If floc is not being incorporated – by extension it is a transient mass with 

no durable accretion products – then the floc-soil boundary should be sharp.  The methods used 

to discriminate soil from floc provide both a binary classification and a class assignment 

probability.  Using finely sectioned long cores collected in floc-forming sloughs in central 

WCA2A, we examined the vertical changes in floc assignment probability.  Fig. 41 summarizes 

the results for the 4 cores.  In general, we observe moderately high floc class assignment 

probabilities for at least the first 6 cm of the profile; in two of the cores there are high 

probabilities as deep as 18 cm.  This suggests that floc is more than simply a transient surface 

phenomenon, and some of floc materials are being incorporated in soils to some depth.  

However, after 18 cm, the probability of floc class assignment drops effectively to zero.  

Moreover, in two of the cores (Core 1 and Core 3) the decline in probabilities is abrupt, 

suggesting stark transitional boundaries, which would indicate limited integration of floc 

material into the soil.  Cores 2 and 4 both have high floc probabilities in the surface sections, and 

then another band of apparent floc at 8-12 cm below the surface.  Marl accumulation layers, 

perhaps resulting from historical floc accumulation or from some vertical profile in Ca 

availability or pH, are the likely explanation. 
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Fig. 41 – Probability of sample classification as floc vs. depth for 4 cores (Fig. XX) obtained 
from sloughs in WCA-2A.  The graph shows variable but dramatic decline in floc classification 
probabilities given the sample spectra suggesting only moderate incorporation of the floc 
material into the soil profile.  Note that the 0 depth is the top of the floc layer. 
 

3.5 Analysis of Carbon Quality 

3.5.1 Methane Production Summary 

Methane production was measured in controlled incubations over 12 days; average rates 

of methanogenesis are plotted vs. the depth of the soil sample in Fig. 42 and 43.  Error bars refer 

to standard errors derived from triplicate measurements from each sample depth. 

As expected, the trend with depth is a decrease in methane production (corresponding to 

more recalcitrant material) and an increase in residual fiber (or lignin) content, which is 

relatively unavailable for microbial metabolism.  We note that site SS1C (see Fig. 5) acts as an 

outlier in each case; this site is a marl prairie, with shallow calcitic soils and very little peat 
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accretion.  Indeed, the vegetative community that persists at this site is typical of drier conditions 

than the communities present at the other three sites.    

 

 
Fig. 42 – Methane production (μg/g soil/ day) for ridge cores.  

 

 
Fig. 43 – Methane production (μg/g soil/ day) for slough cores. 
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Several notable observations are evident from these graphs.  First, the trend of increasing 

C recalcitrance with depth is relatively uniform between ridge and slough, which was surprising 

because the elevated lignin content of sawgrass litter vis a vis litter from slough co-dominants 

(Utricularia spp., Nymphaea odorata, Eleocharis cellulosa, Rhynchospora inundata).  Indeed, 

the rates of methane production and variance with depth are remarkably similar given known 

differences in the input litter quality from the different communities.   

A second relevant observation is that the analytical precision of the methane digestion 

protocol is low (particularly vis-à-vis the fiber analysis – see below), as demonstrated by the 

magnitude of the error bars between triplicate observations.  The coefficient of variation (std. 

dev./mean) for the methane protocol averaged over 81%, while for the fiber analysis protocol, 

the same value averaged less than 20% over all samples.  This suggests that, from a spectral 

modeling perspective, the use of fiber analysis is a more robust target because there is less 

potential for the calibration to be confounded by laboratory error.   

 

3.5.2 Fiber Analysis Summary 

The fiber analysis of the same set of sectioned cores shows a trend in the fraction of 

residual fiber in each sample that is consistent with the methane incubations (Figs. 44 and 45).  

In general, with the exception of the marl soil sample (SS1C), the residual fiber content increases 

monotonically with depth.  The error bars are small (they report the standard deviation of three 

analytical replicates run in separate batches) suggesting that whatever signal we observe here is 

highly repeatable. 

An equally important observation from a process perspective is that the fraction of peat 

residual fiber at depth is actually higher in slough (~50-60%) than in the ridge (~40%), omitting 

the data from SS1C.  This is reinforced by weak evidence of increased methane production at 

depth in ridges (~ 0.3 μg/g/day) compared with sloughs (0.1 μg/g/day).  We infer that despite 

strong differences in litter quality, the material that comprises the peat is of similar quality. 
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Fig. 44 – Residual fiber fraction (%) for ridge cores.  

 

 
Fig. 45 – Residual fiber fraction (%) for slough cores. 
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We compared the two metrics of C quality using ordinary least squares regression; to 

linearize the methane production data, they were reported on a log10 scale.  We observe moderate 

cross-correlation between them (Fig. 10 – r2 = 0.30; p < 0.001) in the expected direction (as fiber 

content increases, methane production potential decreases); note that this analysis omits the data 

from site SS1C.  We attribute the weaker than expected association primarily to reduced 

analytical precision for the methane analysis.  We further note that the leverage of four points 

(Fig. 46) suggests that they may constitute analytical outliers.  The r2 value increases to 0.51 with 

those points omitted; notably all four points are from the deepest core sections (25-30 cm). 

 

 

Fig. 46 – Cross-correlation between residual fiber content (%) and methanogenesis (μg/g/day) 
for all samples.  Circled data points exhibit high leverage and large residuals, suggesting that 
they may be analytical outliers. 
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3.5.3 Spectral Prediction of Soil C Quality 

In addition to running C-quality protocols on these additional cores, we selected 350 

samples from the original data set on which to run similar analyses.  After observing the poor 

analytical precision of the methane digestion approach and the concordance between that method 

and the fiber analysis method, we selected to run only fiber analysis on those 350 samples. 

The selection of samples was done to maximize representation of the overall population.  

We used a Latin-hypercube sub-sampling design, predicated on soil spectra.  This protocol 

partitions multi-variate space defined by spectral principal components into segments (n = 432) 

from which we selected, at random, one sample; 84 segments had no samples, resulting in 348 

samples that maximally cover observed variability in the data set (n = 3911).  Fig. 47 shows 

spectral locations of the sub-sample with respect to the population.  We make this effort to 

represent the full data set to the maximum extent possible so that any subsequent spectral 

prediction made based only on the sub-sample will not encounter samples that are spectrally 

different.   

