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FOREWORD

This report, “Generalized additive modeling of alligator nest sighting for resource management in 
Everglades National Park”, describes a model designed to evaluate effects of changes in hydrology and 
land cover on nesting of alligators (Alligator mississippiensis). The American alligator is a keystone species 
within Everglades marsh systems whose activity structures the landscape creating dry season refugia and 
increasing the diversity of habitat and species. Alligators are dependent on spatial and temporal patterns of 
water fluctuations that affect courtship and mating, nesting, and habitat use. The Modified Water Deliveries 
Project and the Comprehensive Everglades Restoration Plan are programs for reversing past environmental 
degradation and restoring habitat for wildlife, such as the alligator. Ecological modeling tools that can guide 
the planning efforts and simulate the effects of restoration are of keen interest to natural resource managers. 

The report describes the use of 24 years of alligator nest monitoring survey data in the development of 
a model of the probability that a nest will be built in a given grid cell within Everglades National Park in a 
given year. The major input requirements for the model include the habitat, hydrological, meteorological, 
and landscape data that provide the predictor variables. The model can evaluate the influence of alternative 
water management operations on alligator nesting.

 
Examination of the probability of alligator nesting spatially during a year provides insight to any limiting 

hydrologic conditions that contribute to a poor nesting probability, thus inhibiting successful alligator 
reproduction. This model enhances ENP’s ability to preserve and protect natural resources while engaging in 
restoration efforts in southern Florida. The model and its application as shown in this report demonstrates 
our efforts to protect wildlife resources and restore the Everglades, while underscoring the need for continued 
monitoring of alligators.

G. Melodie Naja
Director
South Florida Natural Resources Center
Everglades National Park

September 2022
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1 INTRODUCTION

Everglades restoration focuses on correcting hydrologic 
conditions in southern Florida after people diverted and 
drained the region for development starting in the late 1800s. 
The main beneficiaries of this enormous environmental 
restoration project are the varied and unique plants and 
animals that make up the Everglades ecosystem. The 
Modified Water Deliveries Project (MWDP) (USACE 
1992) and the Comprehensive Everglades Restoration 
Plan (CERP) are two of the most significant Everglades 
restoration programs (https://evergladesrestoration.gov/, 
accessed May 2020). Projects in these programs range 
from large construction projects, such as canal removal 
and road reconstruction, to water regulation plans that 
consider the water needs of all stakeholders. The CERP 
is being implemented using an applied science strategy 
framework (Ogden and Davis 1999, Ogden et al. 2003) that 
links alternative plan evaluation with ecological models, 
monitoring, and research to provide more effective scientific 
support to Everglades restoration and allow for adaptive 
management. Ecological modeling tools can evaluate the 
effects of restoration on key components of the Everglades 
ecosystem, such as alligators (Alligator mississippiensis), as 
well as other keystone and indicator species. 

The American alligator has been studied as part of the 
Everglades ecosystem for decades. It is a keystone species 
within Everglades marsh systems (Mazzotti and Brandt 
1994) because its activity structures the landscape resulting 
in increased diversity of habitat that is critical to many 
wildlife populations for nesting, resting, or foraging sites 
(Craighead 1968, Kushlan 1974, Deitz and Jackson 1979, 
Kushlan and Kushlan 1980, Hall and Meier 1993). For 
example, Everglades fishes concentrated in the remaining 
dry season pools are readily available for wading bird forage, 
making the holes alligators excavate for themselves a critical 
driver of wading bird nesting success and spatial distribution 
(Frederick et al. 2009). Alligators may also serve as “nest 
protectors” for wading birds (Burtner and Fredrick 2017).

Alligators are dependent on spatial and temporal patterns of 
water fluctuations affecting courtship and mating, nesting, 
and habitat use. Alligator abundance, nesting effort, nest 
success, growth, survival, and body condition serve as 
indicators of the health of the Everglades marsh system. 
Because of this, the alligator population in Everglades 
National Park (ENP) has been monitored closely and 
park researchers have conducted annual Systematic 
Reconnaissance Flights (SRF) to monitor alligator nesting 
since the 1980s. Combining this rich dataset with that of 
the equally rich hydrologic dataset that exists for the park 
provides an opportunity to find relationships between the 
two.

Changes in water management have influenced the pattern 

of water levels in the southern Everglades, causing unnatural 
flooding of alligator nests (Kushlan and Jacobsen 1990). 
Hydrological alterations of the system have reduced prey 
availability corresponding to reduced growth, survival, and 
reproduction of alligators (Mazzotti et al. 2007). Increased 
drought frequency and depth of drying have reduced 
suitability of southern marl prairie and rocky glades habitats 
and the number of alligators occupying alligator holes 
(Mazzotti et al. 2009, Fujisaki et al. 2012), limiting important 
nesting resources. Reproduction is a vital contribution to 
the persistence of a species in a region. Given that successful 
alligator nesting is dependent on hydrologic conditions and 
that sufficient data on alligator reproduction and habitat use 
as well as hydrologic data exists for the Everglades region, an 
ecological model designed to test the effects of restoration 
alternatives on alligator nesting would be of keen interest to 
natural resource managers, restoration, and conservation 
planners.

Earlier modeling efforts such as the Alligator Production 
Suitability Index Model (APSI; Shinde et al. 2014) and other 
habitat suitability models of alligators (Rice et al. 2004, 
Palmer et al. 2004 and Newsom et al. 1987) based on expert 
knowledge, judgment, and some empirical data, provide 
a deterministic response (0-1 index) of productivity and 
habitat suitability over the spatial domain grid cells. Higher 
scores from these models indicate better conditions, but 
the relationship between a specific score and expected 
number of nests and their success has not been established 
(RECOVER 2014). The index provided by these models 
represents neither measurable quantities nor probabilities 
of clearly defined events, and model validations are 
consequently qualitative. As such, these models do not 
inform the uncertainty associated with the index or represent 
actual alligator production values. 

We determined that the richest, most comprehensive 
dataset— the annual SRF alligator nest survey data— can be 
used to develop a statistical model of the probability of a nest 
being built as a function of variables describing hydrology, 
habitat, and meteorology. This statistical model could also 
be validated and tested by SRF data that were withheld from 
the model-building process and by SRF data recorded in 
years following the time span of the data used for model-
development. Since the statistical model would provide a 
probability distribution, the uncertainty of the predicted 
probabilities of a nest being built would also be quantified.

Moreover, the statistical model of the probability of a nest 
being built could be a function of the same input variables 
used for the habitat, breeding potential, courtship and 
mating, and nest building indices in APSI. This means the 
results could represent cumulative effects of all variables 
and alligator breeding-cycle stages on the probability that a 
nest is built in a spatial cell during a year. Since this model 
could be a function of hydrological variables in the breeding 

https://evergladesrestoration.gov/
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potential, courtship and mating, and nest-building periods, 
it would also accomplish the objective to be achieved by the 
APSI model: to allow natural resource managers in charge 
of programs such as the MWDP and the CERP to link 
alternative plans to their effects on alligator habitat suitability. 
Though both models are supported by expert opinion, this 
model represents an improvement over the APSI because: 
1) all model decisions (e.g., functional forms) are based on 
rigorous analysis of the appropriate data, 2) as a statistical 
model, it naturally allows quantification of uncertainty, and 
3) since the output is the probability of a specific event that 
is routinely observed, it can be validated using validation and 
test datasets and future-year data.

1.1 Objective

The objective of this report is to describe how data from the 
annual SRF nest surveys was used to develop a model of the 
probability that a nest will be built in a given grid cell within 
ENP in a given year, as a function of predictor variables 
similar to those used for the habitat, breeding potential, 
courtship and mating, and nest-building components of 
the APSI, as well as variables describing the structure of the 
landscape and meteorology.

Section 2 describes the SRF nest survey data which provides 
the response variable in the model, as well as the habitat, 
hydrological, meteorological, and landscape data that 
provides the predictor variables. It also gives the rationale 
for considering each predictor variable as a candidate in 
the model. Section 3 serves the purpose of the typical 
“Methods” section of most scientific journals, describing the 
model-building methods. Section 4 serves the purpose of the 
“Results” section, giving the details of each model-building 
decision as the methods of Section 3 are applied. Section 
5 gives an assessment of the final model selected using the 
withheld test-set data, and Section 6 uses the model to assess 
different scenarios. 

2 DATA 

2.1 Systematic Reconnaissance Flights for 
alligator nest sighting

Alligator nest systematic reconnaissance flights (SRFs) are 
carried out annually along well-established and defined 
latitudinal transects spaced two kilometers apart (Figure 
1). The search pattern resulting from this method provides 
approximately 25% survey coverage of ENP’s alligator 
nesting habitat. Flights are initiated when nest construction 
and egg deposition for most or all nests is expected to be 

complete in order to observe the maximum number of 
nests. The date for nest completion varies annually but SRFs 
usually commence the first week of July. 

The alligator SRFs were initiated in 1985 as a cost-effective 
tool to detect landscape-level change in alligator 
reproduction effort and success within ENP, particularly in 
response to measurable hydrological change (Fleming 1991, 
Dalrymple 2001, Ugarte 2006, Parry and Bass 2009). The 
SRFs were expanded in 1992 to include all hydrological 
basins (adding East Slough, Rocky Glades, Taylor Slough, 
Long Pine Key, and Panhandle to Northeast-, Upper-, and 
Lower-Shark Slough basins; Figure 1) in ENP and currently 
comprise a continuous dataset. The SRFs provide a relative 
nesting effort yearly within ENP (i.e., to compare with 
previous years), but not an absolute number of nests 
occurring in ENP.

Flights are conducted according to standardized protocols 
as described by Fleming (1991) and Ugarte (2006). Doors 
are removed from the helicopter and one observer occupies 
the front left seat while the second observer occupies the 
right rear seat. The pilot maintains a flight speed of 50 knots, 
average elevation of 200-300 feet (60-90 m), and keeps the 
aircraft on the transect centerline (Figure 1). Observers look 
for nests or indications of likely nesting activity (e.g., heavily 
used trails or alligator ponds) within 250 m both north and 
south of the transect centerline, resulting in a 500 m strip 
width. When a likely nest location is identified, the pilot is 
directed to more closely investigate the areas as necessary, 
and then return to the centerline before proceeding. When 
a nest is observed, the aircraft hovers as near as possible 
without disturbing nest materials while the location is 
marked on a global positioning system and recorded on data 
sheets.

2.1.1 Space-time resolution and coverage

Each observation is a year-grid cell combination, or cell-year 
and is coded as 1, if at least 1 nest was observed in that cell 
that year, or as 0 if no nest was observed. In the SRF domain 
(Figure 1), there are 2,332 grid cells with dimension 400 m 
(horizontal: east-west) x 500 m (vertical: north-south). The 
data span the years 1992-2015, for a total of 24 years and 
55,968 observations. The 500 m vertical width of the grid 
cells was chosen because SRF survey observers record nests 
250 m to either side (north and south) of the aircraft as it flies 
along east-west transects. The 400 m horizontal width of the 
grid cell was chosen so that the east-west dimensions of the 
cells line up (Appendix: I) with the EDEN (Everglades Depth 
Estimation Network; http://sofia.usgs.gov/eden/index.php) 
hydrology data layers. 

Figure 1. Location of SRF survey transects, canals, roads, alligator holes, and temperature stations.

http://sofia.usgs.gov/eden/index.php
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complete in order to observe the maximum number of 
nests. The date for nest completion varies annually but SRFs 
usually commence the first week of July. 

The alligator SRFs were initiated in 1985 as a cost-effective 
tool to detect landscape-level change in alligator 
reproduction effort and success within ENP, particularly in 
response to measurable hydrological change (Fleming 1991, 
Dalrymple 2001, Ugarte 2006, Parry and Bass 2009). The 
SRFs were expanded in 1992 to include all hydrological 
basins (adding East Slough, Rocky Glades, Taylor Slough, 
Long Pine Key, and Panhandle to Northeast-, Upper-, and 
Lower-Shark Slough basins; Figure 1) in ENP and currently 
comprise a continuous dataset. The SRFs provide a relative 
nesting effort yearly within ENP (i.e., to compare with 
previous years), but not an absolute number of nests 
occurring in ENP.

Flights are conducted according to standardized protocols 
as described by Fleming (1991) and Ugarte (2006). Doors 
are removed from the helicopter and one observer occupies 
the front left seat while the second observer occupies the 
right rear seat. The pilot maintains a flight speed of 50 knots, 
average elevation of 200-300 feet (60-90 m), and keeps the 
aircraft on the transect centerline (Figure 1). Observers look 
for nests or indications of likely nesting activity (e.g., heavily 
used trails or alligator ponds) within 250 m both north and 
south of the transect centerline, resulting in a 500 m strip 
width. When a likely nest location is identified, the pilot is 
directed to more closely investigate the areas as necessary, 
and then return to the centerline before proceeding. When 
a nest is observed, the aircraft hovers as near as possible 
without disturbing nest materials while the location is 
marked on a global positioning system and recorded on data 
sheets.

2.1.1 Space-time resolution and coverage

Each observation is a year-grid cell combination, or cell-year 
and is coded as 1, if at least 1 nest was observed in that cell 
that year, or as 0 if no nest was observed. In the SRF domain 
(Figure 1), there are 2,332 grid cells with dimension 400 m 
(horizontal: east-west) x 500 m (vertical: north-south). The 
data span the years 1992-2015, for a total of 24 years and 
55,968 observations. The 500 m vertical width of the grid 
cells was chosen because SRF survey observers record nests 
250 m to either side (north and south) of the aircraft as it flies 
along east-west transects. The 400 m horizontal width of the 
grid cell was chosen so that the east-west dimensions of the 
cells line up (Appendix: I) with the EDEN (Everglades Depth 
Estimation Network; http://sofia.usgs.gov/eden/index.php) 
hydrology data layers. 

Figure 1. Location of SRF survey transects, canals, roads, alligator holes, and temperature stations.
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2.1.2 Detectability

A nest sighting or non-sighting in the SRF survey may not 
exactly match nest presence or absence because a surveyor 
might not detect every nest that is present in his or her line 
of sight. Studies of alligator nest detectability have been 
conducted in other domains (Rice et al. 2000), including 
Arthur R. Marshall Loxahatchee National Wildlife Refuge 
(LNWR) (Brandt 2018; Graham 2004). Since ENP does not 
have extensive tree islands or any other form of vegetation 
that would block visibility from a helicopter, we assume 
that a nest sighting or non-sighting does correspond to a 
nest being present or absent, respectively. Since the survey 
observers check roughly 80% of SRF detected nests in 
follow-up nest visits each year and record when one is 
indeed old, we removed such nests from consideration.

2.2 Predictor variables

The predictor variables (Table 1) can be classified into 
alligator hole variables, space variables, distance variables, 
hydrological variables, meteorological variables, and habitat 
variables. The following sections discuss each variable in 
detail.

Class Variables
Time-
varying?

Space-
varying?

Type* Units Definition

Response nest yes yes Cat/Bin indicator Is = 1 if the grid cell has a nest, = 0 otherwise.

Alligator hole hole no yes Cat/Bin indicator Is = 1 if the grid cell has a hole, = 0 otherwise.

Alligator hole hole_count no yes Disc holes Number of alligator gator holes in the grid cell.

Space xCentroid, yCentroid no yes Cont utm meters X and Y-coordinate of the grid cell centroid.

Distance dist_AH
dist_canals
dist_ENPrds

no yes Cont m
km
km

Perpendicular distance between the grid cell centroid 
and the nearest of the alligator holes, canals, and roads, 
respectively.

Hydrological depth_bp, depth_cm, 
depth_nb, depth_wy

yes yes Cont cm Mean water depth at each grid cell during the breeding 
potential, courtship and mating, nest building, and 
whole year periods, respectively.

Hydrological depth_max, depth_min yes yes Cont cm Maximum and minimum water depth at each grid cell 
during the breeding potential period, respectively.

Hydrological Hydroperiod, drydays_
max

yes yes Cont days Number of days with water depth >15cm and maximum 
number of continuous days with water depth <15cm 
during the breeding potential period, respectively.

Meteorological rain_bp, rain_cm,  
rain_nb

yes yes Cont cm Average rainfall at each grid cell during the breeding 
potential, courtship and mating, nest building, and 
whole year periods, respectively.

Meteorological temp_bp, temp_cm, 
temp_nb

yes no Cont oC Average temperature park-wide during the breeding 
potential, courtship and mating, nest building, and 
whole year periods, respectively.

Habitat canal, edge, excluded, 
marsh, upland

no yes Cat/Bin indicator Is = 1 if at least one of the 80 sub-cells of the given 
grid cell is labeled canal, marsh-upland edge, excluded, 
marsh, and upland, respectively, = 0 otherwise.

Habitat canal_pcent, edge_pcent, 
excluded_pcent, marsh_
pcent, upland_pcent

no yes Cont % The percent of the 80 sub-cells in the grid cell that are 
labeled canal, marsh-upland edge, excluded, marsh, and 
upland, respectively.

* Type: Cont = continuous, Disc = discrete, Cat = categorical, Bin = binary (aka dichotomous)
‡ Variable suffix: bp = breeding potential period, cm = courtship and mating period, nb = nest building period, wy = whole year period; Figure 2.

Table 1. Variable class, definition, units, type, and time and space variation

2.2.1 Alligator holes

Alligators breed in relatively deep, open water, and the 
suitability of an area as breeding habitat is influenced by 
the amount and type of open water. Bayous, canals, and 
deeper water areas of lakes and ponds are the preferred areas 
for breeding throughout the alligator’s range (Newsom et 
al. 1987). Such conditions are easily provided by alligator 
holes and proximity to canals. Alligator holes become more 
important during periods of drought when they provide 
better feeding opportunities. Most nests are located 
adjacent to  alligator holes or ponds (Fleming, 1990). In 
the Everglades, sloughs, alligator holes, and canals provide 
these deeper water areas. Deeper water is preferred because 
during mating, females must be mounted and forcefully 
submerged before they will engage in copulation (Fleming, 
1990). Ideal nest locations are those where the eggs will be 
above the seasonal high-water level, but remain near enough 
to the water’s edge to prevent desiccation, and with suitable 
nursery habitat for young (Mazzotti and Brandt 1994).

