Mount Rainier and Its Glaciers
NPS Logo


High above the Ingraham Glacier towers that sharp, residual mass of lava strata known as Little Tahoma (11,117 feet), the highest outstanding eminence on the flank of Mount Rainier. (Figs. 11 and 12.) It forms a gigantic "wedge" that divides the Ingraham from the Emmons Glacier to the north. So extensive is this wedge that it carries on its back several large ice fields and interglaciers, some of which, lying far from the beaten path of the tourist, are as yet unnamed. Separating them from each other are various attenuated, pinnacled crests, all of them subordinate to the main backbone which runs eastward some 6 miles and terminates in the Cowlitz Chimneys (7,607 feet), a group of tall rock towers that dominate the landscape on the east side of Mount Rainier.

Most of the ice fields, naturally, lie on the shady north slope of the main backbone; in fact, a series of them extends as far east as the Cowlitz Chimneys. One of the lesser crests, however, that running southeastward to the upland region known as Cowlitz Park, also gives protection to an ice body of some magnitude, the Ohanapecosh Glacier. Considerably broader than it is long in the direction of its flow, this glacier lies on a high shelf a mile and a half across, whence it cascades down into the head of a walled-in canyon. Formerly, no doubt, it more than filled this canyon, but now it sends down only a shrunken lobe. The stream that issues from it, the Ohanapecosh River, is really the main prong and head of the Cowlitz River.

The largest and most elevated of the ice fields east of Little Tahoma is known for its peculiar shape as Fryingpan Glacier. It covers fully 3 square miles of ground and constitutes the most extensive and most beautiful interglacier on Mount Rainier. It originates in the hollow east side of Little Tahoma itself and descends rapidly northward, overlooking the great Emmons Glacier and finally reaching down almost to its level (fig. 12). It is not a long time since the two ice bodies were confluent.


The eastern portion of the Fryingpan Glacier drains northeastward and sends forth several cascading torrents which, uniting with others coming from the lesser ice fields to the east, form the Fryingpan River, a brisk stream that joins White River several miles farther north.

Below the Fryingpan Glacier there lies a region of charming flower-dotted meadows named Summer Land, a most attractive spot for camping.


1This glacier is also known locally as White Glacier.

Cloaking almost the entire east side of Mount Rainier is the Emmons Glacier, the most extensive ice stream on the peak (named after Samuel F. Emmons, the geologist and mountaineer who was the second to conquer the peak in 1870). About 5-1/2 miles long and 1-3/4 miles wide in its upper half, it covers almost 8 square miles of territory. It makes a continuous descent from the summit to the base, the rim of the old crater having almost completely broken down under its heavy névé cascades. But two small remnants of the rim still protrude through the ice and divide it into three cascades. (Fig. 12.) From each of these dark rock islands trails a long medial moraine that extends in an ever-broadening band down to the foot of the glacier.

Conspicuous lateral moraines accompany the ice stream on each side. There are several parallel ridges of this sort, disposed in successive tiers above each other on the valley sides. Most impressively do they attest the extent of the Emmons Glacier's recent shrinking. The youngest moraine, fresh looking as if deposited only yesterday, lies but 50 feet above the glacier's surface and a scant 100 feet distant from its edge; the older ridges, subdued in outline, and already tinged with verdure, lie several hundred feet higher on the slope.

The Emmons Glacier, like the Nisqually and the Cowlitz, becomes densely littered with morainal débris at its lower end, maintaining, however, for a considerable distance a central lane of clear ice. The stream which it sends forth, White River, is the largest of all the ice-fed streams radiating from the peak. It flows northward and then turns in a northwesterly direction, emptying finally in Puget Sound.

<<< Previous <<< Contents>>> Next >>>

Last Updated: 07-May-2007