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ABSTRACT

Heavy metal escapement associated with ore trucks is known to occur along the DeLL.ong
Mountain Regional Transportation System (DMTS) haul road corridor in Cape
Krusenstern National Monument, northwest Alaska. Heavy metal concentrations in
Hylocomium splendens moss (n = 226) were used in geostatistical models to predict the
extent and pattern of airborne deposition of Cd and Pb on Monument lands. A stratified
grid-based sample design was used with more intensive sampling near mine-related
activity areas. Spatial predictions were used to produce maps of concentration patterns,

and to estimate the total area in ten moss concentration categories.

Heavy metal levels in moss were highest immediately adjacent to the DMTS haul road
(Cd > 24 mg/kg dw; Pb > 900 mg/kg dw). Spatial regression analyses indicated that
heavy metal deposition decreased with the log of distance from the DMTS haul road and
the DMTS port site. Analysis of subsurface soil suggested that observed patterns of
heavy metal deposition reflected in moss were not attributable to subsurface lithology at
the sample points. Further, moss Pb concentrations throughout the northern half of the
study area were high relative to concentrations previously reported from other Arctic
Alaska sites. Collectively, these findings indicate the presence of mine-related heavy
metal deposition throughout the northern portion of Cape Krusenstern National

Monument.

Geospatial analyses suggest that the Pb depositional area extends 25 km north of the haul
road to the Kisimilot/Iyikrok hills, and possibly beyond. More study is needed to
determine whether higher moss heavy metal concentrations in the northernmost portion
of the study area reflect deposition from mining-related activities, weathering from
mineralized Pb/Zn outcrops in the broader region, or a combination of the two. South of
the DMTS haul road, airborne deposition appears to be constrained by the Tahinichok
Mountains. Heavy metal levels continue to decrease south of the mountains, reaching a
minimum in the southernmost portion of the study area near the Igichuk Hills (45 km

from the haul road). The influence of the mine site was not studied.
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INTRODUCTION

Cape Krusenstern National Monument is located in a remote region of northwestern
Alaska and administered by the National Park Service (NPS). Neighboring Ifiupiat
village residents use Monument land for subsistence hunting and food-gathering
activities. The largest zinc mine in the world, Red Dog Mine, is located approximately
50 km northeast of the Monument boundary. Since its inception in 1989, Red Dog Mine
has operated year-round to produce lead (Pb) and zinc (Zn) concentrates in powder form
at the mine site. Ore concentrates are hauled ca. 75 km in covered trucks via the DeLong
Mountain Regional Transportation System (DMTS) haul road to storage facilities on the
Chukchi Sea, where they are stored for further transport during the short ice-free shipping

s€ason.

The DMTS haul road (hereafter referred to as “haul road”) traverses 32 km of Monument
land. In 1985, a 100-year transportation easement was granted for construction and use
of the haul road through NPS land (Public Law 99-96, 1985). In 2001, NPS researchers
reported high concentrations of cadmium (Cd >10 mg/kg), Pb (> 400 mg/kg), and Zn (>
1500 mg/kg) in and on Hylocomium splendens moss along the haul road corridor (Ford
and Hasselbach 2001). The source of these high concentrations was attributed to
escapement of ore concentrate from trucks and truck surfaces during transport (Ford and
Hasselbach 2001). Sampling was concentrated near the haul road and no attempt was
made to determine the extent of the depositional area. These findings formed the basis
for the present study, which was designed to estimate the geographic extent and

distribution patterns of heavy metal deposition within the Monument.

The NPS is required by law to protect natural and healthy ecosystems (Public Law 96-
487, 1980). The ecosystem effects of artificially elevated Cd and Pb levels on Monument
land are unknown at this time. Mining company consultants are currently conducting an
extensive risk assessment effort under the oversight of the State of Alaska Department of
Environmental Conservation. Information obtained through the current study will allow

focused design of further studies the appropriate spatial scale. Follow-up research,
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including determination of potential biological effects, can then be targeted in areas of

greatest potential concern.

The use of H. splendens moss in assessing airborne contaminants is well established (e.g.,
Berg et al. 2003, Riihling and Steinnes 1998, Berg & Steinnes 1997, Steinnes 1995,
Steinnes et al. 1992). Mosses lack vascular systems and obtain most of their nutrients
from precipitation and from dry deposition of airborne particles (Aberg et al. 2001;
Riihling and Steinnes 1998). Therefore, tissue concentrations are minimally confounded
by uptake of mineral elements from soils and subsequent translocation. H. splendens has
been particularly well characterized with respect to element uptake (e.g., Riihling and
Tyler 1970), field variability (Ford et al. 1995, @Qkland 1999), and the relationship
between tissue concentration and atmospheric deposition (Berg et al. 2003, Berg and

Steinnes 1997, Ross 1990).

The goals of this study were: (1) to model the spatial patterns of atmospherically derived
Cd and Pb deposition in the vicinity of Cape Krusenstern National Monument, (2) to
estimate the areal extent of land with moss levels in various concentration categories, and

(3) to identify potential sources of these airborne heavy metals.

STUDY AREA

Cape Krusenstern National Monument encompasses 266,700 ha bordering the Chukchi
Sea approximately 16 km north of Kotzebue, Alaska (Figure 1). The Monument is
located in a tundra ecosystem on a coastal plain with predominantly open low mixed
shrub-sedge tussock tundra (Viereck et al. 1992) interspersed with low-lying, well-
drained knolls supporting a variety of lichen, forb, and shrub species. Bedrock is
predominantly calcareous and of Paleozoic age. Soils are poorly developed due to the

cold climate, low precipitation, and the near-continuous permafrost.
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Figure 1. Location map. Cape Krusenstern National Monument, Alaska.
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The haul road bisects the northern portion of the Monument. Immediately south of the
haul road, the Tahinichok Mountains are a dominant feature rising from the flat tussock
tundra to a maximum elevation of 502 m. South of this mountain range, Monument lands
are predominantly wet, flat, and rolling. The area north of the haul road is generally low-
lying and gently sloping, and drains into the Wulik River approximately 10 km north of
the Monument boundary.

The port facility (Figure 1) is located on land belonging to NANA Regional Corporation
(an Alaska Native corporation) at the western terminus of the haul road. The facility

itself is owned by the Alaska Industrial Development and Export Authority which
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contracts with the mining company, Teck Cominco Alaska, Inc., for its use, operation and

maintenance (Exponent 2002a).