Location of alligator holes in the model domain is shown in 
Figure 1. Location data for alligator holes in ENP are from 
Rice and Mazzotti (2007). Substrate depth, or the depth 
to limestone, may serve an important role in the current 
and historic distribution of alligator holes. It is likely that 
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alligators build new alligator holes and old ones may get filled 
up or abandoned, but, for the current model, we assume that 
this information does not change with time. 

2.2.2 Distance variables

The distance variables quantify the perpendicular distance 
between the grid cell in question and alligator holes, different 
canals, or roads in and around the SRFs domain (Figure 
1). Roads and canals are not part of the natural habitat of 
alligators, but they may influence breeding and nesting 
cycles. Distance metrics of canals and roads were explored to 
identify which one explains the influence of anthropogenic 
drivers. 

2.2.3 Hydrological variables

Hydrological conditions have a great influence on alligator 
survival and production. To successfully produce young, 
alligators need (Shinde et al. 2014): 1) suitable habitat, 2) to 
have experienced environmental conditions prior to mating 
that are conducive to breeding (breeding potential), 3) 
conditions that allow them to mate (courtship and mating), 
4) suitable nest sites (nest building), and 5) to not have their 
nests flooded. The crucial periods that correspond to these 
conditions are shown in Figure 2.

The depth_bp (breeding potential period- bp) provides an 
estimate of the conditions within each grid cell that may 
influence alligators to breed in the current year based on the 
hydrological conditions that existed during the preceding 
year (Figure 2). Water depths in the preceding year influence 
adult body condition (Dalrymple 1996a, 1996b and Barr 
1997), which then influences successful breeding. In 
addition, water depths <15 cm limit the ability of alligators 
to move easily around the marsh (Frank Mazzotti and 
Laura Brandt, personal communication; Shinde et al. 2014), 
decreasing access to both food and mates (Rice et al. 2004). 
The relevance of depth_cm (courtship and mating period- 

Figure 2. American alligator breeding cycle time periods (adapted from Shinde et al. 2014).

cm) and depth_nb (nest-building period- nb) is described in 
Section 2.2.1. The depth_wy (whole year- wy) encompasses 
the other three periods in Figure 2 and is explored as a 
substitute for the other three periods. More details on their 
estimation are provided in Appendix: I.

2.2.4 Meteorological variables

The meteorological variables including rain (rain_bp, 
rain_cm, and rain_nb) and temperature (temp_bp, temp_cm, 
and temp_nb) correspond to the same periods as shown in 
Figure 2. Rain directly influences the local water depths. 
Daily rainfall data on a 3.22 km x 3.22 km grid was obtained 
from the South Florida Water Management District (used in 
SFWMM and RSM models extended until 2015, SFWMD; 
personal communication Jan. 2017: Walter M. Wilcox, 
Hydrologic and Environmental Systems Modeling and 
M. Clay Brown, Hydrology and Hydraulics Bureau). We 
interpolated this dataset to the SRF’s grid for this work.

Spatially averaged daily temperatures (temp_bp, temp_cm, 
and temp_nb) for the whole SRF area were estimated using 
data collected at  monitoring stations (henceforth referred 
to as “stations”) FMB, Ten Mile Corner, L31NS, Chekika, 
Cache, and RPL (Figure 1). Missing data were estimated 
through regression with the highest correlated nearby 
stations. Other nearby stations used for estimating missing 
data were: S331W, 3AS3WX, JBTS, and MLRF1. These 
temperature data were accessed using the DBHYDRO 
Browser, SFWMD (FMB, JBTS, S331W, RPL, L31NS, 
3AS3WX), Jan. 2017 site accessed, https://www.sfwmd.gov/
science-data/dbhydro/, from Western Regional Climate 
Center (Ten Mile Corner, Chekika, Cache), Jan. 2017 site 
accessed, https://wrcc.dri.edu/, and from National Data 
Buoy Center (MLRF1), Jan. 2017 site accessed, http://www.
ndbc.noaa.gov/.

South Florida is characterized by consistently high and 
equable temperatures compared to other parts of the 
alligator’s range (Bugbee 2008). Howarter (1999) and 

https://www.sfwmd.gov/science-data/dbhydro/
https://www.sfwmd.gov/science-data/dbhydro/
https://wrcc.dri.edu/
http://www.ndbc.noaa.gov/
http://www.ndbc.noaa.gov/
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Percival et al. (2000) assert that the warm climate in southern 
Florida may result in high metabolic costs for alligators. 
Seasonal and daily temperature variations may also influence 
alligator movement and home range size (Chabreck 1965; 
Goodwin and Marion 1978; Joanen and McNease 1970, 
1972; McNease and Joanen 1974; Morea 1999; Rootes and 
Chabreck 1993, Taylor 1984). Such increased mobility can 
be assumed to provide greater feeding opportunities and 
increased mating opportunity with more females.

2.2.5 Habitat variables

The habitat variables (marsh, marsh_pcent, edge, edge_pcent, 
canal, canal_pcent, upland, upland_pcent, excluded, excluded_
pcent) describe land cover type in each model cell to support 
alligator growth, survival, and breeding. Habitat is grouped 
into five categories and their percentages in a model cell:

• Marsh is freshwater marsh, the primary habitat for 
alligators.

• Edge is potential upland nesting habitat immediately 
adjacent to freshwater marsh.

• Canals are considered unnatural areas and potentially 
ecological sinks for alligators even though alligators are 
found abundantly in canals adjoining marshes (Chopp 
2003).

• Uplands have higher elevations than the marsh.

• Excluded are land cover that are not marsh, edge, 
upland, or canal such as lake, salt marsh, beach, levee, or 
road.

The habitat variables are an aggregation of the habitat 
classification used in Pearlstine et al. (2011). The aggregation 
crosswalk is presented in Shinde et al. (2014, Table 2). The 
habitat classification has a spatial grid cell resolution of 50 m 
x 50 m, so there are 80 habitat sub-cells within each 500 m 
x 400 m SRF transect grid cell. The percent habitat variable 
is the number of given 50 m x 50 m habitat sub-cells (X) in 
a given SRF grid-cell divided by the total number of sub-
cells (80) in the SRF grid-cell multiplied by 100 (percent 
habitat=100*X/80).

Variables such as marsh_pcent and edge_pcent influence 
nesting for reasons described in Section 2.2.1. The edge_pcent 
associated with the presence of alligator holes influences 
nesting by providing access to higher elevation over water to 
build nests. Presence of edge in a grid cell indicates upland 
that will act as a suitable site close to water for nest building. 
Having a good proportion (~30%; Section 4.5.4) of grid 
cell with marsh conditions (marsh_pcent) indicates suitable 
habitat and increases the probability of a nest. 

3 MODEL-BUILDING METHODS

The response variable nest was given a value of 1 if a nest 
was sighted in that grid cell that year, and it was given a 
value of 0 otherwise. Since the response variable is binary, 
a logistic regression generalized additive model (GAM) was 
used. Such a model will predict the probability surface of 
a nest sighting as a function of the predictor variables (i.e., 
how probable it is that there will be a nest in a given grid 
cell based on predictor variables such as temperature). If a 
prediction of the binary response variable nest was needed, 
then the predicted probability combined with a probability 
cutoff value could be used to classify cell-years as having 
value = 0 or = 1 for nest. In this application, however, the 
probability surface is enough for assessing the effects of 
water-management decisions.

Section 3.1 describes how and why we used data-splitting 
and the AUC (Area Under the receiver operating Curve) 
statistic as part of our model selection and assessment 
approach. The overall model-building process was to 
consider each of the categories of variables one at a time 
and Section 3.2 gives the rationale for the sequence in 
which we considered them. Section 3.3 describes how, 
within each category, we determined which variables to use 
and what functional form they should take. We built the 
model by adding terms and interactions from each category 
considered, but to keep model run times within a practical 
limit and computing limits (computer processing power and 
memory), we also eliminated some terms from the model at 
each stage, as described in Section 3.4. The measures we took 
to account for spatial correlation are described in Section 
3.5, and practical details regarding the implementation of 
the model in R language and environment for statistical 
computing (R Core Team 2019) are given in Section 3.6.

3.1 Model selection and assessment

In the book Elements of Statistical Learning, Hastie, et al. 
(2001, Section 7.2), note that there are two major objectives 
regarding building models to be used for prediction: 
model selection and model assessment. Model selection 
is “estimating the performance of different models to 
choose the (approximate) best one.” It is important to note 
that different people building models will make different 
decisions, and there are usually several different models of a 
system that have equivalent and optimal performance. Model 
assessment is described as, “having chosen a final model, 
estimating its prediction error (generalization error) on new 
data.”

Hastie, et al. (2001) also note that when plenty of data are 
available, the best way to accomplish the objectives of model 
selection and assessment is to split the data into three parts, 
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which they refer to as the training-set, validation-set, and 
test-set.

“The training data is used to fit the models; 
the validation set is used to estimate 
prediction error for model selection; 
the test set is used for assessment of the 
generalization error of the final chosen 
model. Ideally, the test set should be kept 
in a “vault” and be brought out only at the 
end of the data analysis,” (Hastie, et al. 
2001, p. 196).

We did not use information-theoretic approaches (e.g., AIC 
and BIC) or resampling approaches (i.e., cross validation 
and bootstrapping) in model selection because they were 
designed to be used when there is insufficient data to be 
split into three parts. Such approaches approximate the use 
of the validation-set to estimate model performance for 
model selection, and use the test-set to assess final model 
performance (Hastie et al. 2001, p. 196).

We have enough data so the full dataset containing the 
55,656 cell-year observations was split into three subsets. A 
random sample of nearly half of the observations (27,840) 
was selected from the full dataset without replacement using 
a uniform distribution, and this sample was designated as 
the training-set. Of the remaining 27,816 observations, a 
random sample of nearly half of the observations (13,920; 
or nearly one quarter of the original set) was selected 
without replacement and designated as the validation-set. 
The remaining observations (13,896) were designated as the 
test-set.

For all our model-building decisions, the model was fit to 
the training-set. To avoid overfitting the training-set data, 
the model was then used to obtain predicted probabilities 
of nest for the observations in the validation-set data. These 
predictions were then compared to the observed values of 
nest in the validation-set data. The predicted probabilities are 
values between 0 and 1, but the observed values of nest are 
equal to either 0 or 1. There are different ways to compare 
model predictions to observed values in this situation. 

The first is to choose a probability cutoff, 0.05 for example, 
and to set the predicted value of nest = 1 when the probability 
that nest = 1 falls above this cut-off, and to 0 otherwise. 
When such a cutoff is chosen, there are three quantities of 
interest: accuracy, sensitivity, and specificity. Accuracy is 
the proportion of cell-years correctly classified. Sensitivity 
is the proportion of true positives; that is, for all the cell-
years having true classification of nest = 1, sensitivity is the 
proportion that were predicted to have nest = 1. Specificity 
is the proportion of true negatives. That is, for all the cell-
years having true classification of nest = 0, specificity is the 
proportion that were predicted to have nest = 0. In other 
contexts, such as the use of medical tests, sensitivity and 

specificity have important meaning and should be examined 
carefully. In this analysis, however, the probability surface is 
of more importance than actual classification.

The second way to compare model predictions to observed 
values is to consider the area under the receiver operating 
curve (ROC). For all possible probability cut-off values, 
the sensitivity and specificity are calculated. The ROC is 
the curve for which sensitivity is on the vertical axis, and 
1-specificity is on the horizontal axis, as in Section 5. When 
comparing two models, the one for which the area under 
the ROC (i.e., AUC) is greater, has greater sensitivity and 
specificity for a wider range of cut-off values (Hastie et al. 
2001, p. 277-78). Since our interest is in the probability 
surface rather than in actual classification rates for a given 
cut-off value, we use the AUC calculated on the validation-
set data to compare competing models for some model-
selection decisions.

3.2 Sequence of variables considered

The overall model-building process was to consider each 
of the categories of variable one at a time, roughly in the 
order given in Section 2.2: alligator hole variables; space and 
distance variables; hydrological variables; meteorological 
variables; and, finally, habitat variables. 

Alligator holes were considered first as a predictor variable 
because of their importance in the life cycle of alligators 
(Section 2.2.1). Exploratory analyses and fit statistics 
calculated from single-variable models (SVMs) indicated that 
alligator holes were strongly predictive of nest presence, thus 
presence of alligator holes was almost certain to be needed in 
the final model. When a categorical variable is such a strong 
predictor, it is good to consider interactions between that 
variable and other variables, and since such interactions can 
double or triple the number of columns in the model matrix, 
we examined the need for such interactions first. 

Of the remaining categories of variables, we considered 
the spatial coordinates and distance variables next because 
the spatial coordinates were being used to account for 
both landscape effects and spatial correlation. We added 
a spatial correlation component in the model early on to 
ensure that the effects of other variables being added to the 
model were strong enough to detect after spatial effects were 
considered. We also needed to determine the extent to which 
the distance variables and the spatial coordinates might be 
confounded with one another and use the distance variables 
that were most independent of the spatial coordinates.

Of the remaining three categories of variable— hydrological, 
meteorological, and habitat— the values of the AUC for the 
single variable models fit to the variables in each category 
indicated that as a group, the hydrological variables 
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demonstrated better predictive performance, followed by the 
meteorological, and then the habitat variables.

3.3 Functional-forms decisions

For some variables, the functional-form decision was a 
choice between a categorical variable or a continuous 
variable, as in the case of the habitat variables for which 
an indicator variable (e.g., present, absent) and a percent 
variable (e.g., 70% coverage) were available. This decision 
was made based on examining graphs that showed the level 
of continuity of the percent variables available in the data. 
For categorical variables, the functional-form decision was 
how many categories to use or if collapsing categories is 
warranted. For a continuous variable, the functional-form 
decision was how many basis-function columns to use in the 
model matrix. 

Thus, to choose the number of columns to allow for a 
continuous variable, a model can be fit with more columns 
than could reasonably be needed, and then the effective 
degrees of freedom (edf) can be used to get an idea of how 
many columns were really needed. We used graphs of the 
empirical probability that nest = 1 as a function of each 
variable to get an idea of how wiggly the function might need 
to be. We then compared SVMs with k = 5 and k = 20 (term 
k, is equivalent to the decision about how many columns to 
use for that variable) and the edf that resulted from each to 
determine the value of k to use for each variable.

3.4 Variable elimination

Variables from a given category were added progressively 
to the model containing the variables selected from the 
previously considered categories, along with interactions 
among the main effect terms in the new category and those in 
the previous categories. This approach results in the number 
of columns in the model matrix growing very quickly, which 
unchecked could result in impractically long model run 
times. So before going on to the next category of variables, 
we also eliminated interaction terms that did not contribute 
to the overall model fit.

The R mgcv (Wood 2017) package offers automatic variable 
selection options. We used cubic splines with shrinkage, 
which resulted in calculating additional penalties for smooth 
terms that can result in reducing the edf to a very small 
(near zero) value. In our output tables, we noticed that the 
interaction terms for which the edf was close to zero had very 
small p-values.

Thus, we decided to eliminate any interaction terms that 
were not significant at the α  = 0.001 level. When using 

GAMs with penalty parameters, p-values are approximate, 
and with tens of thousands of observations, statistical 
significance at the typical α  = 0.05 level is far too easily 
attained. We set the p-value cutoff for our backward 
elimination to α  = 0.001 to protect against multiple testing, 
the potential for inadequately modeled spatial or temporal 
autocorrelation, and the fact that p-values calculated using 
the methods in mgcv are approximate. We used p-values 
only for back-elimination of interaction terms in the model-
building process and at the end of the model-building 
process to eliminate some main effect terms.

Main effect terms were not considered for elimination until 
after all variables from all categories had been added to 
the model because sometimes a predictor variable affects a 
response variable not as a main effect, but as an interaction 
with another variable. This procedure allowed for all 
pairwise interactions to be considered. 

Finally, after the category of habitat variables was considered, 
backward elimination of insignificant terms was performed 
using the rules enumerated below.

1. First set of passes: 

1.1 Eliminate any main effect that is not statistically 
significant unless there is an interaction term with 
that effect in it.

1.2 Eliminate any interaction that is not statistically 
significant unless it is a 2-way interaction, and 
there is a 3-way interaction containing both terms 
in it. (Example: ti(edge_pcent, xCentroid) is not 
significant, but it is not eliminated because ti(edge_
pcent, xCentroid, yCentroid) is significant).

1.3 Continue to apply Rule 1.1 and Rule 1.2 until there 
is nothing more to eliminate.

2. Second set of passes:

2.1 At this stage, if all insignificant interactions 
have been eliminated, then eliminate any 2-way 
interactions that are not significant even if there is a 
3-way interaction term with that effect in it.

2.2 If any 3-way interactions become insignificant, 
eliminate them per Rule 1.2.

3. Final set of passes:

3.1 At this stage, if all insignificant interactions have 
been eliminated, then eliminate any main effect 
that is not statistically significant even if there is an 
interaction with that term in it.

3.2 If any 2- or 3-way interactions become insignificant, 
eliminate them also per Rule 1.2 and Rule 2.1.
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3.5 Spatial correlation

It is important to model spatial correlation because if 
correlation exists, but it is not accounted for, then the model 
variance and all p-values are underestimated. One drawback 
to using a random effect is that most software packages 
which implement a random effect assume stationarity– that 
the covariance function is the same throughout the spatial 
domain. In complex and inconsistent terrain such as that in 
ENP, this assumption may not be valid. Another drawback 
is that using a random effect method accounts for the effects 
of location within the park in the random part of the model 
as opposed to the deterministic part of the model. If there is 
a cause-effect relationship between spatial coordinates and 
the response variable, as there probably is for alligator nest-
building, then it is better to account for spatial correlation 
in the deterministic part of the model. This also allows for 
modeling the interaction between spatial coordinates and 
other predictor variables.