After identifying the sub-sample set and performing the fiber analysis procedure, we 

summarized the results according to various attributes of interest, including community type and 

sample depth (floc, 0 – 10 cm, 10 – 20 cm).  As expected, both exhibited significant differences 

(p < 0.01).  The effect of depth is as expected (Fig. 49), with significant increases in residual 

fiber content between floc and soil (p < 0.001); differences between the two soil profiles (0 to 10 

cm and 10 to 20 cm) were non-significant (p = 0.14), but trended as expected.  Differences in 

residual fiber content between community types yielded several surprising results (Fig. 50).  

First, soils in mangrove ecosystems were significantly lower in residual fiber than other 

ecosystems.  Tree-islands had higher residual fiber content than any other system; both these 

inferences are suspect because of small sample sizes for each.  We note here that all comparisons 

made in this section are for actual fiber observations, not for spectral inference of fiber content. 

Among the community types with sufficient replication to be reliable, wet prairies had 

significantly lower residual fiber than ridge and slough; sloughs had higher fiber content than 

ridges, but the p-value for that post-hoc contrast was only marginally significant (p = 0.02).  We 

reiterate that our objective here is not to exhaustively describe patterns of C quality across the 

Greater Everglades, but to demonstrate that these data are of interest, and to consider the 

feasibility of their prediction using spectra sample spectral reflectance. 
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Fig. 47 – Representation of the overall spectral population (reference library – grey diamonds; n 
= 3911) by the Latin hyper-cube sub-sample (black squares; n = 348).   

 

Predicting litter and soil C quality using spectra is supported by recent research in this 

field.  Shepherd et al. (2003) and Bouchard et al. (2001) demonstrate the central concept in 

manure and litter, respectively.  Here we only summarize the results of chemometric 

development between spectra and residual fiber predicted for the 350 samples from throughout 

the Greater Everglades.  While we developed spectral models predicting methane production and 

fiber analysis for the core study, those results are suspect because of auto-covariance issues 

created by multiple samples being from the same core.  However, we did observe stronger 
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spectral prediction efficiency for the fiber analysis than for methane (validation r2 values of 0.93 

and 0.67, respectively) underscoring methodological uncertainties in the latter protocol. 

Fig. 48 shows the hold-out validation comparison of predicted and observed residual 

fiber content.  As shown, the validation r2 is 0.83 between predicted and observed; as with the 

results presented previously, we place more emphasis on the RPD and SEV values.  In this case, 

the RPD is 2.47, suggesting comparatively strong prediction efficiency that the literature 

suggests is of immediate and broad utility. 

  
Fig. 48 – Predicted vs. observed residual fiber content for the hold-out validation data set.  
Values were natural log transformed prior to analysis to meet assumptions of normality.  

 

In addition to predictions of the residual fiber pool, we develop calibrations to other pools 

(Neutral Detergent Soluble – Waxes/Fats/Carbohydrates, Acid-Detergent Soluble - Hemi-

Cellulose, Strong Acid Soluble - Cellulose) for comparative purposes, and to further determine 

the resolution of the spectral prediction.  The results are somewhat less encouraging for these 

other pools, as summarized in Table 12.  Clearly, the spectral method is most sensitive to the 

bulk differences between recalcitrant organic material and bioavailable material (residual 

content), and our ability to discriminate categories of bioavailability is limited.  In particular, 
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spectral prediction of the neutral detergent soluble fraction (%NDF) is poor.  The other two 

fractions approach the literature threshold (RPD > 1.5) for useful chemometrics.  

Several modifications to our selected analytical procedure might yield better results in 

future work.  In particular, our ability to control for the solubility of the mineral fraction of the 

sample is quite limited, and sample pretreatments to exclude organic material followed by the 

sequential fiber protocol could yield more experimental control over this unknown. 

 

Table 12.  Summary of chemometric performance for fiber 
fractions. 
Fiber Fraction Validation r2 Validation SEV Validation RPD 
%NDF 0.39 12.78 1.26 
Ln[%ADF] 0.59 0.62 1.48 
Ln[%H2SO4] 0.54 0.63 1.38 
Ln[Residual] 0.83 0.36 2.43 
%NDF – neutral detergent fraction; %ADF – acid detergent fraction, %H2SO4 – 
strong acid soluble fraction, Residual – lignin/residual fiber fraction 

 

3.5.4 Soil C Quality by Area and Community 

Given the spectral prediction of residual fiber content, we can estimate patterns of C 

quality as a function of depth (Fig. 49) and community type (Fig. 50).  Both show significant 

differences.  The relationship with depth is as expected, with low fiber content in floc. 

 
Fig. 49 – Residual fiber fraction compared across sample depth.  Different letters denote 
communities with significant differences (p < 0.05); sample sizes for each are given. 
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Differences among communities are more difficult to interpret.  Tree islands (n = 4) had 

the highest residual fiber content; while this is consistent with what would be expected of 

organic soils that form in comparatively oxic environments, more samples are required to 

substantiate the trend.  Interestingly, sloughs generally had significantly higher residual fiber 

than ridges, challenging the notion that soils in sloughs, which are made from labile plant tissues, 

should themselves be more labile. 

 
Fig. 50 – Residual fiber fraction compared among dominant vegetation type.  Different letters 
denote communities with significant differences (p < 0.05); sample sizes for each are given. 
  

3.5.5 Maps of Soil C Quality 

One objective of developing the spectral model predicting soil residual fiber content was 

visualization of that quantity across the entire ecosystem.  Figure 51 shows that product; Table 2 

summarizes the relevant mapping parameters (nugget and sill variance, range, cross-validation 

accuracy) for this and all other maps presented in this work.  Fig. 51 indicates significant spatial 

pattern to the soil carbon quality with variability over 3 orders of magnitude.  The highest quality 

C is found in soils in northern Big Cypress Preserve and, to a lesser extent, WCA1 

(Loxahatchee).  The fringes of Shark River Slough in Everglades National Park have soils with 
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low residual fiber content.  Note that this map was produced using the data inferred for the top 

soil layer (i.e., not surface floc or deeper soil profiles).   

 
Fig. 51 – Map of residual fiber content across the Greater Everglades produced by applying the 
chemometric model for that parameter, constructed using a subset of 348 samples, to the entire 
reference library (n = 1594 in profile 2 – 0-to-10 cm). 
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3.6 Analysis of Total Mercury 

Samples were distributed throughout the Everglades, with no evidence for sampling bias 

to a particular area (Fig. 52).  The average minimum distance between samples was 1902 m.  In 

general, samples were sparser in the rocky southeastern region of ENP and WCA 3B (mean 

distance = 2077 m and 2611 m, respectively) and in Big Cypress National Preserve (2330 m) 

than in WCAs (WCA1 – 1834 m, WCA2A – 1446 m, WCA3AN – 1767 m, WCA3AS – 1905 

m).  Sample densities in smaller hydrologic zones were higher (HL – 1175 m, MOD – 1210 m, 

RB – 1283 m).  Overall, the sample density, with over 25% of samples within 1000 m of another 

site, supports exploration of lag spacings for semi-variogram analysis between 100 and 1000 m.   