Wind patterns throughout the study area are variable and are influenced by local
topography (Exponent 2002b). Winds at the port site are typically from the northeast in
winter months. In summer, port site winds are highly variable and strong winds from the
south-southwest are present (Exponent 2002b). At the mine site, winds are
predominantly from the northeast and southeast in winter months and highly variable in

summer months (Exponent 2002b).

METHODS

Samples of the H. splendens moss and subsurface soil were collected from June through
August 2001 in a 5000 km? area encompassing the Monument and lands to the north
(Figure 2). The study area was centered on the portion of the haul road that crosses
Monument lands, and extended approximately 70 km north and 70 km south of the road.
Laboratory analysis targeted heavy metals of potential toxicological interest (Cd and Pb).

Crustal elements (Al and Fe) and Zn were included for interpretive purposes.

Sample Design

A stratified, grid-based sample design was used with intensified sampling (i.e., smaller
grid cell size) near the haul road and port site boundary. The grid consisted of 8 strata
(Figure 2, Table 1) and a total of 155 grid cells (Table 2). Grid cell size increased
gradually (by strata) with distance from the haul road and the port site, allowing for more
intensive sampling (i.e., smaller and more numerous grid cells) near these features
(Figure 2). The grid configuration was based on roadside deposition patterns revealed in
pilot study data (Ford and Hasselbach 2001), as well as on time and budgetary

considerations.
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Figure 2. Sample collection locations and strata definition. Mosses were collected and
analyzed at each grid cell location (n = 151). Subsurface soil collection locations are
shown only for soils used in data analysis (7 = 46).
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Table 1. Information on stratified sampling design based on random samples within a

grid of cells.
Stratum Stratum Definition Appr9x1matez Cell
Size (km”)

1 0 — 10 m from haul road 0.05

2 10 — 250 m from haul road 1

3 250 — 1000 m from haul road 3

4 0 — 100 m from NANA* port site boundary 0.20
100 — 1000 m from NANA* port site

5 2
boundary

6 1000 — 16000 m from haul road 18

7 Southern portion of Monument (> 16000 m 200
south of haul road)

] North of Monument boundary (> 16000 m 200

north of haul road)

* NANA Regional Corporation

Table 2. The number of points sampled for Hylocomium splendens by strata.

Stratum Grid Cells Grid Cells Total Moss Sgil
Sampled Unsampled* Collections**  Collections™**
1 12 0 13 5
2 13 0 15 2
3 18 2 30 1
4 8 0 9 3
5 8 0 13 3
6 66 1 103 13
7 12 0 19 9
8 14 1 24 10
Totals 151 4 227 46

* Not sampled due either to lack of moss or weather-related helicopter constraints.

** Including field duplicate and random duplicate collections.
*** Including only the subset of samples used for data analysis.
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One primary and several auxiliary sample points were randomly chosen within each grid
cell prior to field sampling. If a primary sample point did not contain sufficient
Hylocomium (e.g., the sample point fell in a lagoon), an auxiliary point within the same
grid cell was located and sampled. Data sheets were completed for all primary points,

whether or not moss was present.

A single moss sample was collected at each sampling point. In addition, at 40% of the
points, a second moss sample was collected in a random direction and distance (< 99 m)
from the original point to enable estimates of short-range spatial correlations. These
samples were referred to as “random duplicates.” Also, in 9% (i.e., 13) of the grid cells,
an additional moss collection was made as close as possible to the original sampling
point. These samples were designated as ‘field duplicates’ and were used to assist in the
estimation of variance. Grid cells for collection of random duplicates and field duplicates

were randomly selected prior to field sampling.
Mosses were collected on a total of 151 (out of 155) grid cells (Figure 2, Table 2). The
grand total of 227 grid-based moss samples included 13 field duplicate and 62 random

duplicate collections.

Sample Collection

Moss collection methods were identical to those used in Ford and Hasselbach (2001) and
Ford et al. (1995). Unwashed moss samples were picked clean of visible debris (e.g.,
roots, pebbles) and cropped to include only the most recent (ca. 3—4 yrs) growth.
Specimens were then air-dried on-site in a separate drying tent, sealed, and shipped to the

analytical laboratory.

Samples of subsurface soils (mean collection depth = 62 cm) were obtained at each
primary sample point. At 47 out of 151 points, we were unable to drill deeply enough
through permafrost to obtain samples devoid of obvious organic material. Samples at
depth that contained conspicuous organic material were not considered representative of

soil parent material and were subsequently removed from the sample pool. Due to
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funding constraints, only a subset of the remaining soil samples was sent for laboratory
analysis (n = 46). These soils were selected randomly by stratum and were chosen so that
all strata were represented (Figure 2, Table 2). Additional details on soil collection

methodology are provided in Ford and Hasselbach (2001).

Quality Assurance (QA) in the Field

All samples were cleaned, dried in a dedicated drying tent, and packaged for transport at
the on-site field laboratory (Figure 2). To assess ambient levels of heavy metals in the air
at the laboratory site (potentially generated by both moss cleaning activity and haul road
proximity), four sterile filters were placed in the field laboratory for 24 hours during a
typical moss cleaning session. The same protocol was followed in the drying tent. One
unexposed blank was also assigned for each session. All filters were analyzed for heavy
metals and crustal elements. Results showed elemental content was below the
reporting/quantitation limit of 3.18*MDL (Method Detection Limit), and so laboratory
results for moss samples did not require correction for this potential source of

contamination.

To verify moss identification and 3—5 year clipping accuracy, blind quality assurance
checks were performed by the crew leader on 30% of all cleaned samples. Vouchers

were retained for each moss sample.