3.6 Implementation in R

Analyses were performed in R (R Core Team 2019) using 
the mgcv package (Wood 2004, 2011, and 2017). To take 
advantage of multicore machines that allow parallel 
processing, we used Microsoft R Open (https://mran.
microsoft.com/open) which includes multi-threaded math 
kernel libraries from Intel. A setting of setMKLthreads(7) was 
used. 

In the mgcv package, the settings family = binomial, 
scale = 0 and method = “ML” was used. We used the te() 
smooth argument for main effects and the ti() smooth for 
interactions. Mgcv uses k for specification of the number of 
columns and Section 4 details how values of k were chosen 
with exploration of each variable. Natural cubic spline (bs 
= ‘cr’) smoothing is the default with te() and ti() functions 
because it is appropriate when variables are not on the same 
scale, is easily interpreted, and is appropriate where other 
smooth options are not (Wood 2017). Additional details 
of the selection of a GAM model and its arguments are 
provided in Section 4.

4 MODEL-BUILDING RESULTS

4.1 Alligator holes

Alligator hole information could be expressed as one of three 
variables (Table 1): dist_AH, hole, and hole_count. The metric 
dist_AH provided the effect of an alligator hole on multiple 
grid cells even if they did not have alligator holes. Although 
the number and location of alligator holes may change from 

year to year, the alligator hole dataset does not have time-
varying information. We determined which metric (dist_AH, 
hole, or hole_count) best explained the effect of alligator holes 
on nesting.

The value of k needed to be selected for dist_AH, and a 
decision had to be made as to whether to use default knots 
for the calculation of the cubic spline basis functions, or 
whether to specify custom knots. This allowed for more 
flexibility of the functions where distance was close to zero 
and in near proximity to alligator holes. A spline curve is a 
piecewise polynomial curve, meaning it joins two or more 
polynomial curves. The locations of the joins are known as 
“knots”.

In the full dataset, the proportion of cell-years that have a 
nest is 0.0285. The graph of nest proportion vs. dist_AH in 
Figure 3 shows that for distances near zero, nest proportion 
starts higher than the full-data value of 0.0285, then drops as 
distance from an alligator hole increases. At close range, an 
alligator hole provides a place to mate and better feeding 
opportunities during the dry season. Alligators find 
proximity to alligator holes suitable for nesting in both wet 
and dry years.

Here, knots are values of the predictor variable— in this 
case, dist_AH— that are chosen to divide the predictor 
variable values into bins. To allow greater flexibility closer to 
distances of zero, we used more knots closer to distance = 0. 
The knots locations were 6, 200, 450, 500, and 3500 m and 
stayed fixed even when other variables were added to the 
model. Figure 3 shows the predicted probability curve based 
on specified fixed location of knots. 

Since the total number of observations for hole_count = 1, 2, 
3, 4, 5, 6, 7, 8, respectively, are 7992, 3264, 1128, 360, 216, 72, 
120, 24 in a grid-cell, we decided to lump hole_count >= 4 to 
get a larger number of observations. Table 2 uses the new 
categorical variable hole_count2 in place of discrete hole_
count. The definition of hole_count2 is that if hole_count >= 4, 
then hole_count2 = ‘4+’, otherwise hole_count2 = hole_count. 

Figure 3. Empirical probability (plum dots) and SVM-predicted 
probability of nest = 1 vs dist_AH.

https://mran.microsoft.com/open
https://mran.microsoft.com/open
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Table 2 gives the value of hole_count2 in the columns, and the 
value of nest (= 0 or 1) in the rows (grand total [55656] = grid 
cells in SRF domain [2319] * no. of years [24]). Now the goal 
was to investigate whether the probability that nest = 1 is 
different for the different values of hole_count2 from ‘0’, ‘1’, 
‘2’, ‘3’, ‘4+’. (Since hole_count2 is a new categorical variable, 
the values of hole_count2 are put in quotation marks). 

We estimated marginal means (aka least-squares means) for 
levels of hole counts in a linear model [gam(nest ~ 1 + as.
factor(hole_count2), scale=0, select=TRUE,  
family=binomial(link=”logit”), method = “ML”, data=gator.
trn)] and computed contrasts among them to determine 
whether the observable differences in proportion of alligator 
holes that have nests across values of hole_count2 are 
statistically significant, using the R package emmeans (Lenth 
2019). The test adjusts the p-values because multiple tests are 
being performed simultaneously to preserve the effective 
significance level of α = 0.05. The results presented in Table 3 
show that the proportion of nests for hole_count2 = ‘2’, ‘3’, 
and ‘4+’ are not significantly different from one another.

nest Item
hole_count2

‘0’ ‘1’ ‘2’ ‘3’ ‘4+’ Total

0

Frequency 41723 7617 3036 990 706 54072

Percent 74.97 13.69 5.45 1.78 1.27 97.15

Row % 77.16 14.09 5.61 1.83 1.31 100

Col % 98.22 95.31 93.01 87.77 89.14 NA

1

Frequency 757 375 228 138 86 1584

Percent 1.36 0.67 0.41 0.25 0.15 2.85

Row % 47.79 23.67 14.39 8.71 5.43 100

Col % 1.78 4.69 6.99 12.23 10.86 NA

Total
Frequency 42480 7992 3264 1128 792 55656

Percent 76.33 14.36 5.86 2.03 1.42 100

Table 2. Bivariate frequency table comparing nest and 
hole_count2.

Comparison of hole_count2 Least Squares Means (α = 0.05)

Contrast Estimate p-value Different?

‘0’ – ‘1’ -0.927 <.0001 Yes

‘0’ – ‘2’ -1.522 <.0001 Yes

‘0’ – ‘3’ -1.865 <.0001 yes

‘0’ – ‘4+’ -1.936 <.0001 Yes

‘1’ – ‘2’ -0.594 <.0001 Yes

‘1’ – ‘3’ -0.937 <.0001 Yes

‘1’ – ‘4+’ -1.009 <.0001 Yes

‘2’ – ‘3’ -0.343 0.206 No

‘2’ – ‘4+’ -0.415 0.156 No

‘3’ – ‘4+’ -0.072 0.997 No

Table 3. Multiple comparisons of effects of values of hole_
count2 on probability of a nest.

Based on these results, a new variable was created called 
hole_count3, defined as follows. If hole_count2 = ‘2’, ‘3’, or 
‘4+’, then hole_count3 = ‘2+’; otherwise, hole_count3 = 
hole_count2. This leaves possible values for hole_count3 as ‘0’, 
‘1’, and ‘2+’. Next, a comparison was made of three single-
variable models of predicting probability of nest = 1, as 
shown in Table 4. The capitalized SVM name in this report 
(e.g., HOLE) indicates only that variable is present in the 
model.

Each model was fit to the training-set, and the AUC was 
calculated based on predictions to both the training-set 
and validation-set data. The HOLE model had training and 
validation AUCs of 0.64 and 0.65, the HOLE_COUNT3 
model had training and validation AUCs of 0.65 and 0.65, 
and the DIST_AH model had training and validation AUCs 
of 0.70 and 0.70. Based on these results, we chose to use dist_
AH in models moving forward. The code below was used to 
fit the model with dist_AH—

DM <- gam(nest ~ 1 + te(dist_AH),

scale = 0, select = TRUE, knots = list(dist_AH=c(6, 
200, 450, 500, 3500)),

family = binomial(link = “logit”), method = 
“ML”, control =  ctrl, data = gator.trn)

where “gator.trn” is the alligator training-set data.

4.2 Space and distance variables 

The distance variables were considered at the same time as 
the spatial coordinates because distances from canals and 
roads may be highly correlated with, and thus confounded 
with, spatial coordinates. We wanted to tackle the challenge 
of disentangling the effects early in the process. 

The distance variables (Table 1) include dist_AH, discussed in 
previous Section 4.1; dist_canals, which is the perpendicular 
distance between the center of the grid cell and the closest 
canal; and dist_ENPrds, which is the perpendicular distance 
between the grid cell and the closest road (only heavily 
traveled roads were considered). 

Unlike dist_AH, which had a nest proportion of about 0.07 

Model
AUC

Rank edf
Training Validation

HOLE 0.64 0.65 2 2.0

HOLE_
COUNT3

0.65 0.65 3 3.0

DIST_AH 0.70 0.70 5 4.3

Table 4. Performance statistics for models containing hole and 
hole_count3.
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when close to alligator holes (Figure 3), dist_canals and 
dist_ENPrds did not show as high proportion at close 
distance to canals and roads (Figure 4). For this reason, we 
decided to use default knots for calculation of the cubic 
spline basis functions for dist_canals and dist_ENPrds. Figure 
4 shows the fitted predicted probability curve based on 
default knots and appears to capture the trend well.

The final model chosen at the end of this step in the process 
had the following specification in mgcv—

DiM_S <- gam(nest ~ 1 + te(dist_AH) + te(dist_canals) + 
te(dist_ENPrds) + ti(dist_AH,dist_canals) 
+ ti(dist_AH, dist_ENPrds) + ti(dist_canals, 
dist_ENPrds) + te(xCentroid) + te(yCentroid) 
+ ti(xCentroid,yCentroid), 

knots = list(dist_AH=c(6, 200, 450, 500, 3500)), 
scale=0, select=TRUE,

family=binomial(link=”logit”), method = “ML”, 
control=ctrl, data=gator.trn)

The performance statistics of this model are given in Table 5. 
All the p-values were very small, except for xCentroid, 
showing that, thus far, all the terms included are needed.

Figure 4a and 4b. Empirical probability (plum dots) and SVM-
predicted probability of nest = 1 vs (a) dist_canals and (b) dist_
ENPrds.

Model
AUC

Rank edf
Training Validation

DiM_S 0.83 0.83 85 45

Table 5. Performance statistics for model with alligator hole, 
spatial coordinates, and distance variables.

4.3 Hydrological variables

The SVMs were used to determine which of the hydrological 
variables (Table 1) should be included in the model. The first 
step in choosing among them was to use the settings— 
method = ‘ML’ and select = TRUE— to fit SVMs and compare 
the results. Table 6 shows the fit statistics for each of these 
single-variable models. In terms of the validation AUC and 
the fit statistics, the DEPTH_WY model had the highest 
performance, followed by HYDROPERIOD.

The depth_bp, depth_cm, and depth_nb variables were created 
to replace depth_wy (Figure 2) to determine impacts of water 
depth on the different stages of the reproduction cycle. 
The d3 model contained these three replacement variables 
and the d3i model contained these three plus the three 
pairwise interactions among them (Table 6). The d3 model 
outperforms the DEPTH_WY model in terms of the outside-
the training-set data fit statistic validation AUC. 

Note that in the DEPTH_WY model, the rank is the full 
number of columns, and this would normally be the model 
degrees of freedom, but due to the penalty parameter, the 
effective degrees of freedom (edf) is 3.8. Similarly, for the 
d3 model, the rank is 13, but the edf is 8.3. The d3i model 
outperforms both the DEPTH_WY and the d3 models 
in terms of all fit statistics. All the terms in d3 and d3i 

Model
AUC

Rank edf
Deviance 
explainedTraining Validation

DEPTH_WY 0.72 0.71 5 3.8 0.076

HYDROPERIOD 0.70 0.72 5 4.3 0.072

DRYDAYS_
MAX

0.69 0.71 5 4.4 0.066

DEPTH_CM 0.70 0.70 5 4.2 0.062

DEPTH_BP 0.69 0.70 5 3.9 0.063

DEPTH_NB 0.69 0.67 5 3.8 0.051

DEPTH_MAX 0.67 0.68 5 3.8 0.054

DEPTH_MIN 0.66 0.68 5 4.0 0.041

*d3 0.72 0.72 13 8.3 0.073

*d3i 0.73 0.73 61 15.4 0.081

*multi-variable models containing depth for the breeding potential, 
courtship and mating, and nest building periods, without (d3) and 
with (d3i) interactions.

Table 6. Performance statistics for SVMs fit to the hydrological 
variables and for two multi-variable models containing depth 
for the breeding potential, courtship and mating, and nest 
building periods, without and with interactions respectively.
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model were statistically significant (α = 0.001), except one 
interaction term- ti(depth_bp,depth_nb).

4.3.1 Progression of models

Adding the terms from the d3i model (Table 6) to the terms in 
the DiM_S model (Table 5) resulted in model d3i_DiMS 
(Table 7). The number of columns in the model matrix 
increased by 188, from 85 to 273, though the edf increased by 
a small fraction of that (29), which shows that not all the 
columns are needed. The training AUC increased from 0.83 
to 0.85, and the validation AUC increased from 0.83 to 0.84.

Since not all the terms in the d3i_DiMS model were 
statistically significant, all interaction terms that were not 
significant at the α = 0.001 level were removed from the 
model following rules in Section 3.4. All main effect terms 
were kept in the model to allow interactions between terms 
currently in the model with the new main effect terms that 
would be added when meteorological and habitat variables 
were included. The resulting model is the d3i_DiMS_e shown 
in Table 7. The reduction in the number of columns has 
resulted in rank being much closer to the edf value, while the 
training and validation AUC remained the same.

4.4 Meteorological variables

The meteorological variables consist of three rain variables 
and three temperature variables (Table 1). The rain variables 
vary over both time and space, but the temperature variables 
vary over time only, not over space. That means there are at 
most 24 distinct values of each temperature variable—one 
for each year—and it was important to limit the degrees 
of freedom for temperature so that it did not become 
a surrogate for an effect of year, which would result in 
overfitting.

4.4.1 Rain

Figure 5 and Table 8 show the results of the SVM runs for the 
rain variables. For rain_nb, the fitted curve appears to be 

Model
AUC

Rank edf
Training Validation

DiM_S 0.83 0.83 85 44.8

d3i_DiMS 0.85 0.84 273 74.0

d3i_DiMS_e 0.85 0.84 193 69.5

Table 7. Progression of models through adding hydrological 
variables.

overfitting the training-set data, but this is not the case for 
rain_bp and rain_cm, for which there is some underfit. The 
rank shown in Table 8 is the full-model rank, which includes 
one column for the intercept and four columns for each 
continuous variable, since the SVMs were run using the 
default value of k = 5 in the te() smoother. 

Figure 5a, 5b, and 5c. Empirical probability (plum dots) and SVM-
predicted probability of nest = 1 as a function of (a) rain_bp, (b) 
rain_cm, and (c) rain_nb.

Model
Graph 
appearance

AUC

R
an

k

ed
f p-value

Training Validation

RAIN_BP Some effect 0.52 0.53 5 2.8 3.04E-02

RAIN_CM Some effect: 
Underfit

0.52 0.49 5 2.0 9.65E-02

RAIN_NB Overfit 0.55 0.57 5 4.7 8.73E-04

Table 8. SVM results for rain variables.
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For both rain_bp and rain_cm, the edfs that result after the 
smoothing/penalty parameter was fit was much lower than 5, 
and for rain_nb, it was close to 5, but this resulted in overfit 
(Figure 5). Thus, for all the rain terms, k = 3 was used to 
allow two columns for each variable, which provided more 
flexibility than a linear function, but avoided overfitting. 
Although the SVM results for rain_bp and rain_cm were not 
statistically significant, they were included in the model in 
case they became significant by way of an interaction with 
another variable, such as one of the water depth variables.

In the progression of models below, interactions among the 
rain variables were considered, and external interactions 
between each of the rain variables and each of the other 
main effect variables, except for the spatial coordinates, were 
considered.

4.4.2 Temperature

The temperature variables do not vary spatially. Each has 
a maximum of 24 distinct values, one for each year. When 
interaction terms are created with other variables that vary 
over both space and time, the interaction terms themselves 
will also vary over space and time, and will therefore have 
many more distinct values. Temperature-with-temperature 
interactions were avoided since there were too few distinct 
values to support them. In the progression of models below, 
the models contained external interactions between each of 
the temperature terms and each other main effect variable, 
but no internal interactions among the temperature variables.

Table 9 and Figure 6 show the results of fitting SVMs to the 
temperature variables. For these models, the default value of 
k = 5 was used. The edf after the smoothing/penalty 
parameter was fit remains close to 5 for both TEMP_BP and 
TEMP_NB, and the training and validation AUC are both 
higher than the TEMP_CM, but the graphs show that these 
results are due to overfitting. The variable temp_cm did not 
show a strong effect as the fitted model was a near horizontal 
line with a small slope, both AUC values were 0.52, and the 
p-value was not significant. Insignificant terms can become 
significant, however, when interactions are considered. 
Results that tell about the interaction of hotness and dryness 
could be useful. The terms that tell about dryness are the rain 
terms, the water depth terms, and the proximity to canal 
terms. To keep from overfitting, k = 3 was used for all three of 
the temperature terms.

Model
Graph 
appearance

AUC

R
an

k

ed
f p-value

Training Validation

TEMP_BP Overfit 0.57 0.55 5 4.9 3.82E-12

TEMP_CM Some-effect 0.52 0.52 5 2.1 1.63E-01

TEMP_NB Overfit 0.57 0.54 5 4.7 3.01E-05

Table 9. SVM results for temperature variables.

Figure 6a, 6b, and 6c. Empirical probability (plum dots) and 
SVM-predicted probability of nest = 1 as a function of (a) 
temp_bp, (b) temp_cm, and (c) temp_nb.