 

 

Figure 52. Soil sampling locations across the Everglades.  Shown on the Florida map are 
National Atmospheric Deposition Program Hg monitoring stations and recent (since 1997) 
annual average wet deposition rates (μg/m2/yr) (NADP 2007).  Hydrologic partitions are labeled 
on the Everglades map (BC = Big Cypress Preserve, WCA = Water Conservation Area, ENP = 
Everglades National Park, HLRB = Holeyland/Rotenberger tracts; MDLS = Model Lands) 
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3.6.1 Summary Statistics (Total Hg per mass and Total Hg per area) 

The mean mercury concentration (THgM) across the Everglades was 0.156 mg/kg (Table 

13) with concentration above 0.2 mg/kg at 168 sites.  The mean THgA was 2.3 mg/m2, 

approximately 100 times the estimated annual loading rate of 25 μg/m2/yr given a sampling 

depth of 10 cm.  Variances around both means are large with the coefficient of variation (CV) 

roughly 80% for both, and distributions for both are moderately skewed right.  The maximum 

concentration (THgM = 0.917 mg/kg) occurred in western WCA3A; 32 sites (5%) had 

concentrations > 0.4 mg/kg, 15 of which were in WCA3A and 12 of which were in WCA2A and 

WCA1.  Further, while no sites in the BCNP had THgM > 0.2 mg/kg, 58% of sites in WCA1 (34 

out of 59 sites) and 60% of sites WCA3AS (51 out of 85 sites) were above the threshold.  

Bulk density values, which were used to compute THgA, varied dramatically across the 

Everglades with mean values in ascending order: WCA1 (BD = 0.09 g cm-3) < WCA2A (0.11 g 

cm-3), WCA3AS (0.12 g cm-3) < WCA3B (0.13 g cm-3) < WCA2B (0.18 g cm-3), WCA3AN 

(0.19 g cm-3) < ENP (0.24 g cm-3) < BCNP (0.67 g cm-3).   

 

Table 13. Statistical properties of THgM and 
THgA across the Everglades 
Variable THgM (mg kg-1) THgA (mg m-2) 
N 600 600 
Mean 0.156 2.267 
SE mean 0.006 0.066 
Min 0.002 0.075 
Max 0.917 12.038 
Med 0.126 1.888 
StDev 0.138 1.622 
CV † 88.461 71.548 

 

Correlations of THgM with other measured biogeochemical properties (TP, TC, LOI and 

BD) were significant (Table 14), but correlations between those same variables and THgA were 

non-significant.  The absence of correlation between THgA and principle indicators of soil type 

and condition (except TP in enriched sites) offers evidence for depositional uniformity in space.    

Covariance between THgM and soil properties was strongest with TC, and weakest with TP.  

Average TP, TC, and THgM observations by region, ranked by mean TP from left to right (Fig 

4), suggest positive covariance between TP and both THgM and TC in areas with low TP (BCNP, 

ENP WCA3AS).  In areas with elevated TP (WCA1, WCA2A, WCA3AN), the association with 
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THg and TC reverses.  This non-linear association is reinforced by a scatter plot of THgM and TP 

(Fig 53), which shows strong positive correlation below TP concentrations of 500 mg/kg, but 

moderate negative correlation above that level.  Notably, soil with TP  > 500 mg kg-1 are 

considered P enriched (DeBusk et al., 2001). Using this threshold, we evaluated correlations 

between variables in unimpacted (TP < 500 mg/kg) and impacted (TP > 500 mg/kg) sites (Table 

14).  Correlations between THgM and TC were consistently positive, but stronger in unimpacted 

sites.  In contrast, correlations between THgM and TP were negative in impacted soils and 

positive in un-impacted soils; all correlations were statistically significant at p < 0.05.  

 

Table 14. Pearson correlation coefficient of THgM and THgA with biogeochemical 
properties, and with TP and TC in impacted and un-impacted areas of the Eveglades  
 THgM THgA TP TC TN LOI BD 
Overall (n = 600)        
THgM 1.00 0.63* 0.22* 0.58* 0.60* 0.58* -0.48* 
THgA 0.63* 1.00 -0.09* 0.01 0.07 0.03 0.04 
Un-impacted (n = 461)        
THgM 1.00 0.62* 0.51* 0.61* 0.63* 0.61* -0.51* 
THgA 0.62* 1.00 0.08 0.04 0.09 0.06 0.01 
Impacted (n = 139)        
THgM 1.00 0.76 -0.35* 0.39* 0.39* 0.40* -0.32* 
 ThgA 0.76* 1.00 -0.30* 0.07 0.13 0.06 0.11 
 

 
Fig. 53 – Relationship between sample total P and total Hg.  TP enriched areas show a negative 
correlation with THg, while below 500 mg/kg the correlation is positive. 
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3.6.2 Spectral Prediction of Total Hg (per mass) 

As with all other parameters in this work, the principal objective of our NIRS feasibility 

study was to determine if methodological accuracies are sufficient for routine monitoring and 

assessment.  We applied that same set of chemometric tools to the prediction of Total Hg from 

spectra, and observed relatively encouraging results (validation accuracy; Fig. 54).  While the 

error rates are somewhat high and there is substantial residual error, the model suggests that 

spectral prediction is a plausible method for increasing the spatial or temporal density of 

sampling. Given the need for high accuracy measurements, and given the low overall 

concentrations, this method is most likely to be useful in an integrated sampling effort, wherein 

routine analyses are performed simultaneously, and spectral prediction is used principally to 

increase sample densities.  Given this constraint, intrinsic uncertainty about the manner in which 

total Hg can be spectrally predicted, and the size of the data set for which total Hg measurements 

were obtained, all subsequent analyses are performed on the raw data only. 

  
Fig.  54 – Validation efficiency of spectral prediction of Total Hg across the Greater Everglades.  
Some of the observed correlation is with Total C content, but correlations are much higher for 
spectra (r = 0.84 for spectra vs. 0.58 for TC; Table XX) 
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3.6.3 Analysis of Semi-Variance 

Semivariograms for THgM and THgA showed high semivariance at short lags, indicating 

potential spatial outliers. Based on local Anselin’s Moran I, 17 observations were identified as 

local spatial outliers, and removed for semivariance analysis.  Spatial autocorrelation of both 

variables was modeled using a double spherical structure (Fig 55); modeled parameters are given 

in Table 15.  We observed a clear sill in semi-variance at a range of 30 km, suggesting that a 

linear semi-variogram model (Stober et al. 2001) is inappropriate for interpolation. 