Laboratory Work
Moss

Mosses were not washed as the intent was to study the sum of dry deposition + tissue
concentrations in order to (1) capture the entirety of environmental contributions of heavy
metals and (2) allow comparisons to previous studies. A ca. 300-mg aliquot of each dried
sample was combined with nitric, hydrochloric, and hydrofluoric acids in a Teflon bomb
and heated overnight in an oven at 130°C (£10°C). Acids were then neutralized with a
boric acid solution by heating for four hours at 130°C (Shaole et al. 1996). Samples were
brought up to volume with deionized water. Aluminum, Fe, and Zn were analyzed by

inductively coupled plasma atomic emission spectrometry (ICP-AES); Cd and Pb were
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analyzed by inductively coupled plasma mass spectrometer (ICP-MS). Quality control
(QC) samples were run in each batch and included two reagent blanks, two blank spikes,
two matrix spikes, and two replicate analyses of field samples. Method detection limits
were 5.0 mg/kg dw for Al and Fe, 1.0 mg/kg dw for Zn, 0.5 for Pb, and 0.05 for Cd.
Accuracy was assessed on the high end in each batch with Buffalo River sediment (NIST
2704) to take into account the high dust content of Stratum 1 samples. Hylocomium
splendens reference material (M2; Steinnes et al. 1997) was obtained from the Finnish
Forest Research Institute and run in each batch as well. Standard performance on peach
leaves (NIST 1547) was assessed in a separate run. Quality assurance (QA) targets were
+ 20%; one batch required blank correction for Cd. A comprehensive moss QA review

document is available in stand-alone form from the NPS (Ford 2004a).

Soils

A ca. 200 g aliquot of each dried, homogeneous sample was digested in the same manner
as the moss samples, and all elements were analyzed by ICP-MS. QC samples included
four reagent blanks, two pairs of matrix spikes, and two replicates analyses of field
samples. Method detection limits were 2.0 mg/kg dw for Al and Fe, 1.0 mg/kg dw for Zn,
0.2 mg/kg dw for Pb, and 0.02 mg/kg dw for Cd. Accuracy was assessed using Buffalo
River sediment (NIST 2704) and Canadian Research Council reference material
sediments BCSS-1 and PACS-2. QA targets were + 20%); all batches required blank
correction for Al, which was above the method detection limit in reagent blanks but well
below concentrations in field samples. A comprehensive soil QA review document is

available in stand-alone form from the NPS (Ford 2004b).

Spatial Analysis

Spatial Coordinates

Our analysis uses a geostatistical spatial model based on points and distances, so latitude
and longitude were recorded for all sample units. To make x- and y-coordinates
comparable, we considered the Universal Transversal Mercator (UTM) projection.

However, the whole study area crosses more than one UTM zone, and because distortion
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increases away from the central meridian, we transformed the geographical coordinates
according to the Transversal Mercator projection based on a central meridian that was the

mean of all of the longitude coordinates of our data.

Explanatory variables
Explanatory variables included distance from haul road, distance from port site, and side
of road (i.e., north vs. south). Distance variables were transformed with the natural

logarithm (In).

Spatial Linear Model
To analyze our data (n = 226), we used a spatial linear model (e.g., Ver Hoef et al. 2001).
The spatial linear model can be written as,
y=Xp+e (1)

where y is a vector for the response variable (In of Pb, Zn, or Cd), X is a design matrix
containing the explanatory variables, B is a vector of parameters, and € is a vector of
random errors. In classical linear models, it is often assumed that var(g) = o1, that is, all
errors are independent. We relaxed this assumption and allowed the errors to be spatially
autocorrelated so var(g) = Xg,where Xg is the covariance matrix and we show its
dependence on spatial autocorrelation parameters 6. Autocovariance was modeled based
on the distances between all pairs of points. We used the exponential autocovariance
model,

Cy(h)=61(h=0)+6,exp(-h/6,) (2)
where £ is the distance between any two points, /(a) is the indicator function (equal to 1 if
the expression a is true, otherwise it is 0), and the vector 0 contains three parameters: the

nugget &, partial sill 6, and range 6. The goal of the analysis was to estimate  and 0 ;
B contains the slope parameters of our regression model, and to estimate f and obtain

variances of these estimates, we need to know 0. We chose restricted maximum
likelihood (REML) to estimate 0. The usual geostatistical methods of estimating
variograms are not appropriate here because we are modeling the errors, which are not

directly observable. For these cases, maximum likelihood (ML) and REML are better.

10
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However, ML is known to be more biased than REML (Mardia and Marshall 1984; Ver
Hoef and Cressie 2001). REML creates a likelihood that depends only on 0 by

integrating over all possible values of B, and then we only need to maximize this

likelihood. Once 0 was estimated, hereafter referred to as 0 , we proceeded with
generalized least squares,

0 _ v -1yy-1 iy -1

B=XZ; X)) XZ;y,
to estimate the regression parameters, and their estimated variances are the diagonal

elements of
var(B) = (X'Z;'X) ™.
All parameters B and 0 were fit using PROC MIXED in SAS. Degrees of freedom used

the Satterthwaite option (Satterthwaite 1941), which helps to account for the uncertainty
in covariance parameter estimates by adjusting the degrees of freedom. For a modern

view, see Kenward and Roger (1997).

Model Selection

Based on a pilot study and exploratory data analysis of bivariate plots, it appeared that the
most important factors affecting variation in the response variables were distance from
haul road, distance from port site, and side of the road (a categorical variable indicating
north or south of haul road). We included these variables in the model, as well as all of
their interactions. All three variables were important in most models, as were the
(distance from haul road) x (distance from port) and (side of road) x (distance from haul
road) interactions. Thus, we included all three main effects and these two interactions in
all models. Residuals were checked using Q-Q plots (Wilk and Gnanadesikan 1968) and
appeared to be normally distributed in all cases. To assess autocorrelation structure, we
visually examined empirical semivariograms of the residuals and used AIC to determine
whether anisotropy was necessary. Using both methods, there was no evidence of

anisotropy in the residuals.

11
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Coefficient of Determination - R
In the classical linear model, the random errors of (1) are assumed independent, and one
way to write R* is

P21 0= XB)(y - XP)
(v -12)'(y ~14)

where 1 is a vector of ones, and f=(X'X) X'y and j=y. For the situation where the
errors have covariance matrix X, let y = Zé’”zy , X= Zg”zX and € = 251/25. Then

y= )N(ﬁ + € is model (1) with independent errors, so we took

o O-XBG-Xp)_,_6-XPE/¢-XP) 5
y-12)'(y-1p) V-10E (y-14)°

where p=(XX) XYy, 4=y, p= (XE'X)XE 'y, and g=1'Z]' D) 1Ey.