4.4.3 Progression of models

The main effects of each of the rain and temperature 
variables, the internal interactions among the rain variables, 
and the external interactions— rain-with-temperature, 
rain-with-distance, rain-with water-depth, temperature-
with-distance, temperature-with-water-depth— were added 
to the terms that remained in model d3i_DiMS_e in Table 
7. The model that resulted was model d3iDiMS_r3it3_i in 
Table 10. The rank of the model matrix increased by 348 
columns, from 193 to 541, while the edf increased by only 39, 
showing that not all 348 columns were needed. The training 
AUC increased from 0.85 to 0.88, while the validation AUC 
increased from 0.84 to 0.85.
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All interaction terms with p-value greater than α = 0.001 were 
removed following rules in Section 3.4 resulting in model 
d3iDiMS_r3it3_i_e in Table 10. The number of columns in 
the model matrix for this model was 193, with edf = 79. The 
training AUC was 0.87, and the validation AUC was 0.85. The 
terms remaining in this model are shown in Table 11.

4.5 Habitat variables

In addition to the alligator hole variables already discussed 
in Section 4.1, there were other habitat variables (Table 1) 
motivated by habitat categories used in the APSI model 
(Shinde et al. 2014). For all these variables, the values vary 
over space but not over time in the data, although they most 
likely do vary slowly over time.

4.5.1 Canal variables 

There were three variables to choose from to represent the 
effect of canals on the probability of nest building: canal, 
canal_pcent, and dist_canals (already considered and 
evaluated in Section 4.2). Table 12 shows that only 696 cells 
have a value of canal = 1. For cells with canal = 1, 8.48% have 
nest = 1, but for those with canal = 0, only 2.77% have nest = 
1. Using dist_canals makes the distance effectively 0 for those 
696 cells, allowing them to have a higher probability of nest = 
1. A continuous function of dist_canals allows nearby cells to 
also have a higher probability of nest = 1, and that probability 
can decrease with distance. The nest-building probability 
was a function of a continuous variable for canal using either 
dist_canals or canal_pcent. However, Figure 7 shows that as a 
continuous variable, canal_pcent does not provide much 
more information than did canal; for 54,960 of the 55,656 
observations, the value is 0.

Figure 7 shows that when dividing canal_pcent into bins to 
calculate the proportion of observations for which nest = 
1, only three bins meet the criterion that there must be at 
least 50 observations in a bin. Figure 4(a), in contrast, shows 
that considering the effect of the distance from a canal 
allowed the model to predict different probabilities of nest 
= 1 for all different values of distance, with a gentle curve 
differentiating the probabilities for different distances. We 

Model
AUC

Rank edf
Training Validation

d3i_DiMS_e 0.85 0.84 193 69.5

d3iDiMS_r3it3_i 0.88 0.85 541 108.8

d3iDiMS_r3it3_i_e 0.87 0.85 193 79.0

Table 10. Progression of models from adding hydrological 
variables to adding meteorological variables

Term

Es
ti

m
at

e_
ed

f*

St
d

.E
rr

o
r_

rd
f*

*

p-value

(Intercept) -4.9 0 3.22E-127

te(dist_AH) 3.0 4 6.60E-30

te(dist_canals) 3.6 4 1.12E-26

te(dist_ENPrds) 2.7 4 5.49E-05

ti(dist_AH,dist_canals) 7.1 16 9.22E-09

ti(dist_AH,dist_ENPrds) 6.9 16 1.09E-05

ti(dist_canals,dist_ENPrds) 6.0 16 4.78E-08

te(xCentroid) 0.0 4 9.20E-01

te(yCentroid) 0.1 4 2.79E-01

ti(xCentroid,yCentroid) 12.6 16 5.73E-31

te(depth_bp) 2.5 4 6.61E-08

te(depth_cm) 0.9 4 8.36E-05

te(depth_nb) 0.0 4 1.00E+00

ti(depth_bp,depth_cm) 4.6 16 7.52E-09

ti(depth_bp,dist_AH) 2.5 14 1.63E-07

te(rain_bp) 0.0 2 9.14E-01

te(rain_cm) 0.0 2 6.55E-01

te(rain_nb) 0.0 2 7.17E-01

te(temp_bp) 1.6 2 1.26E-04

te(temp_cm) 0.0 2 8.09E-01

te(temp_nb) 0.7 2 5.43E-02

ti(rain_bp,temp_bp) 2.3 4 1.24E-06

ti(rain_cm,temp_cm) 3.8 4 3.09E-10

ti(rain_cm,temp_nb) 1.0 4 2.43E-09

ti(depth_bp,temp_cm) 2.7 8 4.55E-10

ti(depth_nb,temp_cm) 2.9 8 7.23E-06

ti(depth_cm,temp_nb) 3.2 8 1.32E-04

ti(dist_ENPrds,temp_bp) 3.9 8 2.53E-07

ti(dist_canals,temp_cm) 3.5 8 6.01E-06

* The regression coefficient estimates if the term is represented by a 
single column in the model matrix; the estimated degrees of freedom 
(edf) if the term is a smooth function of a continuous variable, 
represented by multiple columns in the model matrix.
** The standard error of the regression coefficient estimates if the 
term is represented by a single column in the model matrix; the 
reference degrees of freedom (rdf) if the term is a smooth function of 
a continuous variable.
** Value of the standard error of the parameter estimates if the term 
is a categorical variable, and it contains the reference degrees of 
freedom (rdf).

Table 11. Terms in model d3iDiMS_r3it3_i_e.

Figure 7. Empirical probability (plum dots) of nest = 1 as a 
function of canal_pcent.

nest Item
canal

0 1 Total

0

Frequency 53435 637 54072

Percent 96.01 1.14 97.15

Row % 98.82 1.18 100

Col % 97.23 91.52 NA

1

Frequency 1525 59 1584

Percent 2.74 0.11 2.85

Row % 96.28 3.72 100

Col % 2.77 8.48 NA

Total
Frequency 54960 696 55656

Percent 98.75 1.25 100

Table 12. Bivariate frequency table comparing the binary 
variables nest and canal.

decided dist_canals would be the best variable to use in the 
model because it allowed a canal to have an effect on a grid 
cell even if that grid cell did not contain a canal, where the 
other two variables did not (see Section 4.2 for a description 
of how dist_canals was modeled). 
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All interaction terms with p-value greater than α = 0.001 were 
removed following rules in Section 3.4 resulting in model 
d3iDiMS_r3it3_i_e in Table 10. The number of columns in 
the model matrix for this model was 193, with edf = 79. The 
training AUC was 0.87, and the validation AUC was 0.85. The 
terms remaining in this model are shown in Table 11.

4.5 Habitat variables

In addition to the alligator hole variables already discussed 
in Section 4.1, there were other habitat variables (Table 1) 
motivated by habitat categories used in the APSI model 
(Shinde et al. 2014). For all these variables, the values vary
over space but not over time in the data, although they most 
likely do vary slowly over time.

4.5.1 Canal variables 

There were three variables to choose from to represent the 
effect of canals on the probability of nest building: canal, 
canal_pcent, and dist_canals (already considered and 
evaluated in Section 4.2). Table 12 shows that only 696 cells 
have a value of canal = 1. For cells with canal = 1, 8.48% have 
nest = 1, but for those with canal = 0, only 2.77% have nest = 
1. Using dist_canals makes the distance effectively 0 for those 
696 cells, allowing them to have a higher probability of nest = 
1. A continuous function of dist_canals allows nearby cells to 
also have a higher probability of nest = 1, and that probability
can decrease with distance. The nest-building probability
was a function of a continuous variable for canal using either 
dist_canals or canal_pcent. However, Figure 7 shows that as a 
continuous variable, canal_pcent does not provide much 
more information than did canal; for 54,960 of the 55,656 
observations, the value is 0.

Figure 7 shows that when dividing canal_pcent into bins to 
calculate the proportion of observations for which nest = 
1, only three bins meet the criterion that there must be at 
least 50 observations in a bin. Figure 4(a), in contrast, shows 
that considering the effect of the distance from a canal 
allowed the model to predict different probabilities of nest
= 1 for all different values of distance, with a gentle curve 
differentiating the probabilities for different distances. We 

Model
AUC

Rank edf
Training Validation

d3i_DiMS_e 0.85 0.84 193 69.5

d3iDiMS_r3it3_i 0.88 0.85 541 108.8

d3iDiMS_r3it3_i_e 0.87 0.85 193 79.0

Table 10. Progression of models from adding hydrological 
variables to adding meteorological variables

Term

Es
ti

m
at

e_
ed

f*

St
d

.E
rr

o
r_

rd
f*

*

p-value

(Intercept) -4.9 0 3.22E-127

te(dist_AH) 3.0 4 6.60E-30

te(dist_canals) 3.6 4 1.12E-26

te(dist_ENPrds) 2.7 4 5.49E-05

ti(dist_AH,dist_canals) 7.1 16 9.22E-09

ti(dist_AH,dist_ENPrds) 6.9 16 1.09E-05

ti(dist_canals,dist_ENPrds) 6.0 16 4.78E-08

te(xCentroid) 0.0 4 9.20E-01

te(yCentroid) 0.1 4 2.79E-01

ti(xCentroid,yCentroid) 12.6 16 5.73E-31

te(depth_bp) 2.5 4 6.61E-08

te(depth_cm) 0.9 4 8.36E-05

te(depth_nb) 0.0 4 1.00E+00

ti(depth_bp,depth_cm) 4.6 16 7.52E-09

ti(depth_bp,dist_AH) 2.5 14 1.63E-07

te(rain_bp) 0.0 2 9.14E-01

te(rain_cm) 0.0 2 6.55E-01

te(rain_nb) 0.0 2 7.17E-01

te(temp_bp) 1.6 2 1.26E-04

te(temp_cm) 0.0 2 8.09E-01

te(temp_nb) 0.7 2 5.43E-02

ti(rain_bp,temp_bp) 2.3 4 1.24E-06

ti(rain_cm,temp_cm) 3.8 4 3.09E-10

ti(rain_cm,temp_nb) 1.0 4 2.43E-09

ti(depth_bp,temp_cm) 2.7 8 4.55E-10

ti(depth_nb,temp_cm) 2.9 8 7.23E-06

ti(depth_cm,temp_nb) 3.2 8 1.32E-04

ti(dist_ENPrds,temp_bp) 3.9 8 2.53E-07

ti(dist_canals,temp_cm) 3.5 8 6.01E-06

*  The regression coefficient estimates if the term is represented by a 
single column in the model matrix; the estimated degrees of freedom 
(edf) if the term is a smooth function of a continuous variable, 
represented by multiple columns in the model matrix.
** The standard error of the regression coefficient estimates if the 
term is represented by a single column in the model matrix; the 
reference degrees of freedom (rdf) if the term is a smooth function of 
a continuous variable.
** Value of the standard error of the parameter estimates if the term 
is a categorical variable, and it contains the reference degrees of 
freedom (rdf).

Table 11. Terms in model d3iDiMS_r3it3_i_e.

Figure 7. Empirical probability (plum dots) of nest = 1 as a 
function of canal_pcent.

nest Item
canal

0 1 Total

0

Frequency 53435 637 54072

Percent 96.01 1.14 97.15

Row % 98.82 1.18 100

Col % 97.23 91.52 NA

1

Frequency 1525 59 1584

Percent 2.74 0.11 2.85

Row % 96.28 3.72 100

Col % 2.77 8.48 NA

Total
Frequency 54960 696 55656

Percent 98.75 1.25 100

Table 12. Bivariate frequency table comparing the binary 
variables nest and canal.

4.5.2 Edge variables

Two variables explained the differences in the probability of a 
nest being built as a function of whether the grid cell was on 
the edge between marsh and upland: the binary variable edge 
and the continuous variable edge_pcent (Table 1). It is usually 
better to use a continuous variable to reduce information loss 
rather than just a binary separation of values for probability 
nest = 1. Figure 8 shows that there were enough continuous 
values of edge_pcent to allow its use as a continuous predictor 
variable without large gaps between values such as those seen 
in Figure 7 for canal_pcent.

Figure 9(a) shows the SVM-predicted probability of nest = 1 
as a function of edge_pcent. A default value of k = 5 was used 
in the SVM in this case. Figure 9(b) shows the same for 
edge_pcent, except that in this SVM, k = 20. The results in 
Table 13 show that when k = 5 or 20, the only difference 
between training or validation AUCs is that the p-value for k 
= 5 is slightly lower. Since the edf for the k = 5 SVM was equal 
to 2.0, we chose k = 3 for edge_pcent to provide more 
flexibility than a linear function.

Figure 8. Histogram of edge_pcent.

Figure 9a and 9b. Empirical probability (plum dots) and SVM-
predicted probability of nest = 1 as a function of edge_pcent 
when (a) k = 5 and (b) k = 20 (blue curves).

4.5.3 Excluded variables

Excluded variables do not refer to variables that are not 
included in the model. It refers to the binary variable 
excluded and the continuous variable excluded_pcent (Table 1) 
with sub-cells classified as excluded habitat (e.g., salt marsh). 
It is preferable to use a continuous variable, if possible, but 
the numbers of observations were low for excluded_pcent 
over 40%. Additionally, 96% of the observations in the data 
had excluded_pcent = 0 (Table 14). Therefore, the binary 
variable excluded was chosen for the model.
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Of the 53,664 observations with no excluded habitat (i.e., 
excluded = 0;  Table 14), the empirical probability of nest = 1 
was 0.0292, which was slightly higher than the full-data value 
of 0.0285. Of the 1,992 observations that have excluded = 1, 
the empirical probability of nest = 1 is 0.0095. Since these two 
probabilities were different, excluded was chosen as a useful 
variable to be included in the model. 

4.5.4 Marsh variables

The marsh variables consisted of the binary variable marsh 
and the continuous variable marsh_pcent (Table 1). The 
histogram of marsh_pcent has no major gaps, and has the full 
range of values from 0 to 100 covered by enough 
observations that it is reasonable to estimate a value of the 
empirical probability of nest = 1 for each (Figure 10).

Model k Graph appearance
AUC

Rank edf p-value
Training Validation

EDGE_PCENT 5 Some-effect 0.51 0.53 5 2.0 0.304

EDGE_PCENT 20 No-effect 0.51 0.53 20 1.0 0.328

Table 13. SVM results for edge_pcent.

nest Item
excluded

0 1 Total

0

Frequency 52099 1973 54072

Percent 93.61 3.54 97.15

Row % 96.35 3.65 100

Col % 97.08 99.05 NA

1

Frequency 1565 19 1584

Percent 2.81 0.03 2.85

Row % 98.80 1.20 100

Col % 2.92 0.95 NA

Total
Frequency 53664 1992 55656

Percent 96.42 3.58 100

Table 14. Bivariate frequency table comparing nest and 
excluded.

Figure 10. Histogram of marsh_pcent.

Figures 11(a, b) show the SVM fits to marsh_pcent for k = 5 
and k = 20, respectively, and Table 15 gives fit statistics for 
these SVMs. Although both the training and validation AUCs 
increase when k = 20, which results in edf = 8, Figure 11(b) 
shows that the k = 20 SVM overfits the data. Since the edf for 
the k = 5 SVM was 4.7 with slight overfitting of data, k = 4 was 
chosen for marsh_pcent moving forward.

4.5.5 Upland variables

As with the other habitat variables, there were two variables 
that could be used to describe the effect of upland on nest 
building probability. The first was the binary variable upland 
and second was the continuous variable upland_pcent (Table 
1). 

Since it is best to use a continuous variable when possible, 
and since there were no major gaps in the values taken by 
upland_pcent, upland_pcent was chosen for the model. Table 

a

Figure 11a and 11b.  Empirical probability (plum dots) and SVM-
predicted probability of nest = 1 as a function of marsh_pcent 
when (a) k = 5 and (b) k = 20 (blue curves).

Model k Graph appearance
AUC

Rank edf p-value
Training Validation

MARSH_PCENT 5 Some-overfit 0.53 0.50 5 4.7 1.35E-03

MARSH_PCENT 20 Overfit 0.55 0.52 20 8.0 1.54E-03

Table 15. SVM results for marsh_pcent.
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Figures 11(a, b) show the SVM fits to marsh_pcent for k = 5 
and k = 20, respectively, and Table 15 gives fit statistics for 
these SVMs. Although both the training and validation AUCs 
increase when k = 20, which results in edf = 8, Figure 11(b) 
shows that the k = 20 SVM overfits the data. Since the edf for
the k = 5 SVM was 4.7 with slight overfitting of data, k = 4 was 
chosen for marsh_pcent moving forward.

4.5.5 Upland variables

As with the other habitat variables, there were two variables 
that could be used to describe the effect of upland on nest 
building probability. The first was the binary variable upland
and second was the continuous variable upland_pcent (Table 
1). 

Since it is best to use a continuous variable when possible, 
and since there were no major gaps in the values taken by
upland_pcent, upland_pcent was chosen for the model. Table 

a

Figure 11a and 11b.  Empirical probability (plum dots) and SVM-
predicted probability of nest = 1 as a function of marsh_pcent 
when (a) k = 5 and (b) k = 20 (blue curves).

Model k Graph appearance
AUC

Rank edf p-value
Training Validation

MARSH_PCENT 5 Some-overfit 0.53 0.50 5 4.7 1.35E-03

MARSH_PCENT 20 Overfit 0.55 0.52 20 8.0 1.54E-03

Table 15. SVM results for marsh_pcent.

16 gives the results from the SVM with upland_pcent for k = 5 
and k = 20. The edf from the k = 5 SVM was 2.8 and k = 20 
SVM was 3.5. The predicted curves in Figure 12 show that 
there is only a slight difference from k = 5 to k = 20. Thus, k = 
5 was chosen for upland_pcent to provide more flexibility in 
capturing the SVM trend.

Figure 12a and 12b. Empirical probability (plum dots) and 
SVM-predicted probability of nest = 1 as a function of 
upland_pcent when (a) k = 5 and (b) k = 20 (blue curves).

