A Doctoral Program in Industrial Heritage and Archeology at Michigan Tech

by Bruce E. Seely and Patrick E. Martin

Ph.D. students in industrial archæology are beginning to emerge...
There are not yet enough of them.

—Marilyn Palmer, University of Leicester, 2000

In the fall of 2005, the Department of Social Sciences at Michigan Technological University (Michigan Tech) launched an interdisciplinary doctoral program in industrial heritage and archeology. The effort is built upon a successful and unique master’s program in industrial archeology begun at Michigan Tech in 1991. About the program, some observers have commented—

[Although] a number of U.S. institutions of higher learning offer programs of study in archeology, only Michigan Technological University offers a degree specifically in industrial archeology. MTU’s Master of Science program stresses an interdisciplinary approach to the field that includes the study of archaeology, historic preservation, the history of technology, and anthropology. Indeed, only a handful of schools, notably the Ironbridge Institute and the University of Leicester in England, offer graduate degrees in this field. The Department believes an opportunity is emerging for graduates interested in heritage management, who hold a doctorate, and who are broadly prepared to study and interpret the history of industry and labor through its material culture. What follows is a justification for developing a doctoral program and the basic outline of the program at Michigan Tech.

Intellectual Origins

Scholars interested in cultural heritage have found their way to the field from a variety of academic disciplines, including history, American studies, museum studies, decorative arts and material cultures studies, library and archival management, architectural history, archeology, and historic preservation. For those interested in the specific domain of industrial heritage, two regular points of entry have been through the history of technology and industrial archeology even though these related fields approach heritage questions differently. The crucial commonality between these two areas has been the shared interest of scholars in both domains in the physical reality of technology. Indeed, John Staudenmaier, editor of the journal Technology and Culture, has
identified this interest in what happens inside the “black box” of technological artifacts and systems as a defining attribute of the history of technology, even with the growing popularity of newer theoretical approaches.4

For several reasons, industrial archeology originated independently in England during the early 1960s. Many physical features of the Industrial Revolution (mills, factories, smelters, mines, and canals) were falling victim to the wrecker’s ball and urban renewal. Concerned individuals pressed for the preservation and study of the history and significance of structures and sites that marked high points of this period in British history. Further, a community of enthusiasts existed among engineers, mechanics, and workers, as well as historians of technology and museum curators who were committed to preserving evidence of England’s past industrial leadership, such as steam engines, locomotives, factories, and machine tools. Several centers of activity emerged, including London, Bristol, Bath, and the Midlands, in particular the area around Ironbridge, where iron was first smelted with coke fuel and a spectacular cast iron arch bridge still stands. The scholarship of historical archeologist Kenneth Hudson carried word of industrial archeology to North America and beyond in the 1960s and 1970s.5

Over the past three decades, interest in industrial archeology has expanded on an international front as work in this field has become more closely connected to cultural resource management. Developments have been most pronounced in Europe, but in the United States, federal, state, and local regulations related to historic preservation and the preparation of impact statements have required greater attention to the documentation and preservation of significant cultural resources. An important signal of the expanding interest in industrial archeology was the establishment of an umbrella group, the International Committee for the Conservation of the Industrial Heritage (TICCIH), in 1978. This organization grew out of the First International Congress on the Conservation of Industrial Monuments (FICCIIM) held at Ironbridge in 1971. As conference organizer Barrie Trinder later recollected, “There was no international network linking people interested in the industrial past in 1973... It seemed a considerable achievement to bring together 61 people... from Canada, East and West Germany, Ireland, the Netherlands, Sweden and the United States.”6 By 2000, TICCIH had delegates from 54 countries, and its meeting attracted more than 200 participants. Moreover, TICCIH became the scientific advisor on industrial heritage to UNESCO’s International Council on Monuments and Sites (ICOMOS).