Spatial Predictions

Among the aims of the analysis was to predict the response variable for points and bands
and to estimate the surface area in various concentration categories. Because the data
were log-transformed, there are well-known difficulties in making predictions on the log
scale and then back-transforming to the original scale (e.g., Cressie 1993, p. 136). This is
made more difficult by the fact that we have covariates, measurement error, and we
wanted to make estimates of complex functions of the predictions (total area above a
reference level). Therefore, we used a Bayesian approach to conditional simulation to
estimate all quantities. Our method followed De Oliveira et al. (1997) using a log
transformation and the exponential covariance (2), but using the reference prior described
by Berger et al. (2001). We had samples for 3 locations measured twice, and we had an
independent data set of 13 samples that the lab measured twice. Assuming each sample
had a unique mean, we used the 13 samples to develop a standard posterior for a variance
parameter for measurement error, e.g., an inverse-y> (Gelman et al. 1995, p. 237). We

then used this posterior as a prior on 6,,. for a partitioned nugget effect in (2) so that

6,=0,,+0,,,where 8,, is the variance due to measurement error and 6, is the

12
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variance due to microscale variation (sensu Cressie 1993, p. 59). Although measurement
error is present in the observed data, we are not interested in predicting values with

measurement error, so we filtered it out by letting 6, =6,,, when forming the posterior

predictive distribution.

Predictions were made on a grid. The prediction grid was patterned after the actual
sampling grid (described above) where cell size increased with distance from the haul
road. The final prediction grid contained 6000 cells. A total of 200 simulations were run
(on the prediction grid) for each element. The predictions at each location were back-
transformed from the log scale, and then means over the 200 simulations were used to
create interpolation maps; quantiles over the 200 simulations provided uncertainty

estimates for the interpolations.

The area of heavy metal deposition was estimated by computing the proportion of the
prediction grid values above a given reference level for each simulation in each strata and
then multiplying each proportion times the area of the stratum. Based on 200
simulations, means and standard deviations were then calculated from these estimates.

Confidence intervals were derived using percentiles from the simulations.

Mapping

Interpolation and contour maps were created from the prediction grid means in ArcView
3.2 with Spatial Analyst (ESRI 1996) using the inverse distance weighted technique
(IDW) with 12 nearest neighbors and power = 2. IDW was used because it is an exact
interpolator and was a quick and efficient technique for dealing with thousands of grid
points. Several power values were tested, but little change was noted due to the
denseness of the grid. Isolines for interpolation maps and categories for estimating areal
extent in the ten moss concentration categories were constructed using a combination of
the following objective criteria: (1) quantiles from regional Arctic Alaska moss heavy
metal concentration data (Ford et al. 1995) and (2) median heavy metal concentrations
from the ‘cleanest’ stratum (# 7) within the current study area and their multiples (e.g.,

10X, 20X, etc.). Subjective intervals based primarily on natural breaks were added
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where deemed necessary to provide the best graphical representation of spatial patterns,

but these were kept to a minimum.

RESULTS

Summary Data

Summary data for analytes in moss and soil across the entire study area are summarized
in Table 3. The moss data show a high degree of variability (2-3 orders of magnitude)
for all elements due to the large differences between areas with greater and lesser heavy
metal levels. Log transformation greatly improved the normality of distributions. By

contrast, heavy metal concentrations in subsurface soils show relatively low variability.

Table 3. Summary data for analytes in moss and subsurface soil throughout the entire
study area, including median, mean, standard deviation (SD), and range of values. All
units are in mg/kg dw.

Substrate (n) Element | Median = Mean SD Range
cd 0.56 1.86 3.54 0.08 - 24.30
Pb 16.2 68.1 141.1 1.1-912.5
Moss Zn 92 292 518 23207
(=150 4 773 4,850 10243 46— 45,749
Fe 580 3,063 6242 168 28,630
cd 0.27 0.27 0.13 0.07 - 0.75
Pb 15.3 17.8 11.7 7.8 83.8
Soil Zn 9 9% 24 49— 164
(n=46) 61,350 60,760 11,518 25,900 — 86,600
Fe 39,750 39,339 12,559 14,400 — 71,800
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Elemental Correlations in Moss

Correlation coefficients were calculated among analytes in H. splendens moss (Table 4).
Two distinct groups were readily apparent: heavy metals (0.94 > r* > 0.92) and crustal
elements (* = 0.99). The three heavy metals (Cd, Pb and Zn) are geochemically related
and typically co-occur in metal sulfide deposits such as those at the mine site. At Red
Dog Mine, Cd is present in Pb and Zn concentrates at levels of approximately 820 ppm
(0.08%) and 2980 ppm (0.30%) respectively (Exponent 2002a). The crustal elements (Al
and Fe) exhibited a near 1:1 relationship; Al is therefore used to represent crustal
elements in the analyses that follow. Somewhat weaker correlations (0.79 > r*> 0.72)

were observed between crustal elements and heavy metals (Table 4).

Table 4. All pairwise correlation coefficients among element concentrations in
Hylocomium splendens moss (n = 151). All data were log; transformed.

Cd Pb Zn Al Fe
Cd 1.00 0.94 0.94 0.79 0.79
Pb 0.94 1.00 0.92 0.72 0.74
/n 0.94 0.92 1.00 0.77 0.79
Al 0.79 0.72 0.77 1.00 0.99
Fe 0.79 0.74 0.79 0.99 1.00

Spatial Regression

Spatial regression was used to examine relationships between element concentrations in
moss and various factors potentially associated with metal deposition (Table 5). Overall
fit of the models was excellent for heavy metals with R-squared values ranging from 0.83
—0.86. The Al model also demonstrated a good fit with an R-squared value of 0.70.

Several of the independent variables were found to have significant predictive power,
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including (1) distance to the haul road, (2) distance to the port site, and (3) north versus
south side of road. “Distance to the haul road” was significant for all elements (p < 0.001
for heavy metals) in spatial regression (Table 5). Figure 3a further illustrates strong road-
related gradients encompassing the study area on both sides of the road. These results
build upon earlier research (Ford and Hasselbach 2001) by greatly expanding the known
extent of heavy metal escapement from the haul road. Aluminum showed a somewhat
weaker relationship with distance to haul road (p = 0.015) than was evidenced by the

heavy metals.

Concentrations of all three heavy metals in mosses demonstrated statistically significant
relationships (p < 0.01) with distance to the port site (Table 5). This correlation was not
found for Al (p =0.751). The variable “side of road” (indicating north or south side of
the haul road) had significant predictive power in and of itself for Pb only (p = 0.02).
However, when entered in spatial regression models as an interaction term with “distance
to haul road”, it was highly significant (» < 0.01) for Pb and Zn and nearly significant (p
=0.06) for Cd.