4.5.6 Progression of models

The main effect smooth terms for edge_pcent, marsh_pcent, 
and upland_pcent, along with the categorical term for 

Model k Graph appearance
AUC

Rank edf p-value
Training Validation

UPLAND_PCENT 5 Gentle curve 0.50 0.52 5 2.8 3.80E-02

UPLAND_PCENT 20 Gentle curve 0.50 0.52 5 3.5 6.98E-02

Table 16. SVM results for upland_pcent.

excluded (excluded habitat) were added to model d3iDiMS_
r3it3_i_e from Table 10. Interactions between each of 
edge_pcent, marsh_pcent, and upland_pcent and each of the 
continuous variables already in the model were also added. 
Fit statistics from the resulting model, called d3DMSr3t3_
hi_i, are given in Table 17. Although 323 columns were added 
to the model matrix, the training AUC went up by only 0.007, 
and the validation AUC by 0.003. 

In model d3DMSr3t3_hi_i the effect of excluded, with a 
p-value of 0.461, was not statistically significant. Of the 
main effects of edge_pcent, marsh_pcent, and upland_pcent, 
only marsh_pcent was statistically significant. Of these 
36 interactions involving habitat variables, only two 
were statistically significant: ti(edge_pcent,depth_cm) and 
ti(upland_pcent,dist_canals). 

The low impact of adding habitat variables in d3iDiMS_
r3it3_i_e showed that the variables already in the model were 
sufficient without adding habitat variables. All interaction 
terms that were not statistically significant were removed 
from the model at the same time. The remaining interaction 
terms were assessed for significance and removed if they 
were not significant. This process was repeated until all 
interaction terms in the model were significant, following 
rules in Section 3.4. The model that resulted is model 
d3DMSr3t3_hi_i_e in Table 17 which has 17 more columns 
than did model d3iDiMS_r3it3_i_e. This back-elimination 
process resulted in a slightly lower training AUC. The terms 
remaining in this model are displayed in Table 18.

Model
AUC

Rank edf
Training Validation

d3iDiMS_r3it3_i_e 0.868 0.847 193 79.0

d3DMSr3t3_hi_i 0.875 0.850 516 103.4

d3DMSr3t3_hi_i_e 0.871 0.850 210 85.2

Table 17. Progression of models from adding meteorological 
variables to adding habitat variables.
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4.6 Space interactions

All the models in the progression from DiM_S model (Table 
5) onward contained a main effect for xCentroid, yCentroid, 
and an interaction between the two. As each category 
of variables was considered and added to the model, no 
interactions of spatial coordinates with main effects of the 
other variables were included. Because spatial coordinates 
could function as a surrogate for any other variable, the other 
variables were considered first to allow them to explain as 
much variability in the probability that nest = 1 as possible. 

It is possible, however, that the effect of some variables is 
different at different locations due to unobserved variables 

Term Estimate_edf Std.Error_rdf p-value

(Intercept) -4.9 0 3.27E-125

te(dist_AH) 2.9 4 1.88E-26

te(dist_canals) 3.6 4 8.24E-27

te(dist_ENPrds) 2.5 4 8.32E-04

ti(dist_AH,dist_canals) 7.3 16 6.54E-09

ti(dist_AH,dist_ENPrds) 7.1 16 1.07E-05

ti(dist_canals,dist_
ENPrds)

5.8 16 7.39E-08

te(xCentroid) 0.0 4 8.78E-01

te(yCentroid) 0.0 4 5.17E-01

ti(xCentroid,yCentroid) 12.4 16 2.19E-32

te(depth_bp) 2.4 4 5.16E-09

te(depth_cm) 0.9 4 1.14E-06

te(depth_nb) 0.0 4 1.00E+00

ti(depth_bp,depth_cm) 4.2 16 4.42E-08

ti(depth_bp,dist_AH) 2.5 14 3.28E-07

te(rain_bp) 0.0 2 1.00E+00

te(rain_cm) 0.5 2 1.35E-01

te(rain_nb) 0.0 2 7.19E-01

te(temp_bp) 1.4 2 1.51E-03

te(temp_cm) 0.0 2 4.58E-01

te(temp_nb) 0.2 2 2.18E-01

ti(rain_bp,temp_bp) 2.0 4 7.35E-07

ti(rain_cm,temp_cm) 3.6 4 3.32E-13

ti(rain_cm,temp_nb) 1.8 4 9.85E-13

ti(depth_bp,temp_cm) 3.5 8 9.12E-12

ti(depth_nb,temp_cm) 3.5 8 9.10E-08

ti(depth_cm,temp_nb) 3.5 8 3.49E-08

ti(dist_ENPrds,temp_bp) 4.1 8 1.01E-07

ti(dist_canals,temp_cm) 3.6 8 1.84E-06

te(edge_pcent) 0.0 2 8.46E-01

te(marsh_pcent) 1.4 3 2.74E-05

te(upland_pcent) 0.6 4 1.28E-01

ti(edge_pcent,depth_cm) 3.0 8 2.00E-05

Table 18. Terms in model d3DMSr3t3_hi_i_e. not included in the model, and this phenomenon would be 
captured using interactions between spatial coordinates and 
other variables. In this final stage of model development, 
2-way interactions between each xCentroid and yCentroid 
and the other continuous main effect terms are added to the 
model, as is a 3-way interaction among xCentroid, yCentroid, 
and each of the continuous main effect terms. Results from 
this model, called d3DMSr3t3hi_Si, are given in Table 19. 
Adding these terms resulted in increasing the number of 
columns in the model matrix by over 1000, and the edf of 152 
showed that not all were necessary. 

Backward elimination of insignificant terms was performed 
using the rules enumerated in Section 3.4. The model left 
after application of these rules was called d3DMSr3t3hi_Si_e 
(Table 19). The terms included in this model are displayed in 
Table 20. Though the training and validation AUC for model 
d3DMSr3t3hi_Si_e are only 0.01 more than that in model 
d3DMSr3t3_hi_i_e, Table 20 showed that adding the 
interactions with spatial coordinates resulted in removing 
some of the terms in d3DMSr3t3_hi_i_e, and the result was a 
model that gave credit to a different set of variables.

5 MODEL PERFORMANCE 
ASSESSMENT

This section assesses the performance of the final model. 
Figure 13 shows the ROC for each of the training-set and 
validation-set when the model was fit to the training-set. A 
model that contained only an intercept term, but no 
predictor variables, would have a ROC curve with two 
points, one at (0, 0), and one at (1, 1); the curve would be a 
straight line connecting these two points, and the AUC 
would be 0.5. When comparing two models, the one for 
which the AUC is greater, has greater sensitivity and 
specificity for a wider range of cut-off values (Hastie et al. 
2001), and since our objective was to characterize the 
probability surface rather than to classify grid cells as having 
a nest or not having a nest, this was the metric we chose to 
assess model performance.

Table 19 showed that when the final model was fit to the 
training-set data and used to predict the validation-set data, 
the area under the ROC— that is, the validation AUC— was 
equal to 0.86. When the model fit to the training-set data was 

Model
AUC

Rank edf
Training Validation

d3DMSr3t3_hi_i_e 0.87 0.85 210 85.2

d3DMSr3t3hi_Si 0.90 0.86 1281 152.4

d3DMSr3t3hi_Si_e 0.88 0.86 479 114.0

Table 19. Progression of models from adding habitat variables 
to adding interactions with spatial coordinates.
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p-value

(Intercept) -7.0 0 5.58E-155

te(dist_AH) 1.0 4 8.02E-14

ti(dist_AH,dist_canals) 4.6 16 2.45E-07

ti(dist_AH,dist_ENPrds) 7.9 16 1.99E-14

te(xCentroid) 2.12 4 4.46E-09

te(depth_cm) 1.0 4 5.96E-11

ti(depth_bp,depth_cm) 3.6 16 1.77E-04

te(temp_bp) 1.7 2 4.04E-05

ti(rain_bp,temp_bp) 1.7 4 1.63E-04

ti(rain_cm,temp_cm) 3.8 4 6.56E-12

ti(rain_cm,temp_nb) 1.0 4 1.07E-09

ti(depth_bp,temp_cm) 4.5 8 2.83E-12

ti(depth_nb,temp_cm) 1.6 8 7.94E-04

ti(depth_cm,temp_nb) 3.2 8 8.71E-06

ti(dist_ENPrds,temp_bp) 4.0 8 3.23E-06

ti(dist_AH,xCentroid,yCentroid) 14.8 64 2.51E-21

ti(dist_canals,xCentroid) 2.2 16 1.07E-06

ti(dist_canals,yCentroid) 1.9 16 5.21E-05

ti(dist_canals,xCentroid,yCentroid) 14.1 64 1.20E-34

ti(dist_ENPrds,xCentroid) 5.2 16 4.77E-13

ti(dist_ENPrds,xCentroid,yCentroid) 6.2 64 3.67E-07

ti(edge_pcent,yCentroid) 2.7 8 5.40E-06

ti(marsh_pcent,yCentroid) 5.7 12 4.57E-07

ti(marsh_pcent,xCentroid,yCentroid) 10.6 48 6.54E-09

ti(upland_pcent,xCentroid,yCentroid) 8.0 64 6.08E-06

Table 20. Terms in model d3DMSr3t3hi_Si_e, the final model.

Figure 13: ROC curves for training-set and validation-set when 
the model was fit to the training-set and ROC curves for the TV-
set and test-set when the model was fit to the TV-set.
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not included in the model, and this phenomenon would be 
captured using interactions between spatial coordinates and 
other variables. In this final stage of model development, 
2-way interactions between each xCentroid and yCentroid
and the other continuous main effect terms are added to the 
model, as is a 3-way interaction among xCentroid, yCentroid, 
and each of the continuous main effect terms. Results from 
this model, called d3DMSr3t3hi_Si, are given in Table 19. 
Adding these terms resulted in increasing the number of
columns in the model matrix by over 1000, and the edf of 152 
showed that not all were necessary. 

Backward elimination of insignificant terms was performed 
using the rules enumerated in Section 3.4. The model left 
after application of these rules was called d3DMSr3t3hi_Si_e
(Table 19). The terms included in this model are displayed in 
Table 20. Though the training and validation AUC for model 
d3DMSr3t3hi_Si_e are only 0.01 more than that in model 
d3DMSr3t3_hi_i_e, Table 20 showed that adding the 
interactions with spatial coordinates resulted in removing 
some of the terms in d3DMSr3t3_hi_i_e, and the result was a 
model that gave credit to a different set of variables.

5 MODEL PERFORMANCE
ASSESSMENT

This section assesses the performance of the final model. 
Figure 13 shows the ROC for each of the training-set and 
validation-set when the model was fit to the training-set. A 
model that contained only an intercept term, but no 
predictor variables, would have a ROC curve with two 
points, one at (0, 0), and one at (1, 1); the curve would be a 
straight line connecting these two points, and the AUC 
would be 0.5. When comparing two models, the one for 
which the AUC is greater, has greater sensitivity and 
specificity for a wider range of cut-off values (Hastie et al. 
2001), and since our objective was to characterize the 
probability surface rather than to classify grid cells as having 
a nest or not having a nest, this was the metric we chose to 
assess model performance.

Table 19 showed that when the final model was fit to the 
training-set data and used to predict the validation-set data, 
the area under the ROC— that is, the validation AUC— was 
equal to 0.86. When the model fit to the training-set data was 

Model
AUC

Rank edf
Training Validation

d3DMSr3t3_hi_i_e 0.87 0.85 210 85.2

d3DMSr3t3hi_Si 0.90 0.86 1281 152.4

d3DMSr3t3hi_Si_e 0.88 0.86 479 114.0

Table 19. Progression of models from adding habitat variables 
to adding interactions with spatial coordinates.
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(Intercept) -7.0 0 5.58E-155

te(dist_AH) 1.0 4 8.02E-14

ti(dist_AH,dist_canals) 4.6 16 2.45E-07

ti(dist_AH,dist_ENPrds) 7.9 16 1.99E-14
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te(depth_cm) 1.0 4 5.96E-11

ti(depth_bp,depth_cm) 3.6 16 1.77E-04

te(temp_bp) 1.7 2 4.04E-05

ti(rain_bp,temp_bp) 1.7 4 1.63E-04

ti(rain_cm,temp_cm) 3.8 4 6.56E-12

ti(rain_cm,temp_nb) 1.0 4 1.07E-09

ti(depth_bp,temp_cm) 4.5 8 2.83E-12

ti(depth_nb,temp_cm) 1.6 8 7.94E-04

ti(depth_cm,temp_nb) 3.2 8 8.71E-06

ti(dist_ENPrds,temp_bp) 4.0 8 3.23E-06

ti(dist_AH,xCentroid,yCentroid) 14.8 64 2.51E-21

ti(dist_canals,xCentroid) 2.2 16 1.07E-06

ti(dist_canals,yCentroid) 1.9 16 5.21E-05

ti(dist_canals,xCentroid,yCentroid) 14.1 64 1.20E-34

ti(dist_ENPrds,xCentroid) 5.2 16 4.77E-13

ti(dist_ENPrds,xCentroid,yCentroid) 6.2 64 3.67E-07

ti(edge_pcent,yCentroid) 2.7 8 5.40E-06

ti(marsh_pcent,yCentroid) 5.7 12 4.57E-07

ti(marsh_pcent,xCentroid,yCentroid) 10.6 48 6.54E-09

ti(upland_pcent,xCentroid,yCentroid) 8.0 64 6.08E-06

Table 20. Terms in model d3DMSr3t3hi_Si_e, the final model.

Figure 13. ROC curves for training-set and validation-set 
when the model was fit to the training-set and ROC curves for 
the TV-set and test-set when the model was fit to the TV-set.

used to predict the training-set data, the AUC was higher and 
equaled 0.88. Since the final model was fit to the training-set 
data, it does a better job predicting the training-set data than 
it does predicting the validation-set data. The difference in 

area between the two curves (Figure 13) is a measure of the 
degree to which the model overfit the training-set data. In 
addition to capturing a true signal, it also treated some of 
the noise in the training-set data as a signal, and it showed 
why we needed to use the AUC calculated on the validation-
set data, not the training-set data, to make model-building 
decisions. Because both the training-set and validation-set 
data were used to build the model, use of the AUC based on 
either the training-set or validation-set to assess final model 
performance would produce overly optimistic results (Hastie 
et al. 2001, p. 200).

Therefore, to assess the performance of the final model, the 
training-set and validation-set are combined and referred to 
as the “TV-set”. Final model d3DMSr3t3hi_Si_e is then re-fit 
to the TV-set. This refitting resulted in values of parameters 
estimated from the TV-set data being slightly different from 
what they were when the final model was fit to the training-
set data, but the model terms used and values of k were the 
same. This re-fitted model was then used to predict the 
probability that nest = 1 for the test-set data, which was set 
aside and not used during model construction. The AUCs 
turned out to be the same for the fitting and verification data 
in the two cases (Table 21). The rank was same no matter 
which dataset was used to fit the model, because the rank is 
the number of columns in the model matrix. The edf 
increased when fitting the model using the TV-set. The 
TV-set most likely provides more information about signal 
and noise than did the training-set, since it was the training-
set augmented by 50% additional observations. More 
effective columns were required to capture this additional 
information.

Figure 13 compares the ROC curves for the predictions to 
the different fitting and verification datasets. Given that the 
AUC values were the same for the training-set and TV-
set, it was not surprising to see how close the green curve 
for the TV-set was to the blue curve for the training-set. 
Furthermore, just as the validation-set (red) and test-set 
(plum) have similar curves, the difference in area between 
the training-set and validation-set curves was similar to the 
difference in area between the TV-set and test-set curves. 
While the comparisons displayed in Table 21 and Figure 13 
are interesting, the point of this exercise was to obtain the 
AUC for the test-set data for the purposes of quantifying the 
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Final Model Training-set 0.88 Validation-set 0.86 479 114

†Final Model 
re-fitted

*TV-set 0.88 Test-set 0.86 479 148

*TV set = Training-set + Validation-set; † No terms were added or 
deleted during re-fitting model

Table 21. Comparing final model AUCs for different training and 
validation datasets.
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performance of the final model. None of these results were 
used to modify any of the decisions made when building the 
model. 

Table 22 gives the information in the ROC curves (Figure 13) 
in tabular form for the final model fitted to the TV-set and 
used to predict to the test-set. Sensitivity is the true positive 
rate expressed as a percent. Specificity is the true negative 
rate expressed as a percent, and accuracy is the percent of all 
predictions that were correct. The probability cutoff is z. To 
understand the information in this table, find the row where 
z = 0.50. If a probability cutoff of 0.5 is chosen, that means 
that any cell-year in the test-set data for which the predicted 
probability that nest = 1 was 0.5 or higher will be classified as 
having a nest. When these predicted classifications are 
compared to the actual values of nest for the observations in 
the test-set data, the statistics in the table can be calculated. 
In the table, at 0.5, sensitivity is equal to 0, which means that 
of all the observations in the test-set data that truly had nest = 
1, 0% were classified as having nest = 1; specificity = 100, 
which means that of all the observations in the test-set data 
that truly had nest = 0, 100% were classified as having nest = 
0; and accuracy = 97, which means that of all the 
observations in the test-set data, 97% were correctly 
classified.

Clearly, if classification was the goal, a probability cutoff of 
0.5 would not be useful for finding nests. Recall that in the 
full dataset, 2.85% of the cell-years had nests, or close to 3%. 
Consider the probability cutoff of z = 0.03. In this row, the 
sensitivity is 84%, which means that of all the observations 
in the test-set data that had nests, 84% were classified as 
having a nest. The specificity is 74%, which means that of all 
the observations in the test-set data that did not have a nest, 
74% were classified as not having a nest. The accuracy is also 
74%, which means that of all the observations in the test-set 
data, 74% were classified correctly. Because the proportion 
of cell-years that have nests was very low, a low probability 
cutoff was needed to find nests, and specificity and accuracy 
are very close to each other for all probability cutoffs.

Use of this nest-building model is not to be based on 
classifying each cell-year as having a nest or not having a 
nest, however. For water management applications, it is 
sufficient to look at the probability surface for different 
scenarios, as Section 6 demonstrates.