The inclusion of the word _heritage_ in TICCIH’s name points to a vital development that has broadened the possibilities associated with industrial archeology. During the last quarter century, preservation and interpretation of the remains of industry have become a matter of interest to a much wider circle of scholars, extending well beyond those interested in industrial archeology.
Clearly, the preservation of industrial artifacts and sites fits into the larger international movement to preserve the world’s historic sites and monuments. Symbolizing this shift was the inclusion of industrial structures on UNESCO’s World Heritage List. By 1990, the term industrial heritage was widely used in Europe, as interest in preserving, restoring, and interpreting historic industrial sites spread from England, to the continent, and beyond.7

The placement of industrial sites on the World Heritage List produced another incentive for work in the field: heritage tourism.8 In fact, a dozen of the most recent additions to UNESCO’s World Heritage List are industrial sites and landscapes.9 A successful project in Germany’s iron and steel region resulted in the establishment of the Route of Industrial Heritage of the Ruhr. This concept was recently expanded into a European Route of Industrial Heritage, and similar regional efforts are to be found throughout Europe.10

In North America, the level of recognition of industrial heritage has not yet matched that of Europe, but the Lowell and Keweenaw National Historical Parks, the America’s Industrial Heritage Park project focusing on the steel industry in southwestern Pennsylvania, and the Motor Cities National Heritage Area centered on Detroit are examples of emerging interest within the past two decades.11 Each site involves local, state, federal, and corporate partners. Other factors also have heightened demand for broader professionalism in the cultural resource management field in the United States and elsewhere. Environmental requirements governing development projects, such as environmental impact statements mandated by legislation and regulations, have opened pathways for professional practitioners over the last 30 years, especially for archeologists.

This pattern of growth reflects significant connections between industrial archeology and industrial heritage as a branch of cultural resource management. That link appears problematic to some, notably Marilyn Palmer at the University of Leicester, who has worked to bring industrial archeology into the mainstream of university archeology departments as a recognized period study. To do so, she argues, industrial archeologists might have to leave the conservation and preservation of industrial heritage to others.12 This position reflects somewhat stronger links between traditional archeology programs and industrial archeology in England than in the United States.

The authors think differently, believing that industrial archeology and industrial heritage are mutually reinforcing. The program at Michigan Tech explicitly seeks to meet the growing demand for highly trained and academically certified historians of technology and industrial archeologists in academic and non-academic markets. Michigan Tech’s experience teaching graduate students suggests that the two years required for the master’s degree are no longer sufficient for providing the depth of training some research projects
require. Industrial heritage scholars should be knowledgeable in three core areas: the history of technology; the use of archeological tools and the interpretation of artifacts; and the basic issues surrounding cultural resource management vis-à-vis industrial heritage. Stronger academic credentials would also allow graduates to rise to the highest positions in the public and private sectors. The emerging pattern resembles the path historians of technology and historical archeologists followed after 1950 as both developed opportunities within classic academic departments that traditionally did not include them. The authors also believe that industrial archeologists and heritage specialists are likely to enter academic and non-academic positions on the basis of their work, not through connections to traditional academic disciplines.

Yet, educational programs that prepare scholars, researchers, and historical site administrators for heritage related tasks at any level, academic or otherwise, have been limited in number. The earliest and most important program is at Ironbridge in England. Now known as the Ironbridge Institute, this program is affiliated with the University of Birmingham and offers master's degrees and diplomas in Heritage Management and Industrial Archaeology, as well as a certificate in Museum Management. In addition, the program awards research-based advanced degrees. A handful of academic programs exist elsewhere, including a small industrial archeology group at the University of Leicester, which awards a master's degree in archeology and heritage via distance learning. The University of Exeter offers a master's in mining archeology and mining heritage management. In Stockholm, an excellent industrial heritage research program created by Marie Nisser at the Royal Institute of Technology awards the doctorate.

Graduate programs at a handful of universities in the United States devote some attention to industrial archeology. The University of Vermont's historic preservation program, founded in 1975, covered industrial archeology, thanks to the interest of program founder Chester Liebs. A similar program at George Washington University offered industrial archeology courses in the late 1970s. By the 1980s, such courses could be found at Rensselaer Polytechnic Institute, and by the end of the decade West Virginia University had formed an Institute for the History of Technology and Industrial Archeology under the direction of Emory Kemp. Perhaps the most important training ground for industrial archeologists was the Historic American Engineering Record (HAER), organized in the National Park Service in 1969. A sister to the older Historic American Buildings Survey, HAER records significant industrial sites and structures. The agency uses teams of architects and historians to produce measured and interpretive drawings and historical monographs, along with professional quality photographs. Many HAER recording team members were graduate students or young professionals who received their first industrial archeology field experience on these projects.
Over the past several years, a number of U.S. schools have responded to the growing interest in heritage studies with new programs. Arkansas State University in Jonesboro, for example, offers a doctoral program in heritage studies that focuses on the history of the Mississippi Delta region. The Tsongas Industrial History Center in the Graduate School of Education at the University of Massachusetts at Lowell offers training and other guidance in teaching the history of the American Industrial Revolution. The Center for Heritage Resource Studies at the University of Maryland, formed in December 2000, emphasizes the connection between heritage and the environment, offering a master’s in applied archeology, and the University of Montana has recently announced a Ph.D. in anthropology with a specialization in cultural heritage studies. However, none of these programs has industrial heritage as its main focus.