Patterns of Heavy Metal Deposition

Spatial patterns estimated by interpolated conditional simulation maps were similar for
all elements and consisted of concentric bands of decreasing deposition radiating from

the haul road and port site (Figures 4 & 5).

Mapped patterns depicting strong haul road and port site gradients are consistent with
spatial regression results. High levels of heavy metals along the haul road corridor are
readily apparent (Figures 4 & 5). Roadside concentrations (i.e., Stratum 1: 0 — 10 m from
haul road) ranged from 7-24 mg/kg dw for Cd and 271-912 mg/kg dw for Pb. Highest
values (e.g., Pb legend class: 400—1000 mg/kg dw) occurred along the portion of the haul

road nearest to the port site for all analytes (e.g., Figure 6).
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Figure 3. Elemental concentrations in moss and subsurface soil with respect to the
DMTS haul road. The midline of the road is represented by location “0” on the X-axis.
The south side of haul road is displayed as negative values, whereas the north side of the
road is shown as positive. Mean soil depth = 62 cm. All data were log)o transformed.
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Figure 4. Conditional simulation predictions for moss Cd concentrations in the vicinity
of Cape Krusenstern National Monument including 0.05 and 0.95 prediction quantiles.

Cd (mg/kg dw)

I 0-0.15*
0.15-0.2*
0.2-04*
0.4 - 0.5 ****
05-16
] 16-25
- 25-3.2
32-43
43-75
B 75250
/\/ DMTS haul road

[ Cape Krusentsern National
Monument boundary

Bl NANA Regional Corp. land
(not sampled)

Cd
Prediction
Map

® Village
O Port site
10 0 10 20 @
o ™ ]
Kilometers
®
®
0.05 Quantile Map 0.95 Quantile Map
Not to scale Not to scale

* Ford et al. (1995) Arctic Alaska median = 0.15 mg/kg dw Cd
** Ford et al. (1995) Arctic Alaska 75th percentile = 0.23 mg/kg dw Cd
*** Ford et al. (1995) Arctic Alaska 90th percentile = 0.41 mg/kg dw Cd
*#%% Ford et al. (1995) Arctic Alaska maximum = 0.48 mg/kg dw Cd

19



NPS Final Report # NRTR-2004-45 July 2004

Figure 5. Conditional simulation predictions for moss Pb concentrations in the vicinity of
Cape Krusenstern National Monument including 0.05 and 0.95 prediction quantiles.
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Figure 6. Conditional simulation predictions for moss Pb concentrations along the
DMTS haul road corridor.
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The port gradient itself is displayed as a band of heavy metal deposition around the
facility. The pattern is most pronounced to the north-northeast of the facility (Figure 6).
Sampling was conducted along the NPS-NANA port boundary located 3—4 km from the
actual port site (Figure 2). Heavy metal levels in mosses in this area ranged from 20-140

mg/kg Pb and 0.7-3.6 mg/kg Cd.

Mapped patterns also reveal the differences between heavy metal levels north and south
of the haul road detected by spatial regression results (Figures 4 & 5). In general, heavy
metal concentrations in moss decrease more gradually with distance on the north side of
the haul road than on the south. In the far southern portion of the Monument, metal
levels continue to decrease consistently, reaching their lowest levels (median Cd = 0.16
mg/kg dw; median Pb = 2.0 mg/kg dw) in the vicinity of the Igichuk Hills, 40 km from
the haul road. This contrasts with the northern portion of the study area where
concentrations remain relatively high (2040 mg/kg dw Pb ) 4-40 km north of the haul
road and Pb levels at the most distant points (60 km north of the haul road) are 3—4 times

those in the Igichuk Hills in the far southern portion of the study area.

To further investigate depositional patterns north of the haul road, Pb levels in moss are
displayed using both interpolated contour intervals and raw data values derived from
conditional simulation modeling (Figure 7). Results indicate that Pb levels in
Kisimilot/Iyikrok hills, 25 km north of the haul road, range from 7 to 42 mg/kg dw
(Figures 1 & 7-inset). North of this area, Pb concentrations decrease to somewhat lower

values (ca. 7 mg/kg dw).
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Figure 7. Moss Pb concentration contours (derived from conditional simulation) overlain
on topography in the vicinity of Cape Krusenstern National Monument. Inlay shows
actual Pb concentrations in the northern portion of the study area. Moss concentrations
were rounded for ease of viewing.

Not to scale

Pb tissue concentrations (mg/kg dw)
at Stratum 8 sample points

Pb
° Contour Map

Pb concentration
in 1 mg/kg dw intervals
/\/ DMTS haul road

[ Cape Krusenstern National
Monument boundary

Ml Northwest Arctic Native Assoc.
(NANA) land

Village

®

Kilometers

23



NPS Final Report # NRTR-2004-45 July 2004

Subsurface Soils

Subsurface soils were analyzed to ascertain whether subsurface geochemistry at the
sample points was the underlying cause of the differences observed in moss elemental
levels within the study area. Figure 3b shows that elemental concentrations in subsurface
soils are uniform throughout the study area regardless of side of road or distance from
haul road. This contrasts with the moss overlay plot in Figure 3a showing a strong haul
road-related gradient. Therefore, higher levels of heavy metals in mosses observed in
portions of the study area do not appear to be associated with differences in subsurface

geochemistry at the sample points.

Regional Context

No site-specific baseline data exist with which to estimate natural, pre-mine surface
conditions in and around the Monument. Wiersma et al. (1986) studied heavy metal
concentrations in H. splendens moss on and near a gravel bar with a long history of
motorized air and watercraft use in Noatak National Park. Methods appear to be similar
to those used here, although the digestion method is not given. Instead of using just the
most recent 3—5 segments, however, these authors used the whole plant, which gives
concentrations ca. 2x those obtained using just the 3—5 distal segments (Ford,
unpublished data), probably reflecting accumulation of heavy metals over a longer time
frame. Further, there is no indication that moss samples were cleaned of visually obvious
debris. The authors of the study considered their Pb results to be undesirably variable
(coefficient of within-site variation ca 1.2), and Cd analyses failed accuracy QC checks.
For all of these reasons, as well as the fact that the sampling location likely included Pb
deposition from local motorized traffic over several years, the Wiersma et al. (1986) data

on Pb and Cd are considered unsuitable for comparison with the present study.