6 APPLICATION

The purpose of this section is to use the model to examine 
differences in the probability that a nest will be built under 
different hydrological profiles because the Everglades is 
undergoing active hydrologic restoration. Hydrologic period-
based (BP and CM; Figure 2) wet, dry, and typical years were 
selected from Figure 14 (based on depth_bp) and Figure 15 

Sensitivity Specificity Accuracy z

94 56 57 0.01

90 67 67 0.02

84 74 74 0.03

80 79 79 0.04

76 83 82 0.05

48 92 91 0.10

25 97 95 0.15

13 98 96 0.20

6 99 97 0.25

2 100 97 0.30

1 100 97 0.35

0 100 97 0.40

0 100 97 0.45

0 100 97 0.50

0 100 97 0.55

0 100 97 0.60

0 100 97 0.65

0 100 97 0.70

0 100 97 0.75

0 100 97 0.80

0 100 97 0.85

0 100 97 0.90

0 100 97 0.95

0 100 97 0.99

Table 22. Sensitivity, specificity, and accuracy of final model (fit 
to the TV-set and predicting to the test-set) for probability cut-
offs from 0.01 to 0.99.

(based on depth_cm) to investigate predicted probabilities 
and prediction interval width of nesting. The variable 
depth_bp provides a yearly representation of wetness (Figure 
2). This variable influences alligator body condition, since 
body condition depends on food availability and mobility 
in the marsh, though other variables in the model also 
influence nesting. The variable depth_cm shows how suitable 
conditions are (Figure 2) during the breeding season for 
courtship and mating leading to subsequent nesting.

For the determination of wet, dry and typical years, quantiles 
(Q) of depth_bp and depth_cm for the period of record (POR) 
were compared with quartiles of individual years to find a 
dry year (max{abs[Q1(t) – Q1(POR)]}; Q1[t] < Q1[POR], t = 
year), a wet year (max[Q3(t) – Q3(POR)]; Q3[t] > Q3[POR]), 
and a typical year (min{abs[Q2(POR) – Q2(t)]}). 

6.1 Nesting under wet, dry, and typical years 

Based on depth_bp (Figure 14), a wet year was 1996; a dry 
year was 2012; and typical years were 1993 and 2003. 
Similarly, based on depth_cm (Figure 15), a wet year was 
1995, a dry year was 2011, and a typical year was 2015.

Figure 14. Boxplots of depth_bp (cm) vs. year

Figure 15. Boxplots of depth_cm (cm) vs. year.
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(based on depth_cm) to investigate predicted probabilities 
and prediction interval width of nesting. The variable 
depth_bp provides a yearly representation of wetness (Figure 
2). This variable influences alligator body condition, since 
body condition depends on food availability and mobility
in the marsh, though other variables in the model also 
influence nesting. The variable depth_cm shows how suitable 
conditions are (Figure 2) during the breeding season for 
courtship and mating leading to subsequent nesting.

For the determination of wet, dry and typical years, quantiles 
(Q) of depth_bp and depth_cm for the period of record (POR) 
were compared with quartiles of individual years to find a 
dry year (max{abs[Q1(t) – Q1(POR)]}; Q1[t] < Q1[POR], t = 
year), a wet year (max[Q3(t) – Q3(POR)]; Q3[t] > Q3[POR]), 
and a typical year (min{abs[Q2(POR) – Q2(t)]}). 

6.1 Nesting under wet, dry, and typical years 

Based on depth_bp (Figure 14), a wet year was 1996; a dry
year was 2012; and typical years were 1993 and 2003. 
Similarly, based on depth_cm (Figure 15), a wet year was 
1995, a dry year was 2011, and a typical year was 2015.

Figure 14. Boxplots of depth_bp (cm) vs. year

Figure 15. Boxplots of depth_cm (cm) vs. year.

6.1.1 Maps of depth_bp and depth_cm 

Figure 16(a-d) shows maps of depth_bp for wet-1996, dry-
2012, and typical-1993 and 2003 years based on the depth_bp 
criterion (Figure 14). Figure 17(a-c) show maps of depth_cm 
for wet-1995, dry-2011, and typical-2015 years based on the 
depth_cm criterion (Figure 15). The bracketed numbers in 
the legend indicate the percent of grid cells for that range 
in all the maps. Darker blue and purple colors indicate 
wetter conditions, while peach and dark red indicate drier 
conditions. The map for 1996 (Figure 16[a]) is relatively 
darker blue and purple, with drier upland cells on the eastern 
border of ENP in the Rocky Glades (RG) and in the Long 
Pine Key (LPK) areas on either side of the Main Park Road 
(Ingraham Highway). 

On the 1993 and 2003 maps, which represent typical years, 
the drier regions in RG expanded farther west into the 
freshwater marl prairie on the eastern border of upper Shark 
Slough (USS) and lower Shark Slough (LSS) basins, also 
expanding in the Taylor Slough (TS) and Panhandle (PH) 
basins (see Figures 16[c, d]). Some of the darker blue areas in 
the East Slough (ES) on the border between ENP and BCNP 
(Big Cypress National Preserve) are now a lighter shade of 
blue.

On the 2012 dry year map (Figure 16[b]), about 54% of cells 

had water levels below ground (peach and dark red areas), 
and they expanded even farther from the drier areas (~36%) 
in the 1993 and 2003 map into the East Slough. Year 2012 
was the driest year in the 24-year span of data used (based on 
depth_bp; Figure 16[b]).

The map for 1995 (Figure 17[a]) shows the wettest conditions 
during the courtship and mating period but there are still 
drier conditions (~35%) in the RG, LPK, TS and PH basins. 
Year 2011 had the driest courtship and mating period (Figure 
17[b]) where nearly all the SRF area (95%) was dry (<0 cm 
water depth).

In the typical year of wetness (2015; Figure 17[c]) for 
courtship and mating, only the upper (USS) and lower Shark 
Slough (LSS), some areas adjacent to the L-67 EXT canal 
in northeast Shark Slough (NESS), southern East Slough, 
central Taylor Slough, and southern Panhandle appear wet 
(~23%).

6.1.2 Predicted probabilities (nest = 1) and 
95% prediction interval widths

Prediction interval here means there was a 95% probability 
that nest = 1 fell within the prediction interval, i.e., a 2.5% 
probability that nest = 1 fell below the prediction interval, 
and a 2.5% probability that  nest = 1 fell above the prediction 
interval. The scales are the same on all maps (Figures 18, 
19, 20 and 21) and they range from 0 to 70% (the highest is 
66.2% during the POR) for the predicted probability and 
0 to 100% for the prediction interval. The darker blue and 
purple in the probability maps correspond to the highest 
probabilities and the peach and dark red correspond to 
the lowest. Darker blue, purple, and green in the 95% 
prediction interval maps indicate wider prediction intervals, 
and thus greater uncertainty in the predicted probabilities, 
while peach, magenta, and dark red indicate very narrow 
prediction interval widths and thus more certainty in the 
predicted probabilities. 

Tables 23 and 24 summarize predicted probabilities and 95% 
prediction interval widths, respectively, for hydrological 
basins corresponding to the years reported in Figures 18, 19, 
20 and 21. 

Though 1996 had the wettest breeding potential period, 
and 2012 had the driest, the spatial distribution of the 
probabilities for these two years look visually similar to some 
extent and also similar to 1993, a typical year (Figures 18[a, 
c] and 19[a]). Year 2003 was also a typical year, but does not 
appear to have the same spatial distribution as 1993 (Figure 
19[a, c]). 

In the four years in which we considered breeding potential 
period (Table 23), in 1993 (typical year), LSS had the highest 
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(b)                , dry year 2012     depth_bp 
< -15 [37.2 %]
 -15 - 0 [17.4 %]
 0 - 15 [28.5 %]
 15 - 30 [13.8 %]
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 45 - 60 [0.2 %]
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(d)                , typical year 2003     depth_bp 
< -15 [21.9 %]
 -15 - 0 [14.8 %]
 0 - 15 [20.3 %]
 15 - 30 [31.8 %]
 30 - 45 [10.1 %]
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> 120 [0.0 %]
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(c)                , typical year 1993     depth_bp 
< -15 [22.5 %]
-15 - 0 [14.2 %]
 0 - 15 [23.8 %]
 15 - 30 [30.1 %]
 30 - 45 [8.3 %]
 45 - 60 [0.8 %]
 60 - 120 [0.3 %]
> 120 [0.0 %]

Figure 16a, 16b, 16c, and 16d. Map of depth_bp (cm) values in a wet year (1996), a dry year (2012), and typical years (1993 and 
2003) along SRF transects. Numbers in brackets in the legend show percent of grid cells in that category.
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(a)                 , wet year 1995     depth_cm 
< -15 [25.9 %]
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(b)                 , dry year 2011     depth_cm 
< -15 [85.9 %]
 -15 - 0 [9.1%]
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(c)                 , typical year 2015     depth_cm 
< -15 [53.3 %]
-15 - 0 [23.9%]

 0 - 15 [20.6 %]
 15 - 30 [2.2 %]
 30 - 45 [0.0 %]
 45 - 60 [0.0 %]
 60 - 120 [0.0 %]
> 120 [0.0 %]

Figure 17a, 17b, and 17c. Map of depth_cm (cm) values in a wet year (1995), a dry year (2011), and a typical year (2015) along SRF 
transects. Numbers in brackets in the legend show percent of grid cells in that category.
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mean (9.4%). Other basins (ES, USS and NESS) also had 
higher mean probabilities in 1993. Among the basins (ES, 
USS, LSS) showing higher mean nesting probabilities, ES 
showed the least variability (1.4 std dev; Appendix: II), but 
LSS in general had a higher mean probability (Table 23 and 
Appendix: II) and a tighter prediction interval width (Table 
24 and Appendix: II) during most years. NESS, RG, TS, LPK 
and PH basins had lowest probability and maximum 
uncertainty (Tables 23 and 24, respectively).

Examination of Figures 20(a, c) and 21(a) for the years 
selected on the basis of courtship and mating water depths 
(depth_cm) show higher probabilities in Shark Slough in the 
typical year of 2015 followed by the wet year of 1995 and 
dry year of 2011. The means in Table 23 provide a numeric 
confirmation of visual observations and shows that USS had 
the highest mean probability (10.4 in 2015) followed by LSS 
(9.4 in 1993) and then ES (4.5 in 1993 and 2015). Table 24 
shows that LSS had a tighter prediction interval width (33.2 
in 1996 and 2012) followed by USS (33.4 in 2012) and ES 
(38.7 in 2012).

An examination of depth_bp for wet, dry, and typical years 
(Figure 16[a-d]) along with predicted nesting probabilities for 
the same years (Figures 18 and 19) shows higher probability 
of nesting in areas that are wet most of the time. Central 
Shark Slough and central Taylor Slough (Figure 1) are more 

Case Year ES USS LSS NESS RG TS LPK PH

All data POR§ 3.3 5.7 6.7 1.4 0.1 1.9 0.2 0.3

a. depth_bp; wet 1996 3.8 7.5 7.6 1.6 0.1 1.5 0.2 0.2

b. depth_bp; dry 2012 3.9 6.3 8.6 1.5 0.3 3.2 0.4 0.5

c. depth_bp; typical 1993 4.5 9.2 9.4 2.7 0.1 2.4 0.2 0.2

d. depth_bp; typical 2003 1.7 3.3 3.1 1.3 0.2 3.1 0.5 0.4

a. depth_cm; wet 1995 2.4 7.0 6.7 1.3 0.2 0.9 0.3 0.1

b. depth_cm; dry 2011 2.8 4.0 5.5 1.0 0.0 1.1 0.1 0.3

c. depth_cm; typical 2015 4.5 10.4 9.2 2.4 0.4 3.1 0.7 0.3

Basins- ES: East Slough, USS: Upper Shark Slough, NESS: Northeast Shark Slough, LSS: Lower Shark Slough, RG: Rocky Glades, TS: Taylor Slough, LPK: 
Long Pine Key, and PH: Panhandle; § Period of Record

Table 23. Predicted mean probabilities (reported in percent) in hydrological basins for mapped years; Figures 16 and 17.

Table 24. 95% mean prediction interval widths (reported in percent) in hydrological basins for mapped years; Figures 16 and 17.

Case Year ES USS LSS NESS RG TS LPK PH

All data POR§ 40.9 36.0 35.0 54.2 68.2 63.3 73.7 88.9

a. depth_bp; wet 1996 39.6 35.2 33.2 53.1 64.4 61.7 71.5 88.8

b. depth_bp; dry 2012 38.7 33.4 33.2 53.5 66.9 62.3 72.8 88.9

c. depth_bp; typical 1993 38.8 35.9 33.7 53.6 65.5 61.9 71.9 88.8

d. depth_bp; typical 2003 40.7 36.6 36.9 53.3 65.7 62.1 71.9 88.8

a. depth_cm; wet 1995 46.9 40.9 38.2 55.0 68.2 65.2 74.5 89.3

b. depth_cm; dry 2011 43.5 36.9 38.8 56.3 86.3 66.2 79.5 88.9

c. depth_cm; typical 2015 40.2 34.8 33.3 54.3 66.8 62.6 72.9 88.8

Basins- ES: East Slough, USS: Upper Shark Slough, NESS: Northeast Shark Slough, LSS: Lower Shark Slough, RG: Rocky Glades, TS: Taylor Slough, LPK: 
Long Pine Key, and PH: Panhandle; § Period of Record

likely to be wet most of the year. It is interesting to note that 
nesting probabilities (Figures 18-21) were higher between the 
lower end of the L-67 EXT canal and the Tram Road borrow 
ditch. The presence of alligator holes (Figure 1) in this area 
and proximity to canals had a positive influence as alligators 
congregate here when there is less water in the marsh. 

Because the overall proportion of cell-years in the data that 
had a nest was so small— 0.0285, or 2.85%— the narrowest, 
and thus most useful, prediction interval widths correspond 
to the highest predicted probabilities. Put another way, the 
cell-years for which there is the most certainty in predictions 
tend to also be the ones that have higher probabilities of 
having a nest. That said, the area where there are high 
predicted probabilities and also narrow prediction intervals 
is the lower part of Shark Slough (LSS) followed by upper 
Shark Slough (USS) (Tables 23 and 24, and Figures 18-21). 

Figures 16(c, d) show hydrologically typical years (based on 
depth_bp) 1993 and 2003 and the predicted probabilities for 
the same are displayed in Figure 19(a, c). Here, 1993 shows 
higher probabilities in Shark Slough and 2003 has a minimal 
response. Table 23 shows USS having 9.2% and 3.3% and 
LSS having 9.4% and 3.1% mean probabilities in 1993 and 
2003, respectively. Thus, representative years may not be 
representative (based on a specific criterion as in our 
case- dry, wet, and typical years) and one should look at the 
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(d) Dry year 2012, 95 % prediction
interval width in %
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(c) Dry year 2012, 
probability  in %

 0 - 3 [67.5 %]
 3 - 10 [20.9 %]
 10 - 15 [6.5 %]
 15 - 20 [3.1 %]
 20 - 25 [1.1 %]
 25 - 40 [0.8 %]
 40 - 70 [0.0 %]

Figure 18a, 18b, 18c, and 18d. Map of predicted probability (nest = 1) and prediction interval widths corresponding to Figure 16(a, b) 
conditions. Numbers in brackets in the legend show percent of grid cells in that category. 
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(d) Typical year 2003, 95 % 
      prediction interval width in %
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(c) Typical year 2003, 
      probability in %

 0 - 3 [81.6 %]
 3 - 10 [16.3 %]
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 15 - 20 [0.3 %]
 20 - 25 [0.2 %]
 25 - 40 [0.2 %]
 40 - 70 [0.0 %]

Figure 19a, 19b, 19c, and 19d. Map of predicted probability (nest = 1) and prediction interval widths corresponding to Figure 16(c, d) 
conditions. Numbers in brackets in the legend show percent of grid cells in that category.
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(d) Dry year 2011, 95 % prediction
interval width in %
0 - 15 [0.0 %]
 15 - 20 [0.0 %]
 20 - 25 [2.7 %]
 25 - 40 [25.4 %]
 40 - 70 [37.1 %]
 70 - 100 [34.8 %]

5 0 5 10 15 20 km

WCA 3A

ENP

WCA 3B

ES

LSS
RG

PH

USS

LPK

NESS

TS

BCNP

(c) Dry year 2011, 
probability in %
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Figure 20a, 20b, 20c, and 20d. Map of predicted probability (nest = 1) and prediction interval widths corresponding to Figure 17(a, b) 
conditions. Numbers in brackets in the legend show percent of grid cells in that category.
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full range of outputs/results because other factors also play a 
role. In this case, it appears to be the influence of spatial scale 
used to select the representative years. The whole spatial SRF 
model domain was used (Figures 14 and 15) in selecting 
representative years. The local habitat conditions seem to 
play a role in expected probability of nesting. Local basin 
conditions appear to have a major influence on water depths 
in basins where a major difference in predicted probabilities 
can be observed during typical years based on depth_bp 
(Table 23; Figure 19[a, c]). Mean basin water depths (Table 
25) during breeding cycle periods (Figure 2) show quite a 
difference between 1993 and 2003. Results of predicted 
probabilities for all years are provided in Appendix: II.

In general, either based on BP or CM periods, considering 
the higher nesting probability regions (USS, LSS, ES), typical 
years had higher probability followed by wet years and lastly 
by dry years. The only exception was typical year 2003, 
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(b) Typical year 2015, 95 % 
prediction interval width in %
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(a) Typical year 2015, 
probability in %

 0 - 3 [63.8 %]
 3 - 10 [20.1 %]
 10 - 15 [7.4 %]
 15 - 20 [4.1 %]
 20 - 25 [2.7 %]
 25 - 40 [1.8 %]
 40 - 70 [0.1 %]

Figure 21a and 21b. Map of predicted probability (nest = 1) and prediction interval widths corresponding to Figure 17(c) conditions. 
Numbers in brackets in the legend show percent of grid cells in that category.