Overall, semivariance analysis indicates strong spatial structure for THgM with a relative 

structure parameter (Q) indicating that over 80% of the spatial variance is explained by the 

model semivariogram.  That is, only 19% of spatial variance (nugget variance) remains 

unexplained by the semivariogram model. The semivariogram for THgA explained less of the 

total variance (56%) suggesting spatial structuring was absent or occurring at different scales 

than our observations.  There was no evidence of significant anisotropy in either variable. 

The spatial extent of THgM and THgA in quantized ranges  indicate that over 77% of the 

area had THgM values below 0.2 mg/kg, and less than 2% had concentrations more than double 

that threshold.  This result, combined with our exploratory analyses that suggested 5% of 

observations exceeded 0.4 mg/kg illustrates the localized nature of severe mercury enrichment.  

That is, large areas had low THgM levels, and hot spots were geographically constrained.  While 

there is no regulatory threshold for THgA, we observed that nearly 30% of the landscape had 

levels in the upper 10 cm exceeding 100 years of deposition at current rates. 

 

Table 15. Semivariogram parameters for THgM and THgA and OK cross-validation errors. 
Variable Semivariogram parameters † Error statistics‡ 
 Nugget Partial 

sill § 
Range 
(m) § 

Partial 
sill ¶ 

Range 
(m) ¶ 

Q# ME RMSE r 

THgM 0.004 0.00459 4,498 0.012 37,398 80.6 0.0006 0.098 0.70 
THgA 1.009 0.426 3,998 0.858 42,998 56.0 0.0024 1.461 0.45 
† All parameters are for spherical semivariogram model  
‡ ME, Mean Error; RMSE, Root mean squared error; (Schloeder et al., 2001) 
§ Parameters for first spherical model 
¶ Parameters for second spherical model 
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Fig. 55  Modeled global semivariograms for a) THgM and b) THgA with 500 meter lags. 
 

Cross-validation efficiency for both THgM and THgA (plotted in Fig. 56 and summarized 

in Table 15) showed strong spatial agreement between predicted and observed to THgM, but 

reduced agreement for THgA.  The mean error for both is close to 0 substantiating that kriging 

predictions were unbiased.  The RMSE for THgM is 0.098 mg/kg; the RSME was as high as it is 

principally because predictions for 6 validation sites, two of which were under-predicted and 

four that were highly over-predicted; the high correlation value (r = 0.70) underscores the 

relative prediction efficiency for most validation sites.  RMSE for THgA was high (1.46 mg/m2), 

with an overall fit that was fair (r = 0.45) suggesting less consistent spatial structuring.  

A

B
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Fig. 56 – Cross-validation efficiency for kriging models for total Hg per mass and per area. 
 
 

3.6.4 Analysis of Cross-Covariance 

Sample variances for THgM differed markedly across sub-regions, with low variances 

observed for BCNP (0.0007), WCA3AN (0.004), ENP (0.008), and high values in WCA1 

(0.014), WCA2A (0.015) and WCA3AS (0.039); overall variance was 0.019.  These differences 

suggest that spatial structure could also differ from the global spatial structure observed above. 

Spatial structures within individual regions were analyzed using semivariograms, and modeled 
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parameters (Table 16) suggest smaller ranges for the sub-regional models compared to the global 

model; this is expected because semivariograms are scale dependent (Qi and Wu 2005).  Among 

sub-regions, ENP exhibited the largest range (11,539 m), which could be attributed to larger 

spatial extent.  Sill values, which also varied among sub-regions primarily respond to mean 

concentrations, so lower values were observed in BCNP, ENP and WCA3AN, with larger sills in 

WCA3AS&B and WCA1&2. The relative structure quantifies the degree to which the model 

semivariogram captures spatial variance, and all values for sub-regional models are less than the 

global model (Q = 80.6 – Table 15). 

Using sub-regional models to make predictions did not improve interpolation accuracy; 

the overall RMSE between predicted and observed for cross-validation using the sub-regional 

models was 0.101 mg/kg compared with 0.098 mg/kg for the global model.  

We examined cross-semivariances in an effort to identify ancillary soil measurements (TP or 

TC) that could be used to improve interpolation.  Cross-semivariograms at the regional scale 

were significant for TC only (Table 16), but did not improve interpolation accuracy despite the 

availability of 744 additional sample sites at which TC was measured.  Cross-validation RMSE 

(0.099 mg/kg) and predicted vs. observed correlation (+0.71) were the same as univariate 

interpolation (Table 15).  We also selected 2 sub-regions based on mean total P concentrations, 

one impacted and the other unimpacted for more geographically confined investigation; ENP 

 

† Q, Relative structure expressed as % 
§ Greater Everglades, integrating across compartments, including TC measurements for spatially denser prediction. 
 

Table 16. Parameters for semivariograms for THgM in stratified regions, and cross-semivariogram of 
THgM with TP and TC in selected impacted and unimpacted areas 

Areas N Var. Model Nugget Partial 
Sill 

Range Q † Mean 
Error 

RMSE r 

Semivariograms    
BCNP 95 THg Spherical 0.00015 0.0005 5400 76.1 -0.001 0.026 0.30 
ENP 155 THg Spherical 0.00249 0.0044 11539 63.9 0.001 0.092 0.42 
WCA1/2 120 THg Spherical 0.00710 0.0070 8320 49.6 0.003 0.104 0.49 
WCA3AN 113 THg Spherical 0.00035 0.0006 7474 64.4 -0.002 0.064 0.54 
WCA3AS/B 117 THg Spherical 0.01080 0.0224 3549 67.5 -0.001 0.156 0.53 

Cross-semivariograms    
Global§ 600 THg-TC Double 

Spherical 
0.48 1) 2.40 

2) 8.88 
1) 7800 

2) 47000 
95.9 0.000 0.099 0.71 

ENP 155 THg-TC Spherical 0.8 6.42 10749 87.6 0.0018 0.084 0.48 
ENP 155 THg-TP Double 

Spherical 
2.4 1) 6.55 

2) 0.88 
1) 1199 
2) 10000 

67.7 -0.0019 0.075 0.62 

WCA3AN 113 THg-TC Spherical 0.5 5.1 10750 90.2 -0.0063 0.064 0.67 
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(mean TP = 341 mg/kg) was selected as un-impacted, and WCA3AN (mean TP = 539 mg/kg) 

was selected as impacted.  Cross-semivariograms parameters (Table 16) indicate that ThgM was 

spatially cross-correlated with both TP and TC in ENP, but was cross-correlated with TC only in 

WCA3AN.  The relative structure of the modeled semivariograms shows that spatial variation 

was explained equally well in both sub-regions using TC as a covariate, and substantially better 

than the relative structure of THgM alone.  Using the stronger TC cross-semivariogram for co-

kriging interpolation yielded results that were markedly improved for both sub-regions. 

