Knife River Indian Villages National Historic Site Artifact Research FY05 Fall Prescribed Fire Monitoring Report

Prepared by Rod Skalsky Knife River Indian Villages NHS

Artifact Research RX

Burn Unit Summary

The Artifact Research Fall Rx was conducted in order to document and compare surface temperatures and exposure durations associated with the three main firing methods (backing, flanking, and heading). Research plots were located in a non-native grassland (fuel model 1) dominated by smooth brome (*Bromus inermis*). Six 20-m² plots were burned in total. At each site (Youess and Poly), 1 plot was burned using head fire, 1 was burned using flanking fire, and 1 was burned using fire. A Campbell Scientific six channel data logger equipped with Omega GG-K-26 thermocouples (glass braid 26 Ga. Wire) was utilized for data collection.

Observations were made to evaluate spalling, cracking, and other damage to surface artifacts. Temperatures and exposure durations will be related to pre and post-burn observations made by the MWR archaeological team. <u>28 September 2005</u>
Unit Layout: Three 20-m² at Youess; three 20-m² plots at Poly
Aspect: Flat
Elevation: 1670 - 1710 feet
Vegetation Type: predominantly non-native, mixed grass dominated by smooth brome

Personnel: Resources from National Park Service, United States Forest Service and United States Fish and Wildlife Service Participated during the prescribed fire

Burn Boss: Chad Wimer Ignition Specialist: Rod Skalsky Holding Specialist: Jesse Olson Fire Monitor: Kasha Hansen Engine Bosses: E-6621: John Moeykens (T), Eli Schumann E-6514: Andy Beck, Justin Robinson ATV Operator: Craig Hansen Ignitions: Chuck Folk, Crystal Kilwein

Artifact Research RX: Vicinity Map

Artifact Research RX: Unit Maps

Poly Site

Blocks G, H and I included in September 2005 Rx

Youess Site

Blocks J, K and L included in September 2005 Rx

Objectives

Objectives of Artifact Research RX include:

1. Reduce 1-hr dead and down fuels by 85% immediate post-burn (averaged over the entire burn unit).

Weather Observations

4/28/05	Temp	erature Dew			Winds		
Time	Dry	Wet	Point	RH	Speed	Direction	Comments
0700	42°	39°	35°	77	4	NW	Partly cloudy
1115	56°	46°	35°	45	5, G 8-10	NW	Clear
1200	57°	46°	34°	45	5, G 8-10	NW	Clear
1230	57°	46°	34°	45	5, G 8-10	WNW	Clear
1315	57°	46°	34°	45	6, G 8-10	WNW	Clear

Fire Behavior Observations

Fire behavior observations were recorded periodically as fire progressed through each of the 6 research plots. Rate of spread (ROS) and flame lengths (FL) were documented at locations within each plot complex. Observations were made in mixed grass fuels (fuel model 1) dominated by smooth brome.

Time	Location	Fire Type	ROS	FL	Comments
1115	Youess, K plot	В	2.7	.5'-2'	Clear; backing fire plot
1200	Youess, J plot	F	3.6	1.5'-4'	Flanking fire plot
1230	Youess, L plot	Н	43.6	2'-5'	Head fire plot
1315	Poly, G plot	В	2.7	0.5'-1.5'	Clear; backing fire plot
1340	Poly, I plot	F	2.7	.5'-2'	Flanking fire plot
1400	Poly, H plot	Н	90.9	1.5'-4.5'	Head fire plot

ROS = chains per hour (c/h)

Biomass and Soil Moisture Sampling

Research Site	Sample size	Fuel Loading	Average Fuel Loading	Soil Moisture	Average Soil Moisture
Youess	3	2.51 tons/acre		9.87%	
Poly	3	1.21 tons/acre	1.86	9.55%	9.71%

Fuel Moisture Sampling

Research Site	Live/Dead	Sample size	Fuel Moisture Content FMC (%)	Average FMC (%)	
Youess	Live	3	59.72		
Poly	Live	3	79.04	138.76	
Youess	Dead	3	13.71	25.26	
Poly	Dead	3	11.65	23.30	

Duff Depth Remaining Post Burn

Research Site	Duff Depth	Sample size	Average Depth Per Site	Average Depth
Youess	cm	15	2.52	
Poly	cm	15	3.03	2.77

Fire Progression

Youess Block/K plot: Ignition operations began in the southeast corner of this plot at 1115. The corner was quickly secured with backing and strip head firing. The remainder of the unit burned with a slow, backing fire. This plot was completed at 1200. *Youess Block/J plot*: Ignition operations began at 1200. The southeast corner of this plot was likewise secured with backing and strip head firing. By 1230 the remainder of this plot was consumed with a flanking fire. *Youess Block/L plot*: Firing began at 1230 and was finished by 1240. The southeast corner was secured using backing and strip head firing, then the remainder of the unit was burned with a head fire.

Poly Block/G plot: Ignition operations began in the southeast corner of this plot at 1315. The corner was quickly secured with backing and strip head firing. The remainder of the unit burned with a slow, backing fire. This plot was completed at 1335. *Poly Block/I plot*: Ignition operations began at 1335. The southeast corner of this plot was likewise secured with backing and strip head firing. By 1350, the remainder of this plot was consumed with a flanking fire. *Poly Block/H plot*: Firing began at 1350 and was finished by 1340. The southeast corner was secured using backing and strip head firing, then the remainder of the unit was burned with a head fire.

Fire Monitoring

The following graphs depict temperature changes over time at six thermocouples within each plot (graphs were created by Rod Skalsky, KNRI Fire Program Coordinator).

Due to problems with temperature collecting equipment, six thermocouples were not used on all plots and data was not able to be collected on backing fire plots.

USFS personnel watching backing fire on Poly plot G