Breeding cycle period Year
Basin

USS LSS ES

BP
1993 21.4 15.7 19.1

2003 26.6 17.8 13.4

CM
1993 26.3 9.6 17.8

2003 18.6 10.0 0.7

NB
1993 33.6 27.1 28.4

2003 40.0 30.4 22.2

Table 25. Mean water depths (cm) during typical years breeding 
cycle periods in hydrological basins (Figure 1).

which had the lowest probability (Table 23). It appears  that 
in typical years (1993 and 2003), local conditions do affect 
breeding potential, courtship and mating, and subsequent 
probability of nesting.

6.2 Nesting under Combined Operational 
Plan - Alternative-Q

The model was applied to assess the change in nesting 
pattern with simulated water management operational 
changes influencing the hydrological regime in ENP. Figure 
22 shows simulated hydrological conditions of the Combined 
Operational Plan (COP) – Alternative Q for Everglades 
restoration conducted by the SFWMD with the Regional 
Simulation Model (SFWMD 2005; https://www.sfwmd.gov/
science-data/rsm-model). The Regional Simulation Model 
simulated operations of the South Florida Water 
Management System using climate data from 1965 to 2005, 
assuming operational changes proposed in Alternative-Q of 
COP (COP-Alt Q ) are implemented (USACE 2020). Specific 
years shown in Figure 22 are for comparison with maps in 
Figures 16(a, c, d) and 17(a) which show water depths based 
on interpolated observed data from EDEN (used in model 
development). COP-Alt Q is one possible water management 
possibility out of several alternative hydrological scenarios 
evaluated for Everglades restoration and is used here only for 
the purpose of an example application of this alligator 
model. 

With restoration of the Everglades, a significant 
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Figure 22a, 22b, 22c, and 22d. Map of water depth values (cm) along SRF transects in 1995 (depth_cm) and 1993, 1996, and 2003 (depth_
bp)  obtained from Alternative-Q of COP simulation for comparison with maps in Figures 16 and 17.

https://www.sfwmd.gov/science-data/rsm-model
https://www.sfwmd.gov/science-data/rsm-model
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which had the lowest probability (Table 23). It appears  that 
in typical years (1993 and 2003), local conditions do affect 
breeding potential, courtship and mating, and subsequent 
probability of nesting.

6.2 Nesting under Combined Operational 
Plan - Alternative-Q

The model was applied to assess the change in nesting 
pattern with simulated water management operational 
changes influencing the hydrological regime in ENP. Figure 
22 shows simulated hydrological conditions of the Combined 
Operational Plan (COP) – Alternative Q for Everglades 
restoration conducted by the SFWMD with the Regional 
Simulation Model (SFWMD 2005; https://www.sfwmd.gov/
science-data/rsm-model). The Regional Simulation Model 
simulated operations of the South Florida Water 
Management System using climate data from 1965 to 2005, 
assuming operational changes proposed in Alternative-Q of 
COP (COP-Alt Q ) are implemented (USACE 2020). Specific 
years shown in Figure 22 are for comparison with maps in 
Figures 16(a, c, d) and 17(a) which show water depths based 
on interpolated observed data from EDEN (used in model 
development). COP-Alt Q is one possible water management 
possibility out of several alternative hydrological scenarios 
evaluated for Everglades restoration and is used here only for 
the purpose of an example application of this alligator 
model. 

With restoration of the Everglades, a significant 
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Figure 22a, 22b, 22c, and 22d. Map of water depth values (cm) along SRF transects in 1995 (depth_cm) and 1993, 1996, and 2003 (depth_
bp)  obtained from Alternative-Q of COP simulation for comparison with maps in Figures 16 and 17.
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redistribution of water is expected in ENP. Comparing CM 
period in 1995 for COP-Alt Q in Figure 22(a) with Figure 
17(a) shows that NESS and ES will be drier. However, RG, 
LPK, and TS appear to become substantially wetter (Figure 
22[a]). Comparing BP period in 1996 and 1993 for COP-Alt 
Q in Figure 22(c, b) with Figure 16(a, c), respectively, shows 
NESS, RG, TS, PH, USS and LSS to be relatively wetter. 
However, a comparison of year 2003 in these figures shows 
only NESS, USS and LSS to become relatively wetter and ES 
relatively drier under COP-Alt Q. To examine more closely 
the differences in water depths spatially (in basins) and 
temporally (in BP, CM, and NB time periods; Figure 2) under 
COP-Alt Q and EDEN, a quantitative assessment is provided 
in Figures 23-25 as differences were not as discernible using 
maps. COP-Alt Q had consistently lower water depths in 
ES, higher in NESS and RG, and some years higher in other 
basins during BP period (Figure 23). Figures 24 and 25 
show temporal distribution of water depths in COP-ALT 
Q comparison with EDEN during CM and NB periods in 
different basins. Water depths were consistently high under 
COP-ALT Q in eastern and southern peripheral basins of 
RG, TS, LPK, and PH and consistently lower or equal in ES, 
USS, LSS, and NESS during CM and NB periods. 

Alligator habitat may alter hydrologically in all basins under 
simulated hydrological conditions for COP-Alt Q, which 
may affect alligator nesting in these basins. A quantitative 
assessment of change in area under different probability 
ranges of nesting is presented (Table 26) for EDEN and 
COP-Alt Q hydrological regimes. The influence varies with 
year. For example, in years 1995 and 1996, COP-Alt Q 
showed less grid-cells in ‘0 – 3’% probability, whereas years 
1993 and 2003 showed more grid cells in ‘0 – 3’% probability. 
This lowering in percent probability during 1993 and 
2003 was offset by increased percent in higher probability 
categories in COP-Alt Q. In general, a very small percent 
probability increase was observed in the very high category, 
>40% probability range, during years shown in Table 26
under COP-Alt Q where the EDEN hydrologic conditions 
showed near 0% probability. This change in probability of
nesting spatially shows the influence of redistribution of
water hydrologically under simulated COP-Alt Q conditions. 

Table 27 shows mean probability in percent for two 
hydrologic scenarios in different years organized by basins. 
Application of the model to COP-Alt Q altered hydrologic 
scenario predicts that probability of nesting may change in 
these basins during all the years reported here. Rocky 
Glades, LPK and PH basins have very low observed nesting 
as also predicted by the model under EDEN hydrology used 
for model development (Table 27) in all years. Under 
COP-Alt Q expected hydrology (1992-2005), the model 
predicted that in general nesting increased in TS, decreased 
by small amount in ES, USS, LSS, and NESS, and slightly 
increased in RG, LPK, and PH basins (Table 27). Water 
distribution in COP-Alt Q spatially (in basins) and 

temporally (BP, CM, and NB time periods; Figures 23-25) 
influenced predicted probabilities.

7 DISCUSSION

This report has presented the development of a model of 
the probability of an alligator building a nest in a cell-year 
as a function of non-time-varying habitat variables, and of 
water depth, rain, and temperature from each of three time 
periods— the breeding potential (BP), courtship and mating 
(CM), and nest building (NB) time periods, defined in Figure 
2. All the variables considered are believed by American 
alligator experts to impact some aspect of the alligator 
breeding cycle, whether through contributions to the overall 
wellness of the alligator, to the logistics of mating, or to the 
suitability of a location for a nest. The final model contains 
the following variables either as a main effect, an interaction, 
or both: dist_AH, dist_canals, dist_ENPrds, depth_bp, depth_
cm, depth_nb, rain_bp, rain_cm, temp_bp, temp_cm, temp_nb, 
marsh_pcent, edge_pcent, upland_pcent, xCentroid, and 
yCentroid. 

Though it is tempting to do so, it is important to think 
carefully before attributing cause-effect interpretations to the 
results of the variable elimination process during the model 
building process. Different modelers may choose different 
training, validation, and test datasets, or use a different 
decision-making process, and therefore could get a model 
with equivalent performance that has different variables in 
it. For example, rain_nb was not present in the final model 
despite rain_nb being an important driver for alligator 
nesting at specific locations. 

In the APSI model (Shinde et al. 2014), grid cells containing 
canals were classified as “excluded” from alligator habitat. 
Canals do not provide suitable habitat for juvenile alligators 
and are typically inhabited by adult alligators. Canals may 
also act as reproductive sinks. Chopp (2003) noted in 
areas adjacent to some canals, nests may experience rapid 
and extreme changes in water depths during incubation 
resulting in reduced nest success and increased hatchling 
mortality. Our analysis of the SRF data (Section 4.5.1) and 
the presence of dist_canals in the present final model showed 
that the proximity (Figure 4[a]) to a canal is predictive (in 
combination with xCentroid and yCentroid – as interaction 
effect; Table 20) of the probability of a nest being built. 
The variables dist_canal and dist_ENPrds has sizable equal 
correlation with xCentroid (-0.73) and between themselves 
(-0.71)— and all three of these variables remained in the final 
model. 

Similarly, dist_AH (distance to alligator holes; Figure 3) and 
dist_ENPrds (distance to roads; Figure 4[b]) were also found 
to be predictive (Table 20). Both canals and roads represent 
an anthropogenic influence as they are not part of alligator 

Figure 23. Mean water depths during BP period in basins. 
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temporally (BP, CM, and NB time periods; Figures 23-25) 
influenced predicted probabilities.

7 DISCUSSION

This report has presented the development of a model of
the probability of an alligator building a nest in a cell-year 
as a function of non-time-varying habitat variables, and of
water depth, rain, and temperature from each of three time 
periods— the breeding potential (BP), courtship and mating 
(CM), and nest building (NB) time periods, defined in Figure 
2. All the variables considered are believed by American 
alligator experts to impact some aspect of the alligator 
breeding cycle, whether through contributions to the overall 
wellness of the alligator, to the logistics of mating, or to the 
suitability of a location for a nest. The final model contains 
the following variables either as a main effect, an interaction, 
or both: dist_AH, dist_canals, dist_ENPrds, depth_bp, depth_
cm, depth_nb, rain_bp, rain_cm, temp_bp, temp_cm, temp_nb, 
marsh_pcent, edge_pcent, upland_pcent, xCentroid, and 
yCentroid. 

Though it is tempting to do so, it is important to think 
carefully before attributing cause-effect interpretations to the 
results of the variable elimination process during the model 
building process. Different modelers may choose different 
training, validation, and test datasets, or use a different 
decision-making process, and therefore could get a model 
with equivalent performance that has different variables in 
it. For example, rain_nb was not present in the final model 
despite rain_nb being an important driver for alligator 
nesting at specific locations. 

In the APSI model (Shinde et al. 2014), grid cells containing 
canals were classified as “excluded” from alligator habitat. 
Canals do not provide suitable habitat for juvenile alligators 
and are typically inhabited by adult alligators. Canals may
also act as reproductive sinks. Chopp (2003) noted in 
areas adjacent to some canals, nests may experience rapid 
and extreme changes in water depths during incubation 
resulting in reduced nest success and increased hatchling 
mortality. Our analysis of the SRF data (Section 4.5.1) and 
the presence of dist_canals in the present final model showed 
that the proximity (Figure 4[a]) to a canal is predictive (in 
combination with xCentroid and yCentroid – as interaction 
effect; Table 20) of the probability of a nest being built. 
The variables dist_canal and dist_ENPrds has sizable equal 
correlation with xCentroid (-0.73) and between themselves 
(-0.71)— and all three of these variables remained in the final 
model. 

Similarly, dist_AH (distance to alligator holes; Figure 3) and 
dist_ENPrds (distance to roads; Figure 4[b]) were also found 
to be predictive (Table 20). Both canals and roads represent 
an anthropogenic influence as they are not part of alligator 

Figure 23. Mean water depths during BP period in basins. 
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Figure 24. Mean water depths during CM period in basins.
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Figure 25. Mean water depths during NB period in basins.
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natural habitat. It is expected that roads would be an 
interference to alligator natural habitat and nesting would be 
influenced by presence of roads in wilderness. The same is 
exhibited in Figure 4(b) and shows an increasing proportion 
of nesting as distance increases from the roads.

The probability of nesting was not strongly influenced by 
cells containing more than two alligator holes (Section 4.1). 
A female alligator’s mean annual home range is 36 ha (Morea, 
1999), or 1.8 grid cells in the current model. In contrast, a 
male alligator’s mean annual home range is 122 ha (Morea, 
1999) and would cover 6.1 grid cells. The model predicted 
that having a large number of alligator holes in an alligator’s 
home range would not necessarily have a positive influence 
on nesting. Instead of alligator hole count, we used distance 
to an alligator hole as the metric. This metric provides the 
effect of an alligator hole on multiple grid cells even if they 
do not have alligator holes. 

Table 27. Comparison of mean nest probability (reported in percent) for two hydrological scenarios- EDEN (used for model 
development) and COP- Alt Q (expected hydrology) for different years in hydrologic basins.

Basin Hydrology 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

ES
EDEN 2.6 4.5 3.9 2.4 3.8 2.6 2.9 1.4 2.1 2.0 2.8 1.7 2.6 3.5

COP-Alt Q 3.7 4.3 4.1 2.4 3.0 1.6 2.1 1.1 2.0 1.9 2.0 1.4 2.3 3.0

USS
EDEN 4.8 9.2 7.2 7.0 7.5 5.5 6.9 2.4 3.3 3.4 6.0 3.3 3.5 3.0

COP-Alt Q 2.4 3.2 8.3 10.9 8.0 4.1 4.0 1.9 2.8 2.5 3.7 2.5 2.6 2.1

LSS
EDEN 4.6 9.4 8.3 6.7 7.6 5.4 6.5 3.4 4.5 4.0 6.5 3.1 5.3 8.5

COP-Alt Q 4.2 7.4 11.3 9.6 8.3 5.2 7.2 3.2 4.1 2.8 5.5 2.6 4.9 7.6

NESS
EDEN 0.9 2.7 1.7 1.3 1.6 1.1 1.6 0.4 0.7 0.7 1.6 1.3 0.8 1.0

COP-Alt Q 0.3 0.6 2.0 4.6 2.1 1.0 0.7 0.3 0.6 0.4 1.2 1.2 0.5 0.4

RG
EDEN 0.1 0.1 0.2 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.1

COP-Alt Q 1.0 1.0 0.6 0.4 0.3 0.3 0.4 0.1 0.4 0.2 0.3 0.3 0.4 0.1

TS
EDEN 3.0 2.4 2.2 0.9 1.5 1.0 1.6 0.5 1.4 1.3 1.3 3.1 1.7 1.6

COP-Alt Q 9.4 7.7 5.1 2.2 3.3 3.3 6.3 1.7 3.8 2.3 3.8 5.4 4.6 2.7

LPK
EDEN 0.2 0.2 0.2 0.3 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.5 0.2 0.2

COP-Alt Q 2.5 2.9 1.5 0.5 0.8 0.6 1.3 0.3 0.8 0.4 0.8 1.2 1.1 0.5

PH
EDEN 0.4 0.2 0.4 0.1 0.2 0.1 0.2 0.0 0.2 0.2 0.2 0.4 0.2 0.3

COP-Alt Q 0.7 0.5 0.5 0.1 0.3 0.2 0.3 0.1 0.3 0.1 0.3 0.4 0.3 0.2

Nest 
probability 

in %

1995 1993 1996 2003

EDEN COP-Alt Q EDEN COP-Alt Q EDEN COP-Alt Q EDEN COP-Alt Q

0 – 3 75.25 66.49 63.69 66.24 67.87 66.49 81.59 83.70

3 – 10 16.52 19.02 21.73 23.93 21.65 22.21 16.26 14.23

10 – 15 4.61 5.95 6.64 4.96 5.86 5.48 1.55 1.25

15 – 20 2.11 3.75 3.84 2.41 2.67 3.10 0.26 0.30

20 – 25 1.03 2.07 2.16 1.25 1.21 1.68 0.17 0.09

25 – 40 0.47 2.16 1.90 0.69 0.69 0.86 0.17 0.26

> 40 0.00 0.56 0.04 0.52 0.04 0.13 0.00 0.18

Table 26. Comparison of grid-cell percent under different nest probability (reported in percent) ranges for two hydrological scenarios- 
EDEN (used for model development) and COP-Alt Q (expected hydrology).

The final model had sixteen predictors, which are either a 
main effect, an interaction, or both (Table 20). In the past, 
this could cause concern that the model was overly complex 
and not parsimonious. However, newer modeling realities, 
such as large datasets and widely accessible advanced 
computing resources, limit the validity of those criticisms 
for the present model. There are adequate observations in 
this work to support not only a complex model but also 
model selection and assessment via data splitting. Ecological 
systems are usually complex, and there are many variables 
that describe them. For a model to describe an ecological 
system adequately, it sometimes must also be complex and 
contain many variables and their interactions.

Habitat suitability index (HSI) and GAM models are different 
and serve different purposes for resource managers. Earlier 
models (see Shinde et al. 2014, Rice et al. 2004, Palmer et 
al. 2004 and Newsom et al. 1987) predict habitat suitability 
indices (HSI; 0-1) and were developed relying heavily on 
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7.1 Model limitations

This GAM model may not be applicable to other regions 
of the Everglades (such as WCAs, LNWR, and BCNP) as 
it was developed using SRF nesting data and local spatial 
information not representative of other regions. However, 
the methods used to build this model could be used to 
develop models for other Everglades regions or to generalize 
across regions (see Section 3).

7.1.1 Limitations of habitat data

Habitat data were obtained from land classification and 
alligator hole surveys, which were costly in terms of time, 
labor, and funding, and thus cannot be repeated at short 
intervals/frequency. Change may not be detected or expected 
year-to-year but is occurring over longer periods, especially 
in areas where restoration is proving to be effective. Marsh 
communities can change with changing hydrological regimes 
in 3 to 5 years (Nott et al. 1998; Armentano et al. 2006; Sah 
et al. 2014). Integrating the alligator nesting model with a 
vegetation succession model (e.g., see Pearlstine et al. 2011) 
and remote sensing could help overcome the challenges of 
large-scale field surveys.