 

3.6.5 Analysis of Total Hg by Community Type 

To examine evidence for differential enrichment by biological processes, we compared 

the THgM levels among dominant community types (Fig 57A);  there were clear global 

differences with mean THgM spanning a gradient from 0.06 mg/kg in depressional marshes (DM) 

and wet prairies, to a high of ~ 0.20 mg/kg in ridges, tree islands and sloughs.  Analysis of 

variance (ANOVA) of THgM by community type was significant; post-hoc comparisons showed 

mean THg concentration differed significantly between wet prairie and both ridge and slough.   

Despite significant global differences, variability in mercury deposition and peat 

accretion rates makes comparison of geographically proximate sites more meaningful.  Using 

only ridge, slough and wet prarie communities because of sample size constraints, we selected 

the closest site of a different community type to make a sample pair; sites where the nearest pair 

was > 5,000 m away were removed from this analysis.  Pairwise analysis (paired t-test) of 

differences between community types was performed.  The histogram of paired differences (Fig. 

57B; paired concentration diff. = slough minus ridge or wet prairie minus ridge) shows weak 

evidence of systematic differences in enrichment.  Paired t-tests were equally significant for both 

comparisons (p = 0.08), suggesting that ridges have higher concentrations than proximate wet 

priaries, but lower concentrations than proximate sloughs.  We surmise that there are no strong 

community effects, and that any global effects are more likely a function of deposition or peat 

accretion conditions than indicators of differential risk of mercury enrichment among ecotypes. 
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Fig. 57 (a) Mean (and standard error) THgM and THgA levels by community type regionally.  (b) 
Histogram of paired differences between communities (max. pair separation = 5,000 m) with 
paired t-test results comparing means.   
 

A

B
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3.6.6 Analysis of Total Hg Gradients 

To further explore the relationship between mercury and phosphorus, THgM and TP 

concentrations were evaluated at multiple buffer distances from canals (0-500 m , 500-1000 m, 

1000-1500 m, 1500-2000 m, 2000-2500 m, 2500 – 3000 m, 3000-4000 m, 4000-5000 m, 5000-

6000 m) (Fig 58). Regression of concentrations vs. distance was significant (p < 0.05) for both 

TP and THgM, but the direction of covariance was opposite.  Specifically, TP was negatively 

correlated (r = -0.73) with distance from canals, while THgM was positively correlated (r = 0.77). 

The association between distance from canals and THgA was positive but non-significant (r = 

0.34, p = 0.37), suggesting offsetting trends (decreasing bulk density and increased THgM).  

 

   
Fig. 58 – Relationship between TP and THg and distance from canals.  Slopes of lines are both 
significantly different from 0 (p < 0.001); the slope is positive with distance for THg and 
negative for TP 
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3.6.7 Maps of Total Hg (per mass and per area) 

Ordinary kriging prediction maps (Fig. 59) show significant hot-spots and strong 

differences in spatial heterogeneity among sub-regions.  The THgM prediction map shows 

hotspots in western WCA3AS, northern Holeyland (HL), southern WCA2A and WCA1.  

Enrichment zones in Shark River Slough and the coastal marshes in western ENP were also 

observed.  The hot spot in western WCA3AS had eight soil samples with THgM concentrations 

ranging from 0.646 to 0.917 mg/kg (average 0.774 mg/kg); notably, those same locations had 

relatively low TP concentrations (325.41-638.96 mg/kg; average 439.51 mg/kg), and THgM and 

TP levels in these sites were weakly correlated (r = 0.16; p = 0.58).  The map of THgA hot spots 

also shows the regions in WCA3AS and HL, plus a moderate hot spot in WCA3B, but the other 

hot spots (WCA1, WCA2A) are absent.  

 

 
Fig. 59 – Interpolated maps of total Hg (per mass, left and per area, right).  Regional hotspots 
and trends are clear from these maps. 
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3.7 Gradient Analysis – WCA2A 

3.7.1 Spectral Variance with Distance 

We plotted spectral variance as a function of distance from canal to generate Fig. 60; this 

illustrates that there are systematic changes in spectra across a known enrichment gradient.  The 

degree to which that variance can be used for prediction of P enrichment is described below. 

 
Fig. 60 – Distance from canal (x-axis) vs. variance inferred distance from canal.  We infer that 
there are strong spectral variance gradients present along the sample transect. 
 

3.7.2 Classification Probability 

To examine the TP gradient in WCA2A using spectra, we developed a spectral diagnostic model 

specific to WCA2A.  Based on several strongly diagnostic regions (Fig. 61), we developed a 

binary model that was 87% accurate, with a classification odds ratio of 22.6.  This model was 

applied to the spectra from the WCA2A gradient and the probability of class assignment plotted 

as a function of distance (from known enriched to uneriched) (Fig. 62). 
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Fig. 61 – Spectral diagnostic regions for discrimination between high and low TP classes.  T-
statistics for contrast are only illustrative of spectral diagnostics; a multivariate model using all 
spectra was constructed for class assignment probabilities. 

 

What is most striking about the probability function is that it declines so abruptly.  

Between 4800 and 5600 m south of the canal (see Fig. 7 for spatial reference), the probability of 

being in the TP > 500 mg/kg class goes from 0.94 to 0.08.  This supports the contention that 

spectra are changing systematically in response to ecosystem stressor gradients in the 

Everglades.  What should, of necessity, follow from this work is a more explicit spatial and 

temporal examination of where the spectral change front lies vis-à-vis other indicators of change 

along this gradient. 
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Fig. 62 – Class assignment probability to enriched TP class as a function of distance in WCA2A. 
 

3.8 Unsupervised Classification Results 

The results of supervised calibrations are clearly effective; there are numerous parameters 

for which spectra provide a reasonable estimate of functional attributes.  However, there remains 

the conceptual problem that, while spectra can predict the biogeochemical properties of the soils, 

this dies not sufficiently inform monitoring in the absence of a case definition.  Borrowing from 

the medical sciences where case definitions are specified and prevelance/incidence statistics are 

computed, we suggest that what is needed for all large area assessment of condition is a 

repeatable and adapatable definition of condition.  While there are some relatively obvious 

candidates (e.g., TP concentrations), they alone are not sufficient for multi-stressor systems.  