A series of H. splendens studies was also done by Crock and colleagues for lower latitude
regions of Alaska (Crock et al. 1992a, 1992b, 1993). The Denali study is the most
pertinent to the current work, although it included intensive sampling near a 25-
horsepower coal-fired power plant. Crock et al. (1992a) note that observed Pb levels may

be associated with this source. Further, the method detection limit for Cd was relatively
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high, and most of their Cd data fell below that value. As in the Wiersma et al. (1986)
study, whole moss was used instead of clipping to include just the past 3—5 years. Unlike
the present study, mosses in the Crock et al. studies were washed, presumably because
dry deposition was not of interest. For all these reasons, the Crock et al. studies are also

considered unsuitable for comparison with the present study.

Ford et al. (1995) conducted a regional study of heavy metal concentrations in H.
splendens moss in Arctic Alaska. That study included three sites located 35-120 km
east-northeast of the Red Dog mine site, as well as 10 sites in western Arctic Alaska
sampled as part of a pilot grid-based objective sampling campaign. The laboratory and
field methods were virtually identical to those used in this study. Therefore, we compare

our data for northwestern Alaska to the data in that regional study.

Relative to these regional data, the areas surrounding the haul road and port site contain
highly elevated levels of heavy metals (Tables 6 & 7; Figures 4 & 5). South of these
areas, Cd levels drop below the maximum concentrations reported by Ford et al. (1995)
just north of the crest of the Tahinichok Mountains, 3 km from the haul road (Figures 1 &
4). In contrast, Pb levels do not drop below even the 90th percentile of concentrations
reported by Ford et al. (1995) until 40 km south in the vicinity of the Igichuk Hills (Table
7; Figures 1 & 5).

To the north, moss Cd levels are between the 75th percentile and the maximum
concentrations reported by Ford et al. (1995) (Table 6, Figure 4). This is in contrast to Pb
levels that exceed maximum concentrations reported by Ford et al. (1995) throughout the

northern portion of the study area (Table 7; Figure 5).
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Table 6. Comparison of Cd concentrations in Hylocomium splendens moss in the current
study area with Arctic Alaska values reported by Ford et al. (1995). Moss concentration
is given as mg/kg dw.

Cd Cd Cd Cd
75th 90th
median  percentile percentile range
Current study:
< 10 m from DMTS haulroad ) o 149 21.93 6.87 - 2431
(Stratum 1)
> 10 m from DMTS haul road 0.536 0.80 2.23 0.09 —7.98
(Strata 2 —8)
Regional data:
Ford et al. 1995 0.15 0.23 0.41 0.02 —0.48*

* One data point (Cd = 0.98 mg/kg dw) was omitted based on problems described by the
primary author regarding possible sample contamination during sample transport (J. Ford,
pers. comm.).

Table 7. Comparison of Pb concentrations in Hylocomium splendens moss in the current
study area with Arctic Alaska values reported by Ford et al. (1995). Moss concentration
is given as mg/kg dw.

Pb Pb Pb Pb
75" 90th
median  percentile percentile range

Current study:
< 10m from DMTS haulroad 00 4 5495 842.2 271.1-912.5

(Stratum 1)
> 10 m from DMTS haul road 15.1 29.4 91.0 1.1-350.3
(Strata 2 - 8)
Regional data:
Ford et al. 1995 0.6 0.8 1.4 04-23

26



NPS Final Report # NRTR-2004-45 July 2004

Geographic Extent of Deposition

Conditional simulation estimates were made of the total area for which moss levels fell
into various concentration categories (Table 8). In an estimated 90,210 ha, Cd levels
exceeded the maximum concentration for Arctic Alaska reported by Ford et al.
(1995)(Tables 6 & 8). In addition, Cd levels in an estimated 453 ha were greater than 5.0
mg/kg dw Cd, or approximately 10 times the maximum concentration reported by Ford et
al. (1995)(Tables 6 & 8). For Pb, an estimated 58,067 ha exceeded 20 mg/kg dw, or
approximately 10 times the maximum concentration for Arctic Alaska reported by Ford
et al. (1995) (Tables 7 & 8). In addition, in approximately 102 ha, Pb levels exceeded
400 mg/kg dw (Table 8). Mosses with the highest heavy metal concentrations were
located along the haul road easement within Cape Krusenstern National Monument

(Figures 4, 5 & 6).

DISCUSSION

Sources of Heavy Metal Escapement

Strong depositional gradients exist within our study area with regard to the haul road and
port site. Earlier work identified the haul road as an important source of heavy metal
escapement (Exponent 2002a, Ford and Hasselbach 2001). However, materials used in
construction of the haul road did not contain high levels of heavy metals (Exponent
2002a, Ford and Hasselbach 2001), and therefore roadbed materials per se were not
believed to be a source of heavy metals. Rather, the main mechanism of haul road
escapement appeared to be related to the ore trucks (Exponent 2002a, Ford and
Hasselbach 2001). Ore dust generated in the unloading (and loading) process at the port
(and mine) site result in contamination of ore truck surfaces. This fugitive dust is then
blown by wind (or washed by rain, etc.) from truck surfaces during transit. Figure 6
shows heavy metal levels along the haul road decreasing with distance from the port site
(see also Exponent 2002a). A similar escapement mechanism may exist at the mine site
(Exponent 2002a), although our sample points were too distant from the mine (30—-100+

km) to detect such a pattern.
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Table 8. Conditional simulation estimates of heavy metal depositional areas within the
study area and within Cape Krusenstern National Monument (NPS lands). Values are
presented as overall area estimates in hectares (ha). Confidence intervals (CI) are also
given.