7.1.2 Over-estimating model performance

We are underestimating the prediction errors because 
the observations in the test set are correlated with the 
observations in the training and validation datasets. The 
leave-out-blocks method (Roberts, et al. 2017), is an 
alternative approach to consider that may give a more 
accurate assessment of what the AUC curve really looks 
like when using the model for prediction under various 
hydrological scenarios. Using the current model to predict 
years 2015 and onwards will also give a better assessment of 
the AUC curve. 

7.2 Future work

1. Account for potentially imperfect nest detection in the 
SRF survey.

1.1 Design and implement a study to quantify the 
probability of nest detection in the SRF survey. 
Test the null hypothesis that the nest detection 
probability is equal to 1. Ugarte (2006) estimated 
53.3% detection in a small study on SRF data. 
Systematic Reconnaissance Flight observers 
check roughly 80% of detected nests in follow-
up nest visits each year and record if a nest is 

expert judgment and with limited data. The indices have no 
associated assessment of uncertainty with expected nesting 
or alligator production. This GAM model, on the contrary, 
is based on extensive data analysis with minimal expert 
judgment. It builds on the results from previous HSI models 
and adds new variables describing the structure of the 
landscape and weather. The present GAM model provides 
the probability of nesting at a specific location and quantifies 
the associated uncertainty. 

While we can use examples of wet, dry and average (typical) 
hydrological years to evaluate the model across a range of 
likely hydrological conditions, we cannot assume that those 
single years are representative of other wet, dry, or average 
years. The selected years are being influenced in part by 
the previous year (temporal extent), there are seasonal 
differences among the annual categories of wet/dry/average 
(temporal scale), and there are real differences among basins 
within the Everglades region (spatial scale).

Prior to water management practices that reduced water 
flows to Shark River Slough, alligators were more abundant 
on the edges of the sloughs (Craighead 1968), but now 
they are most abundant in the central sloughs (Kushlan 
1990, Morea 1999), because existing management practices 
resulted in a very short hydroperiod on the edges of the 
sloughs (Mazzotti and Brandt 1994, Mazzotti et al. 2009). 
If water management changes to make the hydrological 
conditions more like what they were before human 
intervention, those changes are expected to result in a 
re-distribution of alligators. To the extent that a space for 
time substitution (Johnson and Miyanishi 2008, Banet and 
Trexler 2013) can be considered a reasonable approach for 
forecasting, we believe this model can be a valid exploration 
of impacts on alligator nesting (such as shown in Section 
6.2) since the 24-year time span in this model includes a 
wide range of wet to dry conditions. Simulated COP-Alt Q 
conditions altered the hydrology of the basins (Figure 22) 
and showed a relative increased wetness in some basins 
(Figures 23-25). When applying the GAM model to COP-
Alt Q hydrological conditions, only water depths changed, 
and all other input variables retained their original values. 
Application of the GAM model to COP-Alt Q operations 
(1992-2005) that redistributed water (spatially and 
temporally; Figures 23-25) indicates that nesting increases in 
peripheral regions of RG, TS, LPK, and PH (Table 27) due 
to apparent shifts from very shallow water to less shallow 
water depths and nesting decreases in the central regions of 
ES, USS, LSS, and NESS (Table 27) seemingly due to shifts 
from optimal to sub-optimal water depths. This highlights 
the importance of using a GAM to provide water managers 
information on how the water redistribution plan might be 
tweaked to get desired results.



36 South Florida Natural Resources Center Technical Series (2022:1)

from a previous year (Mark Parry, ENP, personal 
communication). A larger study is required to assess 
uncertainty remaining with likely detectability.

1.2 If the probability of nest detection in the SRF 
survey is significantly different from 1, modify the 
statistical model of nest-building to account for the 
nest-detection probability.

2. Create a unified statistical model of alligator production

2.1 Use data from follow-up nest visits to develop 
a statistical model of the number of alligator 
hatchlings from a nest in a given grid cell in a given 
year, conditioned on a nest having been built in that 
grid cell that year, as a function of variables believed 
to affect nest success. 

2.2 Use probability theory to link the statistical model 
of alligator hatchlings to the statistical model of 
nest-building to create a unified statistical model of 
alligator production.

Use more distance variables: Sections 4.1, 4.2, and 4.5.1 
explain why distance variables- dist_AH, dist_ENPrds, and 
dist_canals were used as predictor variables over their binary 
or continuous  alternatives. It may have been more effective 
to use dist_edge, dist_marsh, dist_excluded, dist_upland 
as well. It would at least have been worthwhile to have 
considered those variables including smaller roads and 
levees, though it might have been better to use dist_edge, to 
capture the effects of marsh and upland without using dist_
marsh and dist_upland.
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APPENDICES

I Estimation of spatial hydrological and habitat information

This applies to the hydrological and habitat variables. The data are based on 400 m (horizontal width: east-west) x 500 m 
(vertical width: north-south) grid cells on SRF transects (Figure 1) running east to west. The east and west cell boundaries were 
aligned with EDEN grid cells. If the edges of the transect on the east and west end covered >70% of the EDEN grid cell width, 
they were included in analysis, otherwise they were discarded. In some transects, the SRF grid cell overlapped 3 EDEN cells in 
the north to south direction (Figure 26). The following information describes how we obtained data for predictor variables at 
these grid cells on SRF transects.

 z Hydrological data was obtained from EDEN which has a 400 m x 400 m resolution.

 z SRF transects for nest sightings are 500 m wide.

For hydrological metrics, we took the weighted average by area overlapped of EDEN grid cells within the SRF grid cell as the 
hydro metric value for that SRF grid cell (Figure 26).

For habitat metrics, since the habitat cells are at 50 m resolution, we collected all the 50 m cells (total 80) within each SRF grid 
cell increment and counted the presence cells to get percent presence (100 x number of presence cells/80).

Figure 26. Illustration of EDEN hydrological grid overlaid on SRF transect for estimation of hydrological and habitat predictor data on 
spatial scale



40 South Florida Natural Resources Center Technical Series (2022:1)

II Tables of predicted probability (nest = 1) and 95% prediction interval width (EDEN hydrological 
conditions)

Year
ES USS LSS NESS RG TS LPK PH

Max Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max Mean

POR§ 66.2 3.3 48.7 5.7 50.0 6.7 53.9 1.4 22.4 0.1 49.7 1.9 27.6 0.2 21.3 0.3

SD 10.1 1.4 9.4 2.6 8.7 2.2 10.2 0.9 4.7 0.1 11.2 0.7 6.1 0.1 5.0 0.1

1992 27.4 2.6 23.7 4.8 23.8 4.6 14.4 0.9 8.0 0.1 47.1 3.0 3.8 0.2 16.5 0.4

1993 34.0 4.5 40.6 9.2 38.3 9.4 36.9 2.7 7.3 0.1 36.5 2.4 3.7 0.2 8.8 0.2

1994 28.6 3.9 31.9 7.2 40.3 8.3 14.1 1.7 9.2 0.2 33.6 2.2 6.1 0.2 15.4 0.4

1995 21.9 2.4 29.8 7.0 33.4 6.7 10.9 1.3 10.2 0.2 14.6 0.9 13.3 0.3 5.3 0.1

1996 24.7 3.8 31.7 7.5 42.1 7.6 15.1 1.6 4.9 0.1 17.4 1.5 9.9 0.2 8.2 0.2

1997 22.9 2.6 26.3 5.5 31.0 5.4 9.3 1.1 5.5 0.1 13.1 1.0 3.5 0.1 3.1 0.1

1998 27.7 2.9 29.9 6.9 32.2 6.5 12.3 1.6 1.2 0.0 18.0 1.6 0.5 0.0 8.4 0.2

1999 13.9 1.4 13.6 2.4 19.7 3.4 4.2 0.4 3.4 0.1 7.9 0.5 1.9 0.1 2.0 0.0

2000 17.0 2.1 16.9 3.3 31.7 4.5 6.8 0.7 5.8 0.1 20.3 1.4 2.0 0.1 9.5 0.2

2001 16.1 2.0 15.0 3.4 19.2 4.0 10.8 0.7 4.1 0.1 23.4 1.3 2.2 0.1 8.6 0.2

2002 28.4 2.8 26.2 6.0 38.5 6.5 16.6 1.6 4.6 0.1 16.2 1.3 2.8 0.1 8.4 0.2

2003 20.8 1.7 15.0 3.3 21.9 3.1 13.5 1.3 11.7 0.2 37.4 3.1 17.0 0.5 17.5 0.4

2004 18.3 2.6 16.6 3.5 25.6 5.3 11.9 0.8 8.5 0.2 31.1 1.7 5.2 0.2 8.8 0.2

2005 22.0 3.5 17.5 3.0 39.0 8.5 19.4 1.0 5.5 0.1 29.4 1.6 3.3 0.2 12.4 0.3

2006 19.6 2.4 15.6 3.3 26.3 5.0 10.6 0.7 3.5 0.1 18.9 1.4 1.2 0.1 17.0 0.4

2007 29.6 4.0 21.6 4.4 36.4 7.6 14.3 1.0 7.4 0.2 32.3 2.5 3.6 0.3 17.6 0.4

2008 23.9 3.4 29.6 7.2 41.1 8.2 19.4 1.6 5.1 0.1 27.2 1.9 2.4 0.2 14.2 0.3

2009 29.2 3.4 16.6 3.6 37.7 7.5 16.0 0.9 7.7 0.2 36.5 1.7 6.9 0.3 8.5 0.2

2010 66.2 8.8 48.7 12.9 50.0 11.9 53.9 5.0 11.5 0.3 34.2 2.1 5.2 0.3 16.2 0.4

2011 27.9 2.8 17.4 4.0 24.9 5.5 15.6 1.0 1.2 0.0 15.2 1.1 1.3 0.1 12.7 0.3

2012 26.6 3.9 29.8 6.3 46.7 8.6 13.9 1.5 14.5 0.3 39.7 3.2 7.2 0.4 21.3 0.5

2013 23.4 3.7 18.5 4.3 25.5 5.7 17.1 1.2 11.3 0.2 36.7 2.4 9.5 0.4 14.7 0.4

2014 28.2 3.8 33.7 7.5 45.5 8.1 15.1 1.5 2.2 0.0 24.2 2.0 1.3 0.1 16.9 0.4

2015 35.9 4.5 37.4 10.4 35.2 9.2 26.3 2.4 22.4 0.4 49.7 3.1 27.6 0.7 12.0 0.3

ES: East Slough, USS: Upper Shark Slough, NESS: Northeast Shark Slough, LSS: Lower Shark Slough, RG: Rocky Glades, TS: Taylor Slough, LPK: Long Pine 
Key, and PH: Panhandle; § Period of Record

Table 28. Predicted maximum and mean probabilities (reported in percent) in hydrological basins (Figure 1).

Year ES USS LSS NESS RG TS LPK PH

POR§ 41 36 35 54 68 63 74 89

1992 42 38 37 55 73 64 75 89

1993 39 36 34 54 65 62 72 89

1994 38 33 33 53 65 62 72 89

1995 47 41 38 55 68 65 75 89

1996 40 35 33 53 64 62 72 89

1997 41 35 35 54 67 63 73 89

1998 43 37 37 55 70 65 77 89

1999 48 41 41 58 69 66 76 89

2000 39 35 34 55 65 62 72 89

2001 41 35 35 54 68 63 73 89

2002 41 34 33 53 68 63 74 89

2003 41 37 37 53 66 62 72 89

2004 39 35 33 53 67 63 74 89

2005 41 38 35 55 68 65 75 89

2006 40 36 34 54 67 62 74 89

2007 38 33 33 53 67 63 73 89

2008 39 35 33 54 68 62 73 89

2009 42 37 35 54 71 64 74 89

2010 40 36 35 54 66 63 73 89

2011 43 37 39 56 86 66 80 89

2012 39 33 33 54 67 62 73 89

2013 38 35 35 53 65 62 72 89

2014 41 36 34 54 70 64 75 89

2015 40 35 33 54 67 63 73 89

ES: East Slough, USS: Upper Shark Slough, NESS: Northeast Shark Slough, LSS: Lower Shark Slough, RG: Rocky Glades, TS: 
Taylor Slough, LPK: Long Pine Key, and PH: Panhandle; § Period of Record

Table 29. Predicted mean 95% prediction interval width (reported in percent) in hydrological basins (Figure 1).
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II Tables of predicted probability (nest = 1) and 95% prediction interval width (EDEN hydrological 
conditions)
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SD 10.1 1.4 9.4 2.6 8.7 2.2 10.2 0.9 4.7 0.1 11.2 0.7 6.1 0.1 5.0 0.1

1992 27.4 2.6 23.7 4.8 23.8 4.6 14.4 0.9 8.0 0.1 47.1 3.0 3.8 0.2 16.5 0.4

1993 34.0 4.5 40.6 9.2 38.3 9.4 36.9 2.7 7.3 0.1 36.5 2.4 3.7 0.2 8.8 0.2

1994 28.6 3.9 31.9 7.2 40.3 8.3 14.1 1.7 9.2 0.2 33.6 2.2 6.1 0.2 15.4 0.4
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1997 22.9 2.6 26.3 5.5 31.0 5.4 9.3 1.1 5.5 0.1 13.1 1.0 3.5 0.1 3.1 0.1
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1999 13.9 1.4 13.6 2.4 19.7 3.4 4.2 0.4 3.4 0.1 7.9 0.5 1.9 0.1 2.0 0.0

2000 17.0 2.1 16.9 3.3 31.7 4.5 6.8 0.7 5.8 0.1 20.3 1.4 2.0 0.1 9.5 0.2

2001 16.1 2.0 15.0 3.4 19.2 4.0 10.8 0.7 4.1 0.1 23.4 1.3 2.2 0.1 8.6 0.2

2002 28.4 2.8 26.2 6.0 38.5 6.5 16.6 1.6 4.6 0.1 16.2 1.3 2.8 0.1 8.4 0.2

2003 20.8 1.7 15.0 3.3 21.9 3.1 13.5 1.3 11.7 0.2 37.4 3.1 17.0 0.5 17.5 0.4

2004 18.3 2.6 16.6 3.5 25.6 5.3 11.9 0.8 8.5 0.2 31.1 1.7 5.2 0.2 8.8 0.2

2005 22.0 3.5 17.5 3.0 39.0 8.5 19.4 1.0 5.5 0.1 29.4 1.6 3.3 0.2 12.4 0.3

2006 19.6 2.4 15.6 3.3 26.3 5.0 10.6 0.7 3.5 0.1 18.9 1.4 1.2 0.1 17.0 0.4

2007 29.6 4.0 21.6 4.4 36.4 7.6 14.3 1.0 7.4 0.2 32.3 2.5 3.6 0.3 17.6 0.4

2008 23.9 3.4 29.6 7.2 41.1 8.2 19.4 1.6 5.1 0.1 27.2 1.9 2.4 0.2 14.2 0.3

2009 29.2 3.4 16.6 3.6 37.7 7.5 16.0 0.9 7.7 0.2 36.5 1.7 6.9 0.3 8.5 0.2

2010 66.2 8.8 48.7 12.9 50.0 11.9 53.9 5.0 11.5 0.3 34.2 2.1 5.2 0.3 16.2 0.4

2011 27.9 2.8 17.4 4.0 24.9 5.5 15.6 1.0 1.2 0.0 15.2 1.1 1.3 0.1 12.7 0.3

2012 26.6 3.9 29.8 6.3 46.7 8.6 13.9 1.5 14.5 0.3 39.7 3.2 7.2 0.4 21.3 0.5

2013 23.4 3.7 18.5 4.3 25.5 5.7 17.1 1.2 11.3 0.2 36.7 2.4 9.5 0.4 14.7 0.4

2014 28.2 3.8 33.7 7.5 45.5 8.1 15.1 1.5 2.2 0.0 24.2 2.0 1.3 0.1 16.9 0.4

2015 35.9 4.5 37.4 10.4 35.2 9.2 26.3 2.4 22.4 0.4 49.7 3.1 27.6 0.7 12.0 0.3

ES: East Slough, USS: Upper Shark Slough, NESS: Northeast Shark Slough, LSS: Lower Shark Slough, RG: Rocky Glades, TS: Taylor Slough, LPK: Long Pine 
Key, and PH: Panhandle; § Period of Record

Table 28. Predicted maximum and mean probabilities (reported in percent) in hydrological basins (Figure 1).

Year ES USS LSS NESS RG TS LPK PH

POR§ 41 36 35 54 68 63 74 89

1992 42 38 37 55 73 64 75 89

1993 39 36 34 54 65 62 72 89

1994 38 33 33 53 65 62 72 89

1995 47 41 38 55 68 65 75 89

1996 40 35 33 53 64 62 72 89

1997 41 35 35 54 67 63 73 89

1998 43 37 37 55 70 65 77 89

1999 48 41 41 58 69 66 76 89

2000 39 35 34 55 65 62 72 89

2001 41 35 35 54 68 63 73 89

2002 41 34 33 53 68 63 74 89

2003 41 37 37 53 66 62 72 89

2004 39 35 33 53 67 63 74 89

2005 41 38 35 55 68 65 75 89

2006 40 36 34 54 67 62 74 89

2007 38 33 33 53 67 63 73 89

2008 39 35 33 54 68 62 73 89

2009 42 37 35 54 71 64 74 89

2010 40 36 35 54 66 63 73 89

2011 43 37 39 56 86 66 80 89

2012 39 33 33 54 67 62 73 89

2013 38 35 35 53 65 62 72 89

2014 41 36 34 54 70 64 75 89

2015 40 35 33 54 67 63 73 89

ES: East Slough, USS: Upper Shark Slough, NESS: Northeast Shark Slough, LSS: Lower Shark Slough, RG: Rocky Glades, TS: 
Taylor Slough, LPK: Long Pine Key, and PH: Panhandle; § Period of Record

Table 29. Predicted mean 95% prediction interval width (reported in percent) in hydrological basins (Figure 1).
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