Since spectra are integrated snapshots of current and historical soil processes, their intrinsic 

differences across the landscape may be informative about ecosystem performance.  This section 
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examines techniques for extracting clusters from the spectral data, and then interprets the spectral 

clusters based on biogeochemistry and geography. 

 

3.8.1 EM Cost Sequence 

Unsupervised clustering applied to spectra allows inference of cluster memberships 

independent of a prior specified objectives; that is clusters self-organize rather than respond to 

assumed propertied.  The drawback of this approach is that there are rarely situations in which 

the number of clusters is known; using a cross-validation technique, the EM algorithm allows 

use to select the optimal number of clusters based on the likelihood ratio test, which evaluates 

the probability of the data given various cluster sets.  The cluster set that minimizes the LRT (or 

deviance) is the most defensible statistical agglomeration of the data.  Fig. 63 shows the number 

of clusters vs. the deviance, and supports the selection of 6 clusters as statistically optimal. 

 
Fig. 63 – Cost sequence of EM algorithm with different cluster numbers.  The maximum 
likelihood is observed at 6 clusters (deviance, or -2*LogLikelihood, is the cost metric that the 
EM algorithm minimizes) 
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To understand the EM clusters, we began by examining the manner in which known 

categorical properties sorted according to EM cluster.  In general, the clusters were mixtures of 

community types and areas; clusters 2 and 6 also contained more floc samples than would be 

expected by chance (Fig. 64). 

 
    Fig. 64 – Frequency of floc and soil samples by EM cluster. 
 

3.8.2 EM Cluster Geography  

In the absence of some conditional assessment to which to compare, we explored the spatial and 

biogeochemical associations of the EM clusters.  Figs. 65 – 67 show the assigned EM classes for 

floc (profile 1), upper soil (profile 2) and lower soil (profile 3) in space.  There are clear 

agglomerations of cluster assignments, with clusters 1 and 2 corresponding to the calcitic soils of 

Big Cypress Preserve and the Rocky Glades east of Shark River Slough.  Clusters 3 and 4 appear 

to be peat soils that form under hard-water conditions, while clusters 5 and 6 appear to be soft-

water peats in WCA1, WCA2A and WCA3AS.  Cluster 6 in particular appears to correspond 

with areas of high nutrient impact, and Cluster 3 appears to correspond with historically deep 

water peats along the primary Everglades flowpaths.  In general, the concordance between 
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spectral clusters and ecosystem processes is strong; full exploration of this concordance will 

require vetting by the scientific community more attuned to the particular character of the 

Everglades system.   

There is also strong concordance between clustering at deep and shallow samples within 

sites; that is, cluster assignments appear to be relatively consistent across depths, which lends 

further support to the contention that pure spectral categories may be both robust and useful. 

   
Fig. 65 – EM clusters for floc layer samples. 
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Fig. 66 – EM clusters for profile 2 data (0-10 cm).  

 

Cluster assignments also appear to show some fidelity to particular hydrographic regions.  

For example, the boundary between WCA1 and WCA2A is obvious based on the abundance of 

clusters 5 and 6; similarly, the boundary between WCA3AS and WCA3AN is readily apparent 

based on the prevalence of cluster 5.  Because the hydrologic and nutrient forcing varies 

significantly between these regions, the fact that the EM algorithm is highlighting edaphic 

variability offers some assurance that this approach could yield significant monitoring benefits.   
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It is also evident from the maps that there is significant interspersion among categories 

(e.g., 3 and 4, 5 and 6).  We parsed cluster assignments by community type, a local scale 

confounder of large scale pattern and observed strongly significant differences between 

vegetative communities using Chi-square tests of independence.  Evidence for statistical 

dependence between clusters and communities was strongly significant (χ2 = 2813, df = 30, p << 

0.001).  Specifically, we observed that wet prairies are almost exclusively in C1 and C3, ridge 

communities are dominant in C2 and C6, and sloughs dominant in C5.  Mangrove fringe 

systems, of which there were only 112 observations, were exclusively (91%) assigned to C3.   

   
Fig. 67 – EM clusters for profile 3 samples (10 – 20 cm) 
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3.8.3 EM Cluster Soil Properties 

EM clusters were also evaluated based on comparative chemical and physical properties.  

Fig. 68 summarizes the means and standard deviations of the 6 selected EM clusters for the 10 

parameters measured in the ESM dataset.  All clusters were significantly different (p < 0.01) 

from all other clusters except where noted. 

         

 
Fig. 68 – Summary of EM cluster chemical and physical properties.  C1 and C2 were not 
significantly different in LOI or TN;  C3 and C4 were not significantly different for TC, TP, TAl, 
or TN.  None of the clusters differed in TMg.  All other pairwise contrasts were significantly 
different at p < 0.01. 
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4. DISCUSSION 
4.1 Feasibility of Sensing Soil Quality in the Everglades 

This report has documented investigations of NIR spectroscopy for the analysis of soils 

across the Greater Everglades.  Overall, the results suggest that the method is highly feasible, and 

worth pursuing as a component of ecosystem scale diagnostic surveillance.  Among the 

advantages, clearly articulated in the literature, that we reinforce in this work are high accuracy 

(frequently rivaling the expected accuracy for laboratory measurements), low cost (discussed in 

more detail below), rapid throughput (~ 200 samples per day for 1 instrument) and high 

precision.  Moreover, we note that there are no chemical wastes generated and little technician 

training required.  The overall implication is that process and monitoring measurements can be 

collected at much greater spatial and temporal density than was previously possible, improving 

the statistical power of ecosystem change detection.   

We note that the recent development of long-term study plots (T. Phillippi, unpublished) 

will require regular high-resolution monitoring of the myriad performance measures; as budgets 

constrain the sampling of soils and plant tissues, NIRS becomes a useful tool.  Moreover, our 

work on calibration free methods for the interpretation of spectra are perhaps most germane for 

regular monitoring of local areas.  Spectral category transitions, and the ecological implications 

thereof, have been shown in the literature (Vagen et al. 2006) to be a more effective covariate of 

environmental change than basic soil properties.  Further work in this regard is clearly needed, 

but our work underscores the potential of this line of inquiry. 