The Master’s Degree Program at Michigan Tech

Against this backdrop of limited educational opportunities, the Department of Social Sciences at Michigan Tech inaugurated a master of science program in industrial archeology in 1991. From the outset, the program’s guiding principle, as restated recently by historian Larry Gross, has been that industrial archeology should be based on the “direct knowledge of objets d’industrie.” The program’s core educational philosophy is one that integrates the history of technology with historical archeology to emphasize the material culture of industry.

The historians on the faculty all have field experience in industrial archeology. Larry Lankton was historian of technology at HAER in the mid 1970s; Alison Hoagland was senior historian at the Historic American Buildings Survey in the 1980s and early 1990s. Terry Reynolds and co-author Bruce Seely worked as HAER summer historians on several projects, and both won awards for articles published in *La: The Journal of the Society for Industrial Archeology*. Hoagland’s background is in historic preservation, and her research interests are in architectural history and material culture. Lankton, who was Curator of Power and Shop Machinery at the Henry Ford Museum before going to HAER, brings experience in the interpretation of artifacts and the material culture of industry and work, with a special focus on copper mining. Historian of technology Hugh Gorman brings expertise in environmental history and policy—a matter of increasing importance at industrial sites.

A second key faculty group includes archeologists and anthropologists. Carol MacLennan focuses on work and workers, the anthropology of industry, and theoretical approaches such as political ecology. Susan Martin’s graduate teaching focus is on heritage management, while her research has emphasized the development and use of metallic copper by Native Americans. Archeologists Timothy Scarlett and co-author Patrick Martin have conducted
digs throughout Michigan; Scarlett also focuses on the Mormon pottery industry in Utah, and Martin directs the annual field school, which is the centerpiece of the program.

Students in the Michigan Tech program master excavation techniques as well as scientific tools, such as ground penetrating radar, dating technologies, and global positioning (GPS) and geographic information (GIS) systems technologies. These formal archeological skills, combined with historical research techniques, distinguish Michigan Tech's efforts from other archeology education programs. The proving ground is a required field experience, usually as part of the annual field school. Excavations have taken place throughout the Upper Peninsula of Michigan and have included a blacksmith's shop and lighthouse at Ft. Wilkins State Park in Copper Harbor; iron furnaces, bloomery forges, and kilns at Munising, Negaunee, and Fayette; and copper mining activities near Victoria. Not all fieldwork has focused on industrial equipment. At Fayette, students excavated a boarding house and accompanying 2-story privy to learn more about the lives of 19th-century ironworkers. Other students have pursued externally funded projects in the West Indies, Wisconsin, Kentucky, Alaska, and California.

The master's program has served Michigan Tech's students well. A total of 63 students entered between 1991 and 2004; 43 have completed degrees. Ten graduates have pursued doctorates, while 26 hold positions in cultural resource management and engineering consulting firms or in federal and state agencies. As noted above, however, changes in industrial heritage suggest the need for broader and deeper educational and research experiences.

From Master's to Doctorate in Industrial Heritage and Archeology

The doctoral program in industrial heritage and archeology is a natural extension of Michigan Tech's master's program. Like the master's, the doctoral program springs from the same foundation of core classes in the history of technology, historical archeology, material culture, the documentation of historic structures, industrial archeology, methods of archeology, and heritage management. A grant from the National Science Foundation's Program in Science and Technology Studies made it possible for the Department of Social Sciences to add other elements to the doctoral program. Doctoral students pursue individualized programs of study that rely heavily on directed reading with faculty, and they participate in seminars intended to help shape intellectual explorations of critical issues in industrial heritage.