Element Entire Study Area NPS Lands Only*
mg/kg area = area ¢l
dw (ha) 5-95% (ha) 5-95%
(ha) (ha)
Cd > 5% 90,210 65,829 — 119,935 36,594 32,574 41,778
>2.0 3,592 2,129 - 5,337 2,937 2,129 -3,916
>5.0 453 306 - 627 450 306 - 627
> 8.0 159 95 -234 159 95 -234
> ek 447,374 418,653 — 474,240 175,421 150,958 — 198,890
>20 58,067 39,910 — 85,505 20,538 17,172 - 24,112
b > 50 10,975 4,839 - 11,860 4,430 3,418 — 5,892
> 100 2,794 1,032 -3,912 1,368 1,032 - 1,923
>200 397 262 -760 360 262 -476
> 400 102 66 — 146 102 66 — 146

* Including road easement
** Maximum value recorded for Arctic Alaska by Ford et al. (1995) = 0.48 mg/kg dw
Cd
*F*Maximum value recorded for Arctic Alaska by Ford et al. (1995) = 2.3 mg/kg dw Pb
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Up to 1.3 million wet metric tons of Pb and Zn concentrate (roughly equivalent to 9
months of mine output) are stored at the port site and subsequently conveyed to barges
during the ice-free shipping season (Glavinovich pers. comm. 2004, Exponent 2002b).
Surface soil Pb levels in excess of 27,000 mg/kg (27x the U.S. Environmental Protection
Agency’s industrial soil cleanup standard of 1000 mg/kg) were reported near port facility
operational areas in a 1996 monitoring summary (Exponent 2002c, Exponent 2001). It is
not surprising, then, that our regression results showed significant relationships between

distance to the port site and concentrations of all three heavy metals in mosses (Table 5).

The strong relationship between Cd and distance to the port site merits attention as
additional factors may be involved (Table 5). Part of the relationship may be attributable
to a maritime effect resulting in higher Cd in the immediate vicinity of coastlines. For
example, analysis of snow samples collected from the Chukchi Sea, the Beaufort Sea, and
inland environments has suggested a maritime effect for Cd (Garbarino et al. 2002). In
the current study, the relationship between Cd and distance to the port site may not be
fully separable from the relationship with distance to the sea. Further, Ford et al. (1995)
found variable Cd concentrations in inland Arctic Alaskan samples of H. splendens moss
that were not explained by either slope position or associated vegetation type. These
authors suggested that a combination of factors “combining lithological sources with
landscape setting and hydrological factors” play a role in determining moss Cd
concentrations in pristine environments. Though both distance to port site and distance to
the haul road are certainly major explanatory variables for gross spatial patterns of Cd
concentrations, more work is required to understand finer scale variation of Cd in the

study area and the region.

Heavy Metals and Dust

There are both similarities and differences between the distribution of heavy metals (Cd,
Pb, and Zn) and the crustal elements present in dust (Al, Fe). Both show significant
relationships with distance to the haul road, although the relationship is weaker for Al
than for heavy metals (p = 0.015 vs. p<0.001)(Table 5). The relationships with the port

site are quite different, however; Al demonstrated a distinct lack of relationship to
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distance to the port site (Table 5). This is probably due to the fact that traffic slows
considerably in the vicinity of the port site, thereby mobilizing less dust and weakening

the “dust signal” from that area.

Although strong correlations were observed between the heavy metal group and crustal
element group, within-group correlations were found to be somewhat stronger than
between-group correlations (Table 4). This is likely because sources of the two groups of
elements, although related in many ways, also include independent contributions. For
example, as discussed above, heavy metal escapement along the haul road corridor has
been attributed to windblown dispersal of concentrate from ore truck surfaces. Vehicles
other than ore trucks would be expected to mobilize primarily road dust. In addition,
naturally occurring dust (e.g., deflation from river deposits and cryogenically exposed
soils) is likely to contribute additional Al and Fe to moss surfaces over time. Both of
these processes infuse additional crustal elements into the environment that would
effectively weaken the correlation between heavy metals and crustal elements. The
relationship is likely to be further complicated by several factors. For example,
generation of road dust may be minimal when the roadbed is frozen and/or snowcovered,
but escapement from ore truck surfaces is presumably continuous throughout the year.
Particle size and weight may also be important. The particle size of naturally occurring
crustal elements is likely to be larger than the finely ground heavy metal concentrate, and
therefore would not be expected to disperse as far. On the other hand, Al and Fe in the
roadbed are probably crushed by the weight of passing vehicles into finer and lighter
materials that may travel farther than might otherwise be expected. Regardless of these
differences, the strength of the between-group correlations suggests that important

depositional pathways are shared by road dust and ore concentrate.

Topography and Wind as Related to Moss Concentrations

One of the prominent features depicted in conditional simulation maps (and confirmed by

spatial regression analyses) is the difference between moss concentration patterns on the
north and south side of the haul road (Figures 3, 4 & 5 and Table 5). The physical

barriers and transport pathways formed by various topographic features are consistent
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with these and other patterns. Seasonal winds from the west and south (Exponent 2002a)
are probably a contributing factor driving deposition north of the haul road. Local
topography also appears to influence patterns of heavy metal deposition, constraining
deposition to a narrower swath on the south vs. north side of the road. For example,
immediately south of the haul road, airborne deposition is constrained by the Tahinichock
Mountains (elevation 502 m, Figure 1). Elevated heavy metal levels encroach on the mid
and upper slopes of the north-facing mountain slopes but decrease steadily over the crest
to the south (Figure 7). The result is the compressed depositional pattern observed 0—5
km south of the haul road corridor. Conversely, depositional intervals north of the haul
road are noticeably broad (Figures 4, 5 & 7). Lead deposition in the 10-20 mg/kg dw
range is especially pronounced 4-30 km north of the haul road where the gently sloping
terrain drains toward the Omikviorok River, providing little topographic impediment to

airborne contaminant movement (Figure 7).

The interaction of wind and topography may also cause depositional fallout in certain
areas. The Kisimilot/Iyikrok hills (north of the Wulik River, Figure 1) are a possible
example. Moss Pb concentrations are noticeably higher here than in the areas further
north (Figure 7-inset). This may reflect deposition of heavy metal-laden dust (mine-
related and/or naturally derived) from a focusing effect such as pocket turbulence or the
abruptly decreasing wind velocity due to contact with the intermittent topographic

features formed by the Kisimilot/Iyikrok hills.

Extent of Depositional Area

In the absence of pre-mine baseline data, it is difficult to directly determine the actual
extent of airborne deposition of heavy metals due to ore concentrate escapement in and
around the Monument. Earlier work that covered a 1.6 km swath on either side of the
haul road (Ford and Hasselbach 2001) noted that moss concentrations of Cd, Pb, and Zn
were still elevated at transect points furthest from the haul road relative to maximum
concentrations previously reported from undisturbed sites in Arctic Alaska by Ford et al.
(1995). In that study, application of enrichment factors (element to Al ratios in mosses vs.

local soil parent material) that control for local geology also suggested that concentrate
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was still being deposited 1.6 km from the haul road. One of the purposes of the present
research was to expand the spatial extent of the earlier studies to gain a clearer picture of

the potential depositional area of ore concentrate.