The results in this work also underscore the flexibility of the spectral method.  While the 

concept has been widely criticized for environmental samples, with critics arguing that the only 

spectral response is due to organic matter, and all calibrations are responding to covariance with 

OM, we show more stable and accurate predictions than could be predicted by covariance with 

OM.   As such, the method appears to be applicable to a wide range of analytes, including 

functional analytes not previously demonstrated in the literature (e.g., residual fiber content of 

peat soils).  We reiterate that the list of analytes for which spectral methods have been 

demonstrated continues to expand, and with each analyte that can successfully be predicted, the 

cost and time advantages grow. 

There are also significant advantages beyond cost: spectral methods offer a means to 

operationalize and standardize categorical definitions.  For example, the designation of soil vs. 
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floc, or intact vs. degraded, or ridge vs. slough is based on observer judgments.  While in most 

cases this is adequate, there is strong evidence from other systems that observers frequently 

disagree, and often with important consequences for management.  Because spectra are both 

integrative and precise, definitions arising from their interpretation are likewise integrative and 

precise.  Cohen et al. (2005) used this to significant advantage in the diagnosis of soil 

degradation across landscapes, observing that observer definitions of cases were neither uniform 

in time, nor among observers.   

An additional observation from this work that is critically important for further 

exploration is the ability to use classification probabilities to examine ecological gradients.  We 

observe an abrupt change in the classification probability to low TP (< 500 mg/kg) along the P 

enrichment gradient in WCA2A.  This change is far more abrupt than the change in P, and the 

change occurs further along the gradient than many of the other metrics of ecosystem change 

(e.g., cattail dominance) suggesting that the spectra may be sensing edaphic changes early in the 

transition process.  Further research on these kinds of gradients are well warranted given their 

potential for monitoring. 

A key insight from the description of where and how spectral errors arise is also 

suggestive of additional research.  In general, the NIR literature is moving increasingly towards 

global models; that is, spectral libraries have been assembled that are representative of huge 

geographic areas and applicable to a wide range of soil types.  This is clearly attractive from the 

perspective of centralized laboratories.  Following that trend, we developed a global library for 

the Everglades based on comprehensive sampling.  While our chemometrics are highly effective, 

both vis-à-vis analytical labs and other applications of the spectral methods, they appear to have 

strong spatial structure to their error.  We explored this using geostatistical methods and 

observed high levels of relative structure and particular hot-spots of over- and under-estimation 

that are clearly not spatially independent.  As such, local level calibrations may be more effective 

because they allow the statistical algorithms to identify the locally optimal bands, not the 

globally optimal.  This demands a larger set of library samples, or the general inclusion of 

geographic information into the statistical model.  We hasten to point out here that while there 

are spatially dependent errors, the error rates are, in most cases, quite small.  The marginal value 

of reducing these errors needs to be weighed against the additional costs and logistics of 

partitioned prediction models.    
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One of the most important considerations for applications of spectroscopy for routine 

analysis is the concordance of measured reflectance signatures between instruments.  Castro-

Esau et al. (2006) demonstrate significant and systematic errors in a between-instrument 

comparison, particularly where optical set-up varies.  This significant error presents the 

significant logistical constraint that calibrations developed using date from one instrument are 

not useful for predicting properties of samples scanned using a second instrument until a 

conversion algorithm can be identified.  If the variability between sensors is due to non-

systematic variability, then the problem is compounded further.  For the purposes of routine 

application of spectral soil predictions in the Greater Everglades, there are several immediate 

options.  The first is to use the instrument used to develop these calibrations to scan all 

subsequent soils for which spectral prediction is required.  This is not an insurmountable task; as 

discussed, this method permits greatly enhanced sample throughput, on the order of 200+ 

samples per day.  Predictions can be done in real time, and data storage has been greatly 

facilitated by our efforts to develop a data ingestion and storage system that not only compiles 

the data in a scalable and web-accessible database, but also permits numerous user-selected 

computations for improving data quality and analysis.  With this rate of sample throughput, a 

single spectrometer can reasonably be expected to process somewhere between 25,000 and 

50,000 samples per year, which should be adequate for routine monitoring needs of CERP and 

beyond. 

The second is to develop inter-instrument calibrations so that spectra from one instrument 

can be reliably mapped to the spectral that would have been obtained on another instrument.  

This is logistically problematic, but is of considerable value for the purpose of field sampling.  

While we have scarcely discussed this option in this report, the long-term potential for 

spectroscopy will be fully realized as a field deployment technique.  Current impediments to 

collecting spectra and quantitatively inferring soil properties in the field (that is, without 

preprocessing) are the confounding spectral effects of water and stray light.  Sample vestibules 

can reasonably be expected to prevent stray light effects, and our group has been developing 

algorithms to permit removal of water effects that may soon be field operable.  The possibility of 

a field deployment of the spectrometers might necessitate two or more spectrometers because of 

the potential risks of field observations, and the need for multiple field crews.  However, inter-
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instrument variability is primarily an engineering hurdle, and immediate implementation of 

spectroscopy for routine analysis of soils (and indeed plant tissues and possibly water) is possible 

because our analysis concludes viable prediction for a wide array of soil analytes. 

A third option, emerging from recent literature on MIR interferometric spectroscopy is a 

move from the NIR region to sensors with massive sample throughput (~600 per day) operating 

in the more stable MIR region.  These sensors, which have been available for analytical 

chemistry for decades but only recently used for environmental sample analysis, are far more 

stable within and between instruments because rather that depending on a white reference for 

reflectance calibrations, they use interferometry to relate diffuse or total attenuated reflectance to 

the characteristics of the light source.  As the scope of spectral methods grows, these instruments 

are likely to be the work-horses of future large area monitoring efforts.  There cost is competitive 

(or lower) than NIR instruments.  Principal among their drawbacks is that they are not field 

portable. 

 

4.2 Comparative Cost Analysis 

One of the objectives of this work was to determine if spectral methods provide a 

reasonable alternative to full chemical characterization when dealing with the large number of 

samples necessary for ecosystem characterization.  This question has two parts: the first concerns 

the analytical accuracy of the methods.  The discussion above demonstrates that the NIR method 

can provide highly reliable results for the suite of analytes selected, often providing sufficient 

accuracy to meet stringent laboratory performance requirements.  Since instrument precision is 

typically below 1% error between sample replicates, these results underscore the strong potential 

for NIR to be part of the large area assessment toolkit.   

The second part of the methodological evaluation involves the reduction in costs and 

sample processing time between spectral methods and routine laboratory analyses.  Table 17 

summarizes this information for comparison.  We estimate, based on our in-house costs of 

sample analyses, that spectral analysis is an order of magnitude less expensive than conventional 

methods; this contrast is further underscored by pointing out two additional considerations.  