The first of these seminars focuses specifically on industrial heritage, including the nature of heritage, the relationship of heritage to history, questions related to advanced cultural resource and heritage management, heritage tourism, industrial heritage field methods, and material culture and museum studies. A
second seminar emphasizes industrial history, including the global history of industrialization, theoretical models of industrial evolution, and the social history of technology and work. The Department anticipates additional seminars tailored to the specific interests of students. Students must also take three classes from a list that includes GIS techniques, archeological field methods, geophysics for archeology, architectural history, regional history, and environmental history.

One of the distinguishing characteristics of the doctoral program is its core intellectual focus on material culture. Scholarly interest in this area is not new, dating back at least to the 1950s if not earlier. In 1996, the *Journal of Material Culture* first appeared, building on the base established by scholars such as Henry Glassie, Thomas Schlereth, and Kenneth Ames. Their work has held up amazingly well, but new insights continue to emerge from different points of the academic compass. The focus at Michigan Tech is particularly informed by the work of researchers oriented to technology, specifically the work of David Kingery, Patrick Malone, and Steven Lubar, in large part because Michigan Tech is surrounded by the remains of Michigan's copper mining industry.

The program expects to draw upon faculty from other departments at the university, notably the Geological Engineering, Forest Resources, and Environmental Sciences, and Materials Science and Engineering Departments, to teach classes in pivotal technical methodologies. The program already depends heavily on the University Archives and Copper Country Historical Collection in the University Library for essential resources on local copper mining and other industrial activities and has developed important relationships with museums, state bureaus, and federal agencies that may be of benefit to students seeking curatorial or administrative experience.

Mindful of European leadership in the area of industrial heritage, the Department is creating mechanisms for annual faculty and student exchanges and an international visitor in residence program at Michigan Tech. Scholars at four European institutions have already expressed interest in developing cooperative relationships with the doctoral program. Such international participation will vastly enrich the doctoral program while at the same time contribute to improved communication among leading international organizations in industrial archeology.

Graduate and Faculty Research Opportunities

While research has always been a key aspect of the master's program, the doctoral program warrants projects of greater scope. Michigan Tech is currently engaged in a multi-year investigation of the site of the West Point Foundry in Cold Spring, New York, one of the nation's most important ante-
bellum manufacturing centers and producers of steam engines, locomotives, and cannon. (Figure 1) Working in partnership with the Scenic Hudson Land Trust, the program has already conducted four annual field schools on the site during the summer months and anticipates another five to seven years of fieldwork. The authors expect several dissertation topics to come out of the project, ranging from the history of the foundry and its industrial archeology to working conditions and worker housing in Cold Spring and the environmental history of the West Point Foundry site.

Equally exciting is the prospect of large-scale international projects, the first of which began in 2004. Michigan Tech led an international team on a project to document coal mining activities on the Svalbard archipelago north of Norway. The island's coal mines were opened at the turn of the 20th century by Michigan native John M. Longyear and managed by graduates of the Michigan School of Mines, the forerunner to Michigan Tech. Documenting the archipelago's many physical remains highlights the intimate relationship between the history of technology and material culture. Significantly, the material culture of every scientific or industrial endeavor on Svalbard from before 1946 is specifically protected by historic preservation laws.

The Concept of Heritage

The research projects at West Point, Svalbard, and elsewhere offer students and faculty valuable opportunities to address fundamental issues related to the concept of heritage. A number of scholars have problematized the very idea of heritage in recent years; some have been openly critical of the entire concept. David Lowenthal has offered perhaps the most thoughtful critiques, observing
recently that "[a]ll at once, heritage is everywhere—in the news, in the movies, in the marketplace—in everything from galaxies to genes. It is the chief focus of patriotism and a prime lure of tourism. One can barely move without bumping into a heritage site." At the core of Lowenthal's critique is the call to recognize the important distinction between history and heritage—a distinction that is all too often overlooked in politics, business, and the media. He calls for stewardship that "tempers[s] the clamorous demands of the immediate present with a compelling rationale for the claims of both the past and the future."

Michigan Tech's doctoral program seeks to play a role in educating professionals who will be involved in work that crosses this divide between history and heritage. The program combines history and archeology in ways that link sites, artifacts, and documents together. Just because heritage has been misused for short-term political or economic gain does not mean that the concept of heritage itself is invalid. The authors hope to impress upon future resource stewards the value of interdisciplinary approaches to history and heritage.