One indication that the full areal extent of heavy metal deposition has been identified
would be an obvious ‘leveling-off” of moss concentrations at some distance from the haul

road. This does not generally occur for Cd and Pb within the study area (Figure 3a).

In the southern portion of the study area, moss concentrations of Cd are less than
maximum values previously reported from Arctic Alaska by Ford et al. (1995)(Figure 4;
Table 6). In addition, moss Cd concentrations north of the haul road drop below
maximum regional values reported by Ford et al. (1995) at a distance of approximately
12 km (Figure 4; Table 6). Collectively, these findings suggest that moss Cd
concentrations are unaffected or only slightly affected by mining-related deposition
beyond 3 km to the south and 12 km to the north of the haul road. In contrast, Pb levels
in the northernmost part of the study area exceed both previously reported Arctic Alaskan
maxima (Ford et al. 1995) and concentrations throughout the southernmost parts of the
study area (Figure 5; Table 7). In the Kisimilot/Iyikrok hills (north of the Wulik River,
Figure 1), moss Pb concentrations ranged from 7 to 42 mg/kg dw (n = 5), exceeding the
maximum Pb value of 2.3 mg/kg dw reported by Ford et al. (1995). This fact, combined
with the strength of the road-related Pb gradient revealed by our analyses (Figures 3 & 5
and Table 5), suggests that mining-related Pb deposition extends at least as far north as

the Kisimilot/Iyikrok hills, 25 km from the haul road.

Interpretation of Pb patterns in this northernmost portion of the study is complicated by
the geochemical makeup of the broader region. This seems especially true for the area
north of the Kisimilot/Iyikrok hills where Pb levels decrease to approximately 7 mg/kg
dw (Figure 7-inset). Our results suggest that subsurface geochemistry at sampling points
is not responsible for elevated moss concentrations of heavy metals (Figure 3b).
However, areas of natural Pb/Zn mineralization are known to exist northwest and

northeast of the mine site (Kelley and Hudson 2003, Exponent 2002b).
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Due to the lack of a vascular system, mosses do not actively take up elements from
substrate. Therefore, Pb levels reflect atmospheric deposition. Thus, higher Pb levels
from mosses in the far northern portion of the study area may be attributable to (1)
airborne deposition from mining-related activities (e.g., fugitive dust), (2) airborne
deposition from weathering of naturally enriched Pb/Zn surface deposits in the broader
region, or (3) a combination of the two. Sampling intensity in the northernmost portion
of the study area was relatively low, and as a result, the prediction standard error for this
area was high (Figures 5 & 7). Additional sampling, both within the far northern portion
of the current study area and beyond the study area boundary to the north, is needed to

better understand patterns and sources of heavy metal concentrations in this area.

Finally, our study was centered on National Park Service lands 50 km west of the actual
mine site and was not designed to examine spatial patterns of heavy metal deposition in
the vicinity of the mine itself which could be an important contributor to observed spatial
patterns of heavy metal concentrations in H. splendens moss. Such research is necessary

to clarify the patterns and sources of airborne heavy metal deposition in the region.

CONCLUSIONS

Airborne deposition of heavy metals from mining-related activities appears to occur
throughout the northern half of Cape Krusenstern National Monument on both sides of
the haul road. The depositional area appears to extend north of Monument boundaries to
the Kisimilot/Iyikrok hills (north of the Wulik River) and possibly beyond, although
more study is needed in this area. Heavy metal concentrations in Hylocomium splendens
moss were correlated most strongly with (1) distance from the DMTS haul road and (2)
escapement from the port site and were not related to subsurface geochemistry. Spatial

patterns with respect to the mine site were not studied.

Highest concentrations of heavy metals in mosses were found within 10 m of the haul

road. Concentrations in samples at 1-10 m from the haul road ranged from 6.9-24.3
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mg/kg dw for Cd and 271-912 mg/kg dw for Pb. In addition, heavy metal concentrations
around the port site boundary were relatively high, particularly to the immediate
northeast of the facility. Heavy metal levels in this area appear to be linked to the port
site itself where soil Pb levels in excess of 27,000 mg/kg were reported near port facility

operational areas in 1996.

Heavy metal concentrations in moss decrease rapidly away from both the haul road and
the port site. In general, heavy metal concentrations decrease more slowly on the north
side of the haul road than on the south. This difference is probably driven by topography
and wind patterns. Deposition south of the haul road appears to be constrained by the
Tahinichok Mountains which likely function as a wind-shadow thereby protecting the
south side of the mountains from deposition related to the haul road. Heavy metal levels
continue to diminish southward, reaching a low point near the Igichuk Hills, 40 km from
the haul road, where both Cd and Pb concentrations in moss are within ranges previously

reported from other parts of Arctic Alaska.

Concentrations of Cd and Pb in moss in the northernmost part of the study area are
greater than those in the southernmost part. This difference does not appear to be
attributable to local variations in subsurface geochemistry at the sample points. Cd levels
appear to be unaffected or only slightly affected by mining-related deposition at distances
greater than 12 km north and 3 km south of the haul road. By contrast, Pb levels in moss
remain elevated throughout the northern portion of the study area relative to values
previously reported from Arctic Alaska. It appears as though mine-related Pb has been
deposited in the vicinity of the Kisimilot/Iyikrok hills (north of the Wulik River), 25 km
north of the haul road. Potential mechanisms contributing to this phenomenon include
localized turbulence and topography, although inputs from natural sources in the broader

region cannot be discounted.
For reasons that remain unclear, Pb concentrations in moss north of the Kisimilot/Iyikrok

hills remain somewhat elevated (ca. 7 mg/kg dw) relative to moss concentrations in other

parts of Arctic Alaska. Higher Pb levels from mosses in the far northern portion of the
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study area may be attributable to (1) airborne deposition from mining-related activities
(e.g., fugitive dust), (2) airborne deposition from weathering of naturally-enriched Pb/Zn
surface deposits in the broader region, or (3) a combination of the two.

Distinguishing between these sources is important to gain a fuller understanding of the
role of mining activities in landscape-scale dissemination of heavy metals. Finer scale
sampling is needed to better understand potential patterns of heavy metal deposition north
of the Wulik River. Additional study with regard to spatial relationships between moss

concentrations and the mine site itself is also recommended.
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