First, cost savings magnify with the number of analytes; where spectral prediction of more 

expensive analytes is demonstrated (e.g., extracellular enzymatic activity and carbon quality), 

then the cost comparison is further enhanced.  Second, spectral prediction is made on soils that 
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are processed and handled in a standard manner.  Where soils are archived in this standard 

manner (dried and in air-tight containers), it may be possible to predict soil properties on old 

samples after some significant period of storage, provided that an contemporary library exists.   

 
Table 17.  Comparison of analytical costs between spectral analysis and 
conventional methods. 

Conventional Method  Spectral Method 
Analyte $$ Per Sample  Analyte $$ Per Sample 
Soil Pre-Processing 5  Soil Pre-Processing 5
Organic Matter (LOI) 3  Scanning 1
Total Nitrogen 6  Data Processing 1
Total Carbon 6    
Bulk Density 1    
Total P 13    
Total Inorganic P 11    
Total Ca 8    
Total Mg 8    
Total Fe 8    
Total Al 8      
Total 77  Total 7
** Est. Processing Time = 90 days  ** Est. processing time = 10 days 

 

Including the costs of fiber analysis ($30/sample) and mercury analysis ($15/sample) 

increases the relative benefit of spectral prediction.  With each additional analyte, this cost 

difference grows, as do the labor and time requirements for measurement.  Data from the 

literature supports application of NIRS to both soils and plant tissues, to indicators of function 

ranging from C3 vs. C4 soil OM inputs, metal concentrations, mineralogy, and soil aggregation 

capacity.  While not all of these are relevant to the Everglades, some may be, and others, yet 

unidentified may prove to be effectively predicted using these techniques.   

 

4.3 Integrating Soil Sensing into Large Area Assessment 

Adoption of new technologies is frequently a slow process, for obvious reasons.  The 

vetting of scientific data and the independent testing of emerging methods should be a tentative 

and cautious process.  In the case of NIR spectroscopy, the body of literature on the topic has 

swelled in recent decades as more researchers are demonstrating feasibility in numerous 

environments and for numerous analytes.  Our suggestion for operational use in the Everglades is 

to begin with parallel measurement systems; that is, do both laboratory standard methods and 

spectral prediction and validate (and update) the models.  One way to make optimal use of the 
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technique is to oversample the landscape, collecting far more samples than can be reasonably be 

processed in the lab.  Do routine lab analysis on a subset and spectral methods on all.  The 

additional power that emerges from high density spatial sampling can aid in process or 

monitoring inference, and the method can simultaneously be validated and offer new insights.  

A project currently starting through the MAP/Recover program on mapping soil nutrients 

will use this technique.  We will densely oversample in all the study sites and use this 

oversampled data to both validate the method and expand the footprint and resolution of our 

study.   

The described application is useful for demonstration; however, to really incorporate 

NIRS into Greater Everglades ecosystem assessment will require attention be paid to the issues 

that this report has raised.  First, how will we deal with temporal and between instrument 

variability; while this issue is likely far more problematic for analytical laboratories than for this 

high-precision method, it is still an important component of uncertainty to quantify.  Second, 

local level calibrations and the scope of reference libraries (both in space and in analyte 

diversity) need to be considered.  Finally, the use of calibration-free and gradient-based methods 

should be explored in substantially more detail.   
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5. CONCLUSIONS AND RECOMMENDATIONS 
This report has demonstrated the utility of NIR spectral methods for the prediction of 

numerous soil attributes.  Principal among our conclusions is that NIR represents a potentially 

important component of the large area surveillance toolbox.  As CERP continues to make 

changes in the local and regional environmental system, robust (i.e., spatially and temporally 

dense) sampling of ecosystem response is critical for providing useful management feedback.  

NIRS offers a mechanism to do this for relatively low cost. While it is important to emphasize 

the cost differences between the two methods since they are so pronounced, we reiterate that 

there are compelling reasons to adopt NIRS as a tool even without those savings.  Among our 

arguments is that the sensors are highly precise, so errors (generally large and unquantified) 

between laboratories and over time can be minimized.  More importantly, spectra appear to be a 

robust integrator of the soil environment, responding to multiple stressors is relatively 

predictable ways.  As such, direct calibration techniques and unsupervised methods offer 

substantial promise for objective characterization of ecosystem status and trends.  Finally, we 

suggest that while all of the efforts herein were for samples returned to the laboratory (making 

sampling effort the principal constraint), recent developments in our lab support the use of the 

spectrometer used here for field campaigns.  That is, scans under variable moisture conditions 

may approach the same level of predictability, meaning that the sensor could be brought in the 

field, and nearly 80% of per sample costs (pre-processing) could be eliminated.  

Other areas of recommended follow-up based on the results we obtained are listed below: 

1) Characterization of ecological change gradients using spectra.  There is some 

preliminary evidence presented in this report that spectra may be useful for 

mapping change fronts (e.g., TP enrichment).  These methods require further 

and more detailed explication. 

2) Local spectral library development.  There is strong evidence from this work to 

suggest that prediction errors are not geographically random.  That is, soil 

processes at the local scale confound prediction to a moderate extent, 

suggesting that locally developed calibrations may be more accurate and 

robust.  Further research is required to substantiate this. 

3) Operational accuracies.  As with all models of this type, the observed 

validation accuracies may be an overestimate of operational accuracies because 
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of between instrument and between time errors in spectral reflectance.  Efforts 

to quantify and control for these errors are paramount for routine 

implementation.  Newer sensors are capable of much greater between 

instrument precision, which may be one fruitful area of exploration. 

4) Calibration free methods.  Ecosystem surveillance requires performance 

measures that are direct.  While soils in the Everglades represent the total 

integration of ecosystem processes, the particular indicators used as 

performance measures remains uncertain.  A direct approach, whereby spectra 

are calibrated to particular condition classes and/or stressor gradients is likely 

to prove extremely useful based on preliminary evidence presented here.   

5) Additional soil properties and extension to other substrates.  The success of the 

method for soils in the Everglades can measured in units of accuracy, but also 

in units of cost.  We estimate that the comparative costs of the routine analyses 

and spectral methods differ by an order of magnitude ($77 vs. $7/sample).  

Moreover, the cost implications become more pronounced as more analytes are 

predicted.  Given success with indicators of C quality, metal content, and 

ecological stoichiometry, we recommend the inclusion of additional 

informative analytes to the spectral library.  Further, we recommend an 

extension of these methods, applied only to soils in this work, to plant tissues 

as well.  Existing libraries of samples have been identified. 
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