Recently, social scientists have borrowed concepts from the fields of ecology and landscape for their analytical utility. Such developments, argues industrial archeologist Fred Quivik, are especially promising for industrial archeology because they refocus attention on the big picture and away from isolated objects or phenomena. "We can now not only illuminate how machines worked or were made," he writes, "but also how workers interacted with each other or their bosses, for example, based on the patterns of buildings people developed to carry out those interactions." In the end, a focus on large projects, international cooperation, and the nature of heritage adds up to a new research agenda for scholarship on material culture that bridges the gap between the history of technology and industrial archeology, all the while touching on architectural and environmental history, historic preservation, cultural anthropology, and other related fields.

Bruce E. Seely, Ph.D. is chair of the Department of Social Sciences and professor of history, and Patrick E. Martin, Ph.D. is director of the graduate program in industrial archeology and a professor of archeology at Michigan Tech. Please direct questions to the authors via email at bseely@mtu.edu and pemartin@mtu.edu or find application information online at http://www.social.mtu.edu/IHAPhD.htm.

Notes

13. The Ironbridge Institute also awards Master of Philosophy (M.Phil.) and Doctor of Philosophy (Ph.D.) degrees. See the program's web page at http://www.ironbridge.bham.ac.uk/higher-degrees.htm, accessed December 2, 2005.

16. For information on the University of Arkansas program, see http://www.clt.astate.edu/heritagestudies/mission.htm; for the University of Maryland, see http://www.heritage.umd.edu/INDEX.htm; for the University of Massachusetts, see http://www.uml.edu/tsongas/index2.htm; for the University of Montana, see http://www.anthro.umt.edu/graduate/phd.htm; all accessed December 12, 2005.

17. Michigan Tech's master's program is the only degree-granting program in industrial archeology in the United States.

20. At the last site, participants unearthed a surprisingly intact Cornish buddle used to separate metallic copper from crushed rock. Although made largely of wood, the device had been buried in stamp sands with a high copper content, thus preserving the wood.

23. In 1952, the Henry Francis du Pont Winterthur Museum and the University of Delaware established the Winterthur Program in Early American Culture, a recognized leader in the study of American decorative arts and material culture.

25. Despite the plurality of opinions on material culture that have surfaced over the years, they all stem from roughly the same premise, namely, that artifacts offer an important source of information unlike anything found in written texts. This point runs through the chapters of Ann Smart Martin and J. Ritchie Garrison, eds., American Material Culture: The Shape of the Field (Winterthur, DE, and Knoxville, TN: Henry Francis du Pont Winterthur Museum and the University of Tennessee Press, 1997).

27. The international team included Miles Ogelthorpe and Ian West from England, L. Hacquebord from the Netherlands, Marie Nisser from Sweden, and participants from Norway’s National Technical University in Trondheim. Michigan Tech’s role in the project was made possible by a Small Grant for Exploratory Research (SGER) from the Science and Technology Studies and Polar programs at the National Science Foundation.

28. Longyear’s letters, photographs, and company records are deposited at the University Archives at Michigan Tech.

CRM: The Journal of Heritage Stewardship
Winter 2006
ISSN 1068-4999

CRM = cultural resource management

CRM: The Journal of Heritage Stewardship is published twice each year by the National Park Service to address the history and development of and trends and emerging issues in cultural resource management in the United States and abroad. Its purpose is to broaden the intellectual foundation of the management of cultural resources.

Guidance for authors is available online at http://www.cr.nps.gov/CRMJournal.

Manuscripts, letters to the editor, and all questions and recommendations of an editorial nature should be addressed to Martin Perschler, Editor, email martin_perschler@nps.gov, telephone (202) 354-2165, or fax (202) 371-2422. Incoming mail to the Federal Government is irradiated, which damages computer disks, CDs, and paper products. These materials should be sent by a commercial delivery service to Editor, CRM Journal, National Park Service, 1201 Eye Street, NW (2286), Washington, DC 20240-0001.

Views and conclusions in CRM Journal are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Acceptance of material for publication does not necessarily reflect an opinion or endorsement on the part of the CRM Journal staff or the National Park Service.

CRM Journal is produced under a cooperative agreement between the National Park Service and the National Conference of State Historic Preservation Officers.

To subscribe to CRM Journal—

Online http://www.cr.nps.gov/CRMJournal
email NPS_CRMJournal@nps.gov
Facsimile (202) 371-2422

U.S. Mail—
CRM Journal
National Park Service
1849 C Street, NW (2286)
Washington, DC 20